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Abstract—IoT devices are increasingly adopting Secure Socket
Layer (SSL) and Transport Layer Security (TLS) protocols.
However, the misuse of SSL/TLS libraries still threatens the com-



used to successfully analyze 115 binaries and reports all of
those binaries are subject to at least one SSL/TLS misuse.
QEMU is also used to validate the detected vulnerabilities
of IoT firmware. SAMBA can be extended to other SSL/TLS
implementations and new types of SSL/TLS misuse through
our generic signature construction mechanism.

Responsible disclosure: We have reported all confirmed
findings to relevant parties.

II. BACKGROUND

This section introduces the SSL/TLS protocol and two types
of vulnerabilities due to SSL/TLS API misuses.

A. SSL/TLS Overview

The SSL/TLS protocol is designed to provide secure end-
to-end communication and is widely used in applications and
protocols such as HTTPS [14] and SMTPS [15]. Establishing
an SSL/TLS connection between two parties involves multiple
rounds of interactions. To simplify the use of SSL/TLS, core
functionalities of the protocol are encapsulated by various
third-party libraries, such as OpenSSL [12] and GnuTLS [13].
With the help of SSL/TLS libraries, developers can easily
establish SSL/TLS connections in their applications.

Fig. 1 gives an example of how to establish a secure
SSL/TLS connection with the OpenSSL library. Firstly, the
client configures the supported SSL/TLS protocol as TLS 1.2
(a secure version) by using TLSv1_2_client_method()
Next, a socket is set up for the SSL/TLS connection and
the SSL/TLS handshake process is conducted by calling
socket(·), SSL_set_fd(·), and SSL_connect(·). To
establish a secure SSL/TLS connection, it is important for
the client to check the authenticity of the SSL/TLS server.
To this end, the client should request the server certifi-
cate with SSL_get_peer_certificate(·). If the cer-
tificate is sent by the server, its return value should not
be NULL and SSL_get_verify_result(·) should be
used to verify the server certificate. The verification result
of SSL_get_verify_result(·) is stored in the RAX
register. If the result is 0, i.e., X509_V_OK, it indicates that
the server certificate has passed the verification. In this case, a
secure SSL/TLS connection has been established between the
client and the server. Otherwise, the SSL/TLS connection is
shut down as the certificate verification fails.

B. SSL/TLS API Misuse

Given the inherent complexity of the SSL/TLS protocol,
diversity of SSL/TLS library implementations and inadequate
documentation of some libraries, developers may inadvertently
misuse the APIs, resulting in severe security risks in real-world
applications [1], [2]. The most common vulnerabilities caused
by SSL/TLS API misuses are support of deprecated protocols
and insecure certificate verification.

Deprecated Protocol Support (DPS). As shown in Fig. 1,
the first thing for a client to establish an SSL/TLS connec-
tion is to send a hello message that specifies the supported
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Fig. 1. Example OpenSSL API Usage.

SSL/TLS protocols. Existing research [3], [16] and RFC doc-
uments [17], [18], [19] have found certain SSL/TLS protocols
susceptible to design flaws and should not be used. For exam-
ple, if a client uses SSLv3_client_method() instead of
TLSv1_2_client_method() to configure the support for
SSL 3.0, the connection may be vulnerable to the POODLE
attack [3]. To ensure a secure SSL/TLS connection, the client
should avoid supporting deprecated/insecure protocols, i.e.,
SSL 2.0/3.0 and TLS 1.0/1.1.

Insecure Certificate Verification (ICV). During the
establishment of an SSL/TLS connection, the client relies
on the server certificate to ensure the authenticity and
trustworthiness of the server. To this end, the client should
request the certificate from the server at the handshake stage
and then perform a series of checks to verify the validity of
the server certificate. Otherwise, the connection is vulnerable
to the MITM attack. An example of such vulnerability is that
the result of SSL_get_verify_result(·) in Fig. 1 is
properly examined.

III. SSL/TLS API MISUSES AND CHALLENGES

In this section, we first introduce two types of SSL/TLS API
misuse. Then we present the technical difficulties associated
with detecting SSL/TLS API misuses. Finally, we present the
overview of our detection system—SAMBA.

A. Misuse Types

By analyzing documents of OpenSSL [12] and
GnuTLS [13], the following two types of SSL/TLS API
misuse are the API call sequence misuse (T-I) and the API
data misuse (T-II), which may lead to incorrect certificate
verification (ICV) and/or deprecated SSL/TLS protocol
support (DPS). It can be observed that both types of misuse
occur during the establishment of an SSL/TLS API connection.

