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Abstract—In a multiplex network, agents are connected by
multiple types of links, and the network can be split into
more than one network layer which is composed of the same
type of links and involved agents. Traditional task allocation
methods of multiagent systems only consider the situations of
agents themselves, but neglect the effects of network layers
in multiplex networks. To solve such a problem, this paper
takes network layers into account and presents a novel net-
work layer-oriented task allocation model for multiplex agent
networks; with such a model, first the network layers that
can satisfy the objectives of task allocation will be allocated,
then the final agents will be selected from the allocated
network layers. Moreover, this paper deals with the situation
of undependable networks, where the resource access of tasks
may be undependable, and implements a task allocation based
on negotiation reputation. It shows that the network layer-
oriented task allocation model leads to an improvement in the
success rate and execution time of tasks in multiplex networks
when compared to traditional agent-oriented task allocation
methods; moreover, such a model has good scalability for the
size of tasks and robustness for dynamic undependability.

Keywords-Multiplex networks; multiagent systems; social
networks; task allocation; undependable.

I. INTRODUCTION

Most networked distributed systems such as social net-

works, grid computing, and P2P networks can be viewed

as networked multiagent systems (NMASs) in which agents

represent the autonomous nodes and interaction relationships

represent interconnections among nodes [1-4]. In a NMAS,

resources are placed within the network and can be accessed

by agents to execute tasks. Therefore, previous methods

of task allocation were always implemented based on the

resource accessibilities of agents [5-8], which can be called

an agent-oriented task allocation. Moreover, most existing

studies on this subject are based on the assumption that all

the links in the network are of the same type, i.e., it is

assumed that the underlying network is simplex.

However, in real-world situations multiplex networks are

often seen where there are multiple types of links between

agents and each type of link may have a different relative

bias in communicating different types of resources [9-

11]. Therefore, the communication between two agents in

multiplex networks should consider the types of links along

their communication path; the accessibility for a resource

is determined not only by the communication distance but

also by the types of links between the agent and the

resource. On the other hand, some agents may not provide

dependable resources for other agents in different network

layers; some types of links may also be undependable for

communicating certain types of resources. Therefore, the

problem of undependable resource accessibility [8][12] in

multiplex networks should also be addressed.

To solve the above problem in multiplex networks, this

paper presents a novel network layer-oriented task allocation
model, where each network layer is composed of the same

type of links and the involved agents. Our model extends

previous benchmark methods by introducing the factor of

the network layer into task allocation; thus the task is first

allocated to the network layers that can satisfy the objectives

of task allocation, then the final agents are selected from the

allocated network layers. In such model, we deal with the

following two issues: 1) the task allocation is implemented

based on the network layers’ resource accessibilities, where

a network layer’s resource accessibility is related to both the

communication distances and link types from such network

layer to the resource; and 2) the reputation and reward

mechanisms for both agents and network layers in task

allocation are presented to deal with the undependability.

II. PROBLEM DESCRIPTION

A. Task Allocation Objective in Undependable Networked
Multiagent Systems

One of the main goals of task allocation is to minimize the

task execution time [5][7][13-15]. Task execution in NMASs

can be described as the agents’ operations when accessing

the necessary resources distributed at agents in the networks

[5-7]. Therefore, to reduce the execution time of a task, one

of the key problems is to reduce the time used accessing the

resources necessary for the task [1][8][13][15][16], which is

mainly determined by the communication time among the

allocated agents in the network,
∑
∀ai,aj∈At

Cij .(At is the

set of agents allocated to task t; Cij is the communication

time between ai and aj)
On the other hand, in undependable NMASs, if an allo-

cated agent is undependable and cannot provide the desired

resources, it will take more time for the other allocated
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agents to seek the missing resources. More seriously, if

the task cannot obtain the necessary resources a new task

allocation may be implemented, which will waste even

more time. Therefore, to reduce task execution time in

undependable NMASs, we should guarantee dependable
resource access as well as minimize resource access time
[8], and the objective of task allocation is to select the

agent set At that satisfies the following condition:

At = argminAt∈A((
∑
∀ai,aj∈At

Cij)/Dep(At)) (1)

under the constraint that Rt ⊆ RAt
, where Rt is the set of

resources required by task t, RAt
is the set of all resources

owned by At, A is the set of all agents in the NMAS,

and Dep(At) is the probability that At can contribute

dependable resources for task t.

