計算機網絡和信息集成教育部重點實驗室(bet356手机版唯一官网)

 
   



2013年學術報告


--- 2013年學術報告
---
Learning Representations from Data

時間:2013年10月27日 地點:九龍湖校區計算機學院四樓會議室

報告簡介:

    As the availability and scope of complex data increase in both scientific and engineering fields, developing statistical tools to discover latent structures and hidden explanatory factors has become a major theme of statistic and machine learning research. Breakthrough work has recently been done on learning latent feature representations with shallow or deep architectures using a huge amount of computing resources and massive data corpora. However, some key research issues are still remaining under-addressed. In this talk, I will introduce some of our recent work on learning representations that are discriminative in specific application tasks, including classification, multi-view data analysis, social link prediction, and low-rank matrix factorization. I will share some insights on dealing with several key issues on learning latent representations, including discriminative ability, model complexity, sparsity/interpretability, and scalability.

報告人簡介:

    朱軍,清華大學計算機科學與技術系副教授、博士生導師,中國計算機學會優秀論文獎、微軟學者、以及國家優秀青年基金獲得 者,入選清華大學221基礎研究人才計劃。2009到2011年在美國卡内基梅隆大學機器學習系做博士後研究。主要從事機器學習、貝葉斯統計等基 礎理論、算法及相關應用研究。相關工作在國際期刊與會議JMLR, PAMI, ICML, NIPS等發表論文40餘篇。受邀擔任機器學習頂級國際會議ICML2014的聯合地區主席、ICML2014和NIPS2013的領域主席、 IJCAI2013的資深程序委員等。2013年入選IEEE Intelligent Systems國際雜志評選的 "AI's 10 to Watch"。
   

bet356手机版唯一官网計算機網絡和信息集成教育部重點實驗室 版權所有


Baidu
sogou