1) T-I: API Call Sequence Misuse: This type of misuse
occurs when a developer fails to invoke necessary APIs
or invokes old APIs. For example, Fig. 1 shows a correct
certificate verification API use. If a developer does not call
SSL_get_verify_result(·), the SSL/TLS connection
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Fig. 2. System Overview

can still be established without verifying the server certificate,
leading to the ICV vulnerability, which can be exploited by
the MITM attack.

2) T-II: API Data Misuse.: Even if the API call sequence
is correct, the misuse of data in the API calls in the sequence
may still affect the security of the SSL/TLS connections. The
API data misuse can be further classified into two sub-types:
API argument misuse and API execution result misuse.

T-II.a: API Argument Misuse. Passing incorrect ar-
guments to some SSL/TLS library APIs can result
in insecure connections. For example, in an OpenSSL-
based SSL/TLS client application, if the macro value
SSL_VERIFY_NONE passed to the “mode” parameter
of SSL_CTX_set_verify(·, int mode, ·), the SS-
L/TLS connection can be established regardless of the server
certificate verification result, causing the ICV vulnerability.

T-II.b: API Execution Result Misuse. It is crucial to check
the execution results of certain SSL/TLS APIs. Otherwise,
it can lead to the ICV vulnerability. These function execu-
tion results may be returned via a return value or pointer
argument. As shown in Fig. 1, an OpenSSL-based SSL/TLS
application uses SSL_get_peer_certificate(·) and
SSL_get_verify_result(·) to request and verify the
server certificate. The certificate verification result is stored
in the return value of SSL_get_verify_result(·). If
the execution result is not correctly verified the established
connection can be vulnerable.

B. Challenges

The main challenges in detecting misuses of SSL/TLS APIs
in IoT are listed as follows.

(C-I) Path-explosion: In analysis of API usage in an IoT
binary, extracting the SSL/TLS API call sequences is daunted
by the path-explosion problem due to the complexity of the
inter-procedure control flow graph (ICFG) of the binary. We
find the SSL/TLS library APIs can be called in another library,
and the executable indirectly calls the SSL/TLS APIs. In this
case, the SSL/TLS API usage cannot be discovered by only
analyzing the executable. The inter-binary analysis should be
conducted and this makes the path-explosion problem worse.

(C-II) Diversity of SSL/TLS implementations: To facili-
tate the implementation of SSL/TLS in programming, a wide
range of open-source SSL/TLS libraries have been developed,
such as OpenSSL and GnuTLS. An SSL/TLS library may also
consist of multiple versions. Within various SSL/TLS libraries

and versions, there exists a wide variety of SSL/TLS API
misuse patterns. Expressing these patterns in a general way
presents a significant challenge.

IV. SYSTEM DESIGN

In this section, we first present an overview of SAMBA and
then present the details of the workflow of SAMBA.

A. Overview
Fig. 2 illustrates the workflow of SAMBA. The inputs are

the IoT firmware and SSL/TLS APIs of interest. In Step 1⃝
in Fig. 2, binwalk [20] can be used to extract files from the
IoT firmware, which contains executables, libraries, and other
files. The executables and libraries are in the binary format. We
are only interested in the executable that establishes SSL/TLS
connections and its dependent libraries. SSL/TLS APIs of
interest refer to those SSL/TLS APIs that are used to establish
an SSL/TLS connection and transfer data with the SSL/TLS
server. Those APIs are related with the two misuses introduced
in Sec. III-A and will be used to tackle the path explosion
problem. SAMBA outputs the vulnerability report generated
by our static analysis, including SAG construction, misuse
signature representation and API misuse detection.

SAG construction: By analyzing the ELF header of the
executable, we can tell if the executable directly calls the
APIs of the SSL/TLS library or it calls wrapper functions in
other libraries. In the former case, we analyze the executable
to discover misuses. In the latter case, we construct an
inter-binary dependency graph (IBDG) in Step 2⃝ to discover
the invocation relationship between the executable and its
dependent libraries that call SSL/TLS APIs for further
function-level analysis. The IBDG does not contain libraries
that do not call SSL/TLS APIs or their wrapper functions.
The former case can be viewed as a special latter case in
which the IBDG contains only the executable as a node.
Next, we use the SSL/TLS APIs of interest as leaf nodes to
construct API call graphs (ACGs) backward for each binary
in the IBDG in Step 3⃝. Please note whenever disassembly
of the binary is needed, we use IDAPython [21]. For each
function in an ACG, we then create its control flow graph, but
remove those control flows not related with SSL/TLS APIs so
as to create SSL/TLS API-centric control flow graph (ACFG)
in Step 4⃝. Finally we obtain the SAG by merging these
ACFGs based on API invocation relationship in Step 5⃝.