B. New Problems Caused by Multiplex Networks

Multiplex networks are often seen in real-world scenarios

where there are multiple types of links between agents

[9-11]. In multiplex networks, each type of link and the

involved agents make up a network layer; each network

layer may have a different relative bias and dependability in

communicating different type of resources [10]. In summary,

the new problems of task allocation caused by multiplex

networks can be described as follows:

• The communication time between agents in the multiplex

network is influenced by the types of links along their

communication paths. Therefore, Cij in Equation (1) and

the resource negotiation model between agents should be

adjusted for multiplex networks.

• Each network layer has different dependability for com-

municating different resources, and an agent may have a

different dependability when it is used in different network

layers. Thus, Dep(At) in Equation (1) should consider the

effects of network layers.

To solve the above problems, in this paper we adopt the

following measures:

• We devise a new algorithm for resource negotiation be-

tween agents in multiplex networks. Then, the accessibility

of a resource is determined not only by the communication

distance but also by the link types. Finally, the task alloca-

tion is implemented based on the network layers’ resource

accessibilities.

• We present new definitions for dependability of agents

and network layers, and use negotiation reputation and a

reward mechanism to deal with the undependable network

layers or agents.

III. MODELING MULTIPLEX NETWORKS

A. Structural Characteristics of Multiplex Networks

Definition 1. Network layer. In a multiplex network, the
links of the same type and the involved agents make up a
network layer. Assuming that the links in the multiplex social
network N = 〈A,E〉 are classified into λ different types

1, . . . , λ, then N can be split to λ network layers, Nx, 1 ≤
x ≤ λ.

N ={Nx|Nx = 〈Ax, Ex〉 ∧Ax ⊆ A∧
Ex ⊆ E ∧ (∀exi, exj ∈ Ex ⇒ lexi = lexj )}

(2)

where exi and exj are the links in network layer Nx, lexi

and lexj
denote the types of links exi and exj .

Definition 2. Associated network layers and agents. Given
a multiplex network, N = 〈A,E〉; ∀ai ∈ A, the associated
network layers of ai with d hops are:

ANai(d) = {Nx|Nx ∈ N ∧ h(ai, Nx) = d} (3)

where h(ai, Nx) = min∀aj∈Ax
h(ai, aj) (4)

and h(ai, aj) denotes the hops between ai and aj; the
number of hops between two adjacent agents is set to 1.
Then, the nth−order set of associated agents of ai is:

AAai
(d) = {Ax|∀Nx ∈ ANai

(d)} (5)
In NMASs, resources are placed at some agents. A re-

source at one agent can be communicated with and accessed

by other agents. Based on the benchmark work in [10], in

this paper the resource communication relevant to link
types is set as follows:

Let there be m types of resources in the multiplex social
network N = 〈A,E〉; each network layer, ∀Nx ∈ N , is
associated with a parameter cxk (1 ≤ k ≤ m) for k-type
resources that measures the relative bias speed Nx has in
communicating k-type resources. The higher cxk is, the less
communication time cost is needed for the k-type resources
in Nx.
B. Resource Negotiation in Multiplex Networks

Let the multiplex network be N = 〈A,E〉 = {〈Ax, Ex〉|1
≤ x ≤ λ}. Now, we design an algorithm for computing

the resource negotiation path in multiplex networks, shown

as Algorithm 1. We assume that the communication time

of two adjacent agents within the same network layer

Nx for k-type resources is 1/cxk. pkij denotes the k-type

resource negotiation path between ai and aj , C
k
ij denotes

the communication time for a k-type resource access along

pkij , 〈ai, aj〉x denotes the x-type link between ai and aj .————————————————————————
Algorithm 1. Calculating the resource negotiation paths for

k-type resources among agents in the multiplex network.————————————————————————
For (i = 1; i ≤ |A|; i++)

For (j = 1; j ≤ |A|; j ++)
{b =∞;x∗ = 0;
For (x = 1;x ≤ λ;x++)
{If there is a x-type link between ai and aj ,then:
{If cxk < b, then:{b = cxk;x

∗ = x};}}
If b �1_6 1 Tf
6.974 0 0 6.974 491.204 173.333 19.963 0 0 9.963 0 259 4�





determined by the negotiation reputation of Nx, the resource
accessibilities of all agents within Nx, and the distribution
of agent localities in Nx:


Nx(k) = w Nx(k) ·
∑
∀ai∈Ax

(
ai(k) · 1
Ck

ix∗
) (8)

where Ck
ix∗ denotes the time cost for negotiating k-type

resources between agent ai and ax∗ , and ax∗ is the center
of network layer Nx for k-type resources:

ax∗ = argmin∀ai∈Ax(
∑
∀aj∈(Ax−{ai}) C

k
ij) (9)

B. Task Allocation Mechanism
Traditional task allocation models are often based on a

manager/contractor architecture [6], where the manager is

fixed during the allocation process of a task, which is called

the fixed manager manner. Now, we substantially extend the

manager/contractor architectures in [7][8] by presenting a

new task allocation architecture where the manager is not

fixed during the task allocation process, which is called

the alterable manager manner; moreover, the managers and

contractors are all network layers in our network layer-

oriented model. Now we can explain it briefly as follows. At

first, a manager is selected for a task by using a centralized

heuristic; then such a manager will seek another network

layer to act as a contractor to obtain the highest resource

accessibility that can satisfy the resource requirements of

a task. Next, those two network layers become the already

allocated ones. Then, each network layer in the group of
already allocated network layers will act as a manager
to seek the next contractor to obtain the highest resource

accessibility that will satisfy the resource requirements of

task. Finally, the optimal contractor can be allocated, and

the new already allocated network layers will seek the fol-

lowing contractor again. Such a process will repeat until all

resources required by the task can be satisfied or all network

layers are allocated. Therefore, the alterable manager manner

outperforms the traditional fixed manager manner by using

the results of the previously allocated network layers when

seeking an optimal result.
Definition 8. Distance between two network layers. Let
N be a multiplex network, N = 〈A,E〉; Nx, Ny ∈ N .
The negotiation distance between Nx and Ny for k-type
resources is defined as:

Dk
xy = min

ai=ax∗∧aj=ay∗
Ck

ij (10)

where Ck
ij is calculated according to Algorithm 1.

Let Rt be the set of resources required by task t, Rt be

the set of resources for task t that are currently unavailable,

and RNx
be the set of resources that are owned by network

layer Nx. Then, the resources that Nx may contribute to task

t are Rt∩RNx
; λk(Rt∩RNx

) denotes the number of k-type

resources in Rt ∩ RNx . Let the manager network layer be

Nx and let task t need mt types of resources; now we can

make Nx negotiate with another network layer (e.g., Ny)

according to the following negotiation value:

V Ny(t) =
∑

1≤k≤mt
(
Ny(k) · λk(Rt ∩RNx

)/Dk
xy) (11)

The manager selects the contractors according to their ne-

gotiation values, arranged in descending order.

Theorem 1. It is assumed that task is t and the negotiation
values are correct. Let the manager be Nx and the two
contractor candidates be Ny and Nz; S(N) denotes the
degree to which the task allocation objective can be satisfied
by N . Therefore: V Ny(t) > VNz(t)⇒ S({Nx}∪{Ny}) >
S({Nx} ∪ {Nz}).
Proof. According to Equation (1), S(N) is determined by
two factors: 1) the negotiation distance between the network
layers in N ; and 2) the dependability with which N can
contribute real resources. In Equation (11), the first part

Ny(k) includes the negotiation reputation of a network
layer that can measure the dependability of the contractor
candidate; the second part λk(Rt ∩RNx)/D

k
xy is inversely

proportional to the negotiation distance between the allo-
cated network layers. Therefore, V Ny(t) > VNz(t) denotes
that the value of the negotiation reputation divided by total
communication time costs of {Nx} ∪ {Ny} is higher than
the one of {Nx} ∪ {Nz}, thus we have S({Nx} ∪ {Ny}) >
S({Nx}∪{Nz}). �

Therefore, from Theorem 1, the negotiation value in
Equation (11) can be used to satisfy the task allocation
objectives in Equation (1). Now, we use the alterable

manager manner to implement a network layer-oriented task

allocation, as shown as Algorithm 2.
————————————————————————
Algorithm 2. Network layer-oriented task allocation.
————————————————————————
1) N∗ = argmax∀Nx∈N (
Nx(k))
/*k-type resources are the ones that task t needs mostly*/
2) Rt = Rt −RN∗ ;N ′ = N − {N∗};Nt = {N∗};

b1 = 0; b2 = 0; n = 0;

3) If Rt == ∅, then: {b1 = 1};
4) While ((b1 == 0 and b2 == 0)) do:

4.1) max = 0; b2 = 1;

4.2) ∀Ny ∈ N ′:
4.2.1) maxtemp = 0;

4.2.2) ∀Nx ∈ Nt;

4.2.2.1) Calculating V Ny(t) according to (11);

4.2.2.2) If V Ny(t) > maxtemp, then:

{maxtemp = V Ny(t)};
/*Now Nx is the manager*/

4.2.3) If maxtemp > max, then:

{max = maxtemp; b2 = 0;Ntemp = Ny; }
4.3) If (b2 = 0), then:

{Nt = Nt ∪ {Ntemp}; Rt = Rt −RNtemp;

N ′ = N ′ − {Ntemp}; n++; Ntn = Ntemp;}
4.4) If Rt == ∅, then: {b1 = 1};

5) If (b1 == 1), then Return (Nt);
else Return (False);

6) End.
————————————————————————

Let there be a set of network layers N . The resource

accessibility of N for k-type resources can be defined as


N(k) = max∀Nx∈N (
Nx(k)). Now, if the task is t; the

643



set of network layers allocated by using a network layer-

oriented allocation model with alterable manager manner is

Nt, Nt ⊆ N ; and the set of network layers allocated by

using a network layer-oriented allocation model with fixed

manager manner is N ′
t , N

′
t ⊆ N . Then, we have:

Theorem 2. Let the multiplex social network be N =
〈A,E〉, N = {Nx|1 ≤ x ≤ λ}, where λ is the number
of network layers. If a task t needs k-type resources, we
have:
Nt(k) ≥ 
N ′

t(k).
Proof sketch. With the fixed manager manner, in each allo-
cation step only the resource accessibility of the contractor
and the communication time cost between the manager and
contractor can be optimized. Now, with the alterable man-
ager manner, each agent in the already allocated network
layers will act as a manager to seek the contractor with
the highest resource accessibility for k-type resources from
the viewpoint of the manager, and finally the contractor
candidate with the highest negotiation value of all the
managers will be selected; thus, the resource accessibility
of the contractor and the minimum communication time cost
between the contractor and already allocated network layers
are optimized. Therefore, we have 
Nt(k) ≥ 
N ′

t(k). �
Therefore, Theorem 2 proves that our alterable man-

ager manner outperforms the previous fixed manager
manner by improving the resource accessibility of allo-
cated network layers.
Theorem 3. Let the set of allocated network layers using
Algorithm 2 be Nt and the first manager be N∗. It is then
assumed that there is another set of network layers, N ′,
that includes N∗ and can also satisfy all the resources in
Rt. Then, we have:

(∀N ′ ∧ (N∗ ∈ N ′) ∧ (N ′ ⊆ N) ∧ (Rt ⊆ RN′ ))

⇒
∑

∀Ny∈(Nt−{N∗})
V Ny(t) ≥

∑

∀Ny∈(N′−{N∗})
V Ny(t)

Proof sketch. Now we can use reductio ad absurdum
to prove Theorem 3. Assume there is a set of network
layers N ′, N∗ ∈ N ′ ∧ N ′ �= Nt, that can provide
all the required resources for executing task t, and the
total negotiation values of N ′ − {N∗} by using the
alterable manager manner is

∑
∀Ny∈(N ′−{N∗}) V Ny(t);

if
∑
∀Ny∈(Nt−{N∗}) V Ny(t) <

∑
∀Ny∈(N ′−{N∗}) V Ny(t).

There are network layers with lower negotiation values that
can provide the required resources in Rt and be selected
by the already allocated network layers in Algorithm 2,
but the higher negotiation-value network layers with the
required resources in Rt are not selected by the existing
network layers. In Algorithm 2, the selection is implemented
by Step 4.2 and 4.2.2, which guarantees that the selected
network layer in each Step 4.2 has the maximum nego-
tiation value from the currently allocated network layers.
Therefore, a situation in which

∑
∀Ny∈(Nt−{N∗}) V Ny(t) <∑

∀Ny∈(N ′−{N∗}) V Ny(t) cannot take place in Algorithm 2.
To address this issue, we have Theorem 3. �

From Theorem 3, Algorithm 2 can find the network
layers with the maximum negotiation values, thus sat-
isfying the objectives of task allocation in Equation (1)
according to Theorem 1.

After the network layers are allocated using Algorithm 2,

then the real agents within the allocated network layers will

be selected. The selection process is shown as Algorithm 3.
————————————————————————
Algorithm 3. Selecting final agents from allocated network

layers. /*Nt = {Ntx|Ntx = 〈Atx, Etx〉, 1 ≤ x ≤ n}, are
the allocated network layers resulted from Algorithm 2 */
————————————————————————
1) x = 1; b = 0;Rt = Rt;

2) While((x ≤ n) and b == 0) do:

2.1) Set the tags for all agents in Atx to 0 initially;

2.2) ax∗ = argmax∀ai∈Atx(
ai(k));
2.3) Create Queue (Qx); Insert Queue (Qx, ax∗);

Set the tag of ax∗ to 1;

2.4) At = {ax∗};Rt = Rt −Rax∗ ;

2.5) If Rt == ∅, then: {b = 1};
2.6) While ((!EmptyQueue(Qx))and (b = 0)) do:

2.6.1) aout =Out Queue(Qx);R′ = Rt −Raout;

2.6.2) If R′ �= Rt, then:{Rt = Rt −Raout;

At = At ∪ {aout}};
2.6.3) If Rt == ∅, then:{b = 1};
2.6.4) ∀alocal ∈ Laout:

If the tag of alocal is 0, then:

{Insert Queue(Qx, alocal);
Set the tag of alocal to 1};

/*Laout is the set of neighbors of aout in Ntx*/
2.7) x++;

3) Return (At);
4) End.
————————————————————————
Theorem 4. Let the set of allocated agents in Ntx using
Algorithm 3 be A∗tx and the initiator agent be ax∗ ; the set of
resources lacking from ax∗ to implement t is Rt

ax∗ . It is then
assumed that there is another set of agents in Ntx, A′tx, that
includes ax∗ and can also satisfy the resource requirements
of t in Ntx; Comx(ai, aj) denotes the communication time
between ai and aj within Ntx. Then, we have:

(∀A′tx ∧ (A′tx ⊆ Atx) ∧ (Rt
ax∗ ∩RA′

tx
= Rt

ax∗ ∩RA∗
tx
))⇒

∑

∀ai∈(A′
tx−{ax∗})

Comx(ax∗ , ai) ≥
∑

∀ai∈(A∗
tx−{ax∗})

Comx(ax∗ , ai)

Proof. If Algorithm 3 is used, the set of allocated agents
in an allocated network layer Ntx is A∗tx, and the total
communication costs between ax∗ and other agents in A∗tx−
{ax∗} within Ntx are

∑
∀ai∈(A∗

tx−{ax∗}) Comx(ax∗ , ai).
Now, if there is a set of agents A′tx, A′tx �= A∗tx, which
can provide the same set of resources to t as A∗tx, and
the total communication cost between ax∗ and other a-
gents in A′tx − {ax∗} is

∑
∀ai∈(A′

tx−{ax∗}) Comx(ax∗ , ai);
if

∑
∀ai∈(A′

tx−{ax∗}) Comx(ax∗ , ai) <
∑
∀ai∈(A∗

tx−{ax∗})
Comx(ax∗ , ai), it shows that there are any agents with a
longer communication distance that provide the resources
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in Rt
ax∗ , but the nearer agents have but do not provide the

resources in Rt
ax∗ . Obviously, such a situation cannot take

place in Algorithm 3 where ax∗ negotiates with other agents
from near to far within the network layer as Step 2.6. There-
fore, we have Theorem 4. �

Therefore, Algorithm 3 can obtain an initiator agent

with the highest resource accessibility and the minimum

communication time cost between such initiator agent and

other allocated agents within the same network layer.

C. Reward Mechanism

To encourage network layers and agents in multiplex net-

works to provide dependable resources, now we present the

reward mechanism. Each task is associated with a value; if

the task can be executed successfully, the allocated network

layers and agents will be rewarded with this value, or else

they will be punished with such value. Let the associated

value for task t be τt (0 ≤ τt ≤ 1), Nt be the network layers

allocated to t, and At be the set of agents that are really

allocated to t. Then, τt will be divided into three parts: 1)

a reward to the allocated network layers (α); 2) a reward to

the allocated agents within the allocated network layers (β);

3) a reward to the involved agents that are out of allocated

network layers but provide communication relay services for

the resource negotiations between allocated network layers

(γ). We can set:α + β + γ = 1;γ � α + β. The allocated

network layers and agents will be rewarded (or punished)

according to their real resource contributions.

Then, the reward mechanism is shown as follows when

the task is executed successfully:

∀rk ∈ Rt : ∀Nx ∈ Nt :

w Nx(k) = w Nx(k) · (1 + α · τt · (|Rt
Nx

(k)|/|Rt|)) (12)

where Rt
Nx

(k) is the set of k-type resources that Nx really

contributes in the execution of task t:

∀rk ∈ Rt : ∀ai ∈ At :

w ai(k) = w ai(k) · (1 + β · τt · (|Rt
ai
(k)|/|Rt|)) (13)

where Rt
ai
(k) is the set of k-type resources that ai really

contributes to the execution of task t:

∀rk ∈ Rt : (∀am /∈ ∪Nx∈NtAx) ∧ (∃ai, aj ∈ At ∧ aminPk
ij) :

w am(k) = w am(k) · (1 + γ · τt)
(14)

Accordingly, the penalty mechanism if the task is executed

unsuccessfully is shown as follows:

∀rk ∈ Rt : ∀Nx ∈ Nt :

w Nx(k) = w Nx(k) · (1− α · τt · (1− |Rt
Nx

(k)|/|Rt|)) (15)

∀rk ∈ Rt : ∀ai ∈ At :

w ai(k) = w ai(k) · (1− β · τt · (1− |Rt
ai
(k)|/|Rt|)) (16)

∀rk ∈ Rt : (∀am /∈ ∪Nx∈NtAx) ∧ (∃ai, aj ∈ At ∧ aminPk
ij) :

w am(k) = w am(k) · (1− γ · τt)
(17)

V. EXPERIMENTAL VALIDATION AND ANALYSES

A. Experimental Settings
To validate the effectiveness of the presented network

layer-oriented task allocation model for the undependable

multiplex networks, we use the following indexes:

• Success rate (sr). The success rate demonstrates the

dependability of task allocation:

sr = (
∑n

i=1(1/ξti))/n (18)

where n is the number of total tasks; ξti indicates that the

first (ξti − 1) attempts to allocate task ti are unsuccessful

and only the ξti
th allocation of ti is successful.

• Time costs. the total time costs (T ), which are the sum

of the allocation and execution time costs of all tasks; the

allocation time costs of all tasks (Tr); and the average time

cost for each task (Ta), which is calculated by dividing

T by n. Among these time costs, Tr is a part of T ; we

consider Tr separately to test the complexity of our proposed

network layer-oriented allocation model by comparison to

the previous models.

We compare our model with the following two approach-

es, which act as the benchmarks:

• Agent-oriented task allocation model: the task will be

allocated to the agents with larger amount of the resources

required by the task [1][5-7][13][15]. This model ignores the

network layers and does not consider the biases of network

layers for communicating different types of resources.

• Transparent model in which all undependable agents can
be detected: the model can detect all deceptive agents in the

network, and it will select the truthful agents to negotiate

through the path with the lowest communication cost [8].

This model is not practical in real-world scenarios, but it

can be used as a benchmark to evaluate the task allocation

performance in undependable situation.

Each experiment comprises 200 runs to obtain the aver-

age results. The initial social network is constructed by a

random network model, in which 100 agents are included.

The connection probability for any two randomly selected

agents is set to 0.05. Then, the initial social network is



(a) Success rate of task allocation (b) Allocation time costs of tasks (c) Total time costs of tasks

Figure 1: The comparison of task allocation performances among network layer-oriented model, agent-oriented model, and transparent model

(a) Scalability for size of tasks (b) Robustness for dynamic undependability (c) Effect of reward mechanism

Figure 2: Tests of our network layer-oriented model

achieves nearly 90% when the task number is 500. This

shows that our model is good at evolving, i.e., our model

can learn and fit the environment gradually in response to

the task allocation and execution. Both the successful and

unsuccessful allocations of tasks are helpful for the evolution

of our model toward a more dependable status. From Fig.

1(a), our model can achieve much better performance based

on success rate than the agent-oriented model, and is very

close to the transparent model when the number of tasks

is large; the main reason is that the reputation and reward

mechanisms in our model consider the undependability of

both agents and network layers, and thus can effectively keep

the dependability of task allocation. It notes that the trans-

parent model can detect all the undependable agents, but its

success rate cannot reach 100%; this phenomenon is caused

by the network loss rate during resource communication,

which may lead to unsuccessful resource access.

Fig. 1(b) shows the results of allocation time costs of the

tasks. Similar to Fig. 1(a), our model outperforms the agent-

oriented model significantly and performs a little worse than

the transparent model. The main reason is the difference in

the complexities of the allocation algorithms between our

model and the other models. The candidate agents in the

agent-oriented allocation model are all the agents embedded

in the network, while there are less candidates in our model

because the task allocation method is network layer oriented,

and in each network layer the number of agents is much

smaller. In general, this is an important advantage of network

layer-oriented task allocation in multiplex networks. The

transparent model is also network layer oriented, and it does

not need to check the agents’ dependability, thus it has the

best performance for reducing allocation time costs.

Fig. 1(c) shows the results of the total time costs for

all tasks, where the conclusion similar to Fig. 1(a) and (b)

can be made. There are three primary factors accounting

for such a result: 1) the allocation algorithm complexity:

our model can reduce the allocation complexity much than

traditional agent-oriented model; 2) the speed of resource

access: the task allocation using our model will select the

most suitable network layer to allocate tasks so that the

communication cost can be reduced; 3) the dependability

of task allocation: the agent-oriented model has low success

rate of task allocation (shown as Fig. 1(a)), the total time

costs of task allocation will increase manyfold. In contrast,

our model can achieve high dependability; thus the total time

can remain close to that of the transparent model.

2) Tests on the properties of our model:
From Fig. 1, the effectiveness of our network layer-

oriented model has been comprehensively validated by

comparison with other two benchmark models. Now, we

explore several key properties of our network layer-oriented

model: the scalability for the sizes of tasks; the robustness

in dynamic undependable situations; and the effect of the

reward mechanism in task allocation.

In Fig. 2 (a), we test our model’s scalability for the size

of task sets. Fig. 2(a) shows the average time of each task

when the size of the task sets ranges from 100 to 2000.

When the size of the task sets increases, the average time

for each task using our network layer-oriented allocation

model decreases rapidly and finally tends toward stability

(approaching the transparent model). In other words, our

model can perform better if there are more tasks arriving in

646



the system; a potential explanation is that the reputation and

reward mechanism has more chances to evolve and thus can

achieve higher dependability with a larger task set. Actually,

Fig. 1(a) can also be used to make a similar conclusion.

Then, we test our model’s robustness in dynamic unde-

pendable situations in Fig. 2 (b). The dynamic undependable

situations in experiments can be set as follows: the unde-

pendable agents in the network will be reset dynamically

when the number of tasks allocated is 500, 1000 and 1500;

in other words, after each reset, the previously undependable

agents may become normal, while some normal agents may

become undependable. This dynamics brings a challenge

for the reputation and reward mechanism of our model.

Fig. 2(b) shows the performance of our model in such

a dynamic environment. When the undependable agents

are reset dynamically, the success rate of task allocation

decreases, obviously, but after the allocation of some tasks,

the success rate can be recovered. On the other hand, the

total time costs increase much more rapidly for the first few

tasks after the undependable agents are reset, but the total

rate of increase can still converge to the former state. Such a

phenomenon reveals that our model has good robustness in

the dynamic environments where agents may change their

identities dynamically.

Finally, we test the effect of the reward mechanism in

task allocation, shown as Fig. 2(c). We vary the parameter

α in Equation (12) which determines the degree of reward

to the allocated network layer. From Fig. 2(c), we can find

if α < 0.5, the performance of our model varies slightly

and can keep a good performance. However, if α ≥ 0.5,

and especially when α ≥ 0.8, the performance of our model

decreases. The potential reason is that if the reward to the

network layer is too large, the reputations of network layers

will not vary sufficiently after the allocation of some tasks;

namely, the effect of reputation mechanism will become

weak. In conclusion, the degree of reward to the network

layer in the reward mechanism of our model should be set to

an appropriate value so that dependability can be achieved.

VI. CONCLUSIONS AND FUTURE WORK

To consider the effects of network layers in multiplex

networks, this paper presents a novel network-layer oriented

task allocation model which is implemented based on the

network layers’ resource accessibilities; with such model, at

first the network layers that can satisfy the objectives of task

allocation should be allocated, then the final agents will be

selected from the allocated network layers. As shown by the

theoretical analyses, the presented model can satisfy the task

allocation objective in undependable multiplex networked

multiagent systems. Moreover, the experiments show the

following: the network layer-oriented task allocation model

leads to an improvement in the success rate and execution

time of tasks in multiplex networks by comparison with the

traditional agent-oriented task allocation model and often

performs close to the transparent model, and such model

also has good scalability for size of tasks and robustness for

dynamic undependability.

In future work, we will explore ways to adapt the model to

dynamic multiplex networks. Moreover, we will implement

load balancing among network layers and agents in the task

allocation.
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