Misuse signature representation: To detect the API misuse
introduced in Sec. III-A, we propose a formal expression of
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the SSL/TLS API misuse signatures based on SSL/TLS library
documents and enumerate all SSL/TLS API misuse signatures
in Step 6⃝. These signatures are fed into the SSL/TLS API
misuse detection in Fig. 2.

API misuse detection: We first extract the API call se-
quences from the SAG in Step 7⃝ and map API call sequences
to the misuse signature so as to detect the T-I—API call
sequence misuses in Step 8⃝. Data flow analysis is needed
for specific SSL/TLS APIs to detect T-II—API data misuses.
If an API call sequence uses such an API, we find the caller of
the API and perform backward taint analysis and forward taint
analysis on the CFG of the caller function in Step 9⃝ and check
if data is properly used so as to detect T-II misuses in Step 10⃝.

B. SAG Construction

To solve the path explosion problem, we adopt a three-
level reduction method to construct the SAG for further API
misuse detection, including binary-level reduction, function-
level reduction, and basic-block-level reduction.

1) Binary-level Reduction in Step 2⃝: Since some libraries
call the APIs of the SSL/TLS library and indirectly provide the
capability of establishing SSL/TLS connections, we build the
inter-binary dependency graph for the target executable and its
dependent libraries to represent the dependencies among them.
An IBDG is a directed graph in which the root node is the
executable, and other nodes represent its dependent libraries.
A directed edge in the IBDG means that the source binary
depends on the destination binary, i.e., the source executable/li-
brary binary call the APIs of the destination library binary.

To create the IBDG, we recursively analyze the ELF header
of the executable and its dependent libraries to derive the
imported functions of the executable as well as the imported
and exported functions of its libraries. By correlating the
imported and exported functions, we can build a raw IBDG.
We then prune nodes and edges not related with SSL/TLS
APIs from the raw IBDG and derive the final IBDG so as to
reduce the analysis space.

2) Function-level Reduction in Step 3⃝: We construct
the call graph (CG) for each binary in the IBDG and then
leverage the SSL/TLS APIs of interest to prune nodes and
edges corresponding to irrelevant functions on the CG so as to
reduce the graph size at the function level and derive an API-
centric call graph (ACG). If the executable directly calls the
SSL/TLS APIs to establish the SSL/TLS connection, we only
build an intra-binary ACG of the binary to extract the function
call relationships among SSL/TLS APIs of interest and the
functions that call these SSL/TLS APIs. If the SSL/TLS library
is indirectly dependent by an executable binary, i.e., wrapped
in other libraries, we first build intra-binary ACGs for the
executable and all of its libraries in the IBDG. We can then
derive an inter-binary ACG by merging these intra-binary
ACGs based on the function calls.

Intra-binary ACG Construction. The construction of
intra-binary ACG starts with constructing a CG of the target
binary. We identify all used APIs of interest as leaf nodes of
the ACG by scanning the functions in the CG. Next, starting
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Fig. 3. Loop unrolling example

from these leaf nodes, we recursively perform backward traver-
sal on the CG using the breadth-first search (BFS) algorithm
to enumerate all parent nodes, i.e. caller functions, in order to
construct the intra-binary ACG. Once we reach the root nodes
(i.e., the functions that are not called by other functions), the
intra-binary ACG is completely constructed. In this way, we
eliminate all nodes not related with SSL/TLS APIs of interest
from the original CG of the binary.

Inter-binary ACG Construction. Since circular dependen-
cies (i.e., cycles) may exist within the IBDG and hinder the
direct traversal of CGs of the binaries for inter-binary ACG
construction, we discuss the ACG construction methods for
the IBDG in the absence and presence of cycles respectively.
In the case of an acyclic IBDG, the intra-binary ACG can be
constructed backward and recursively based on the following
rule: we build the intra-binary ACG for a binary only if all
ACGs of its dependent libraries have already been constructed
or if its successor is the SSL/TLS library. Once the intra-binary
ACG is constructed and the binary is a library, we define the
root nodes of the ACG (i.e., the export functions that call the
the SSL/TLS APIs of interest) as the new APIs of interest.
Next, we recursively traverse the IBDG backward to build the
intra-binary ACGs based on the new APIs of interest until the
ACG of the root node is constructed. In this way, we construct
all the ACGs for the binaries in the IBDG.

We break the cycles in our context as follows. We first
leverage the depth-first search (DFS) starting from the root
node, i.e., the executable, of the IBDG to identify its cycle.
We then take each node in the cycle as a root node to
generate sub-IBDGs without other nodes in the cycle. The sub-
IBDGs have two types: sub-graphs containing the SSL/TLS
library and sub-graphs not containing the SSL/TLS library,
in which the dependency relationship between the binaries
in the IBDG and the SSL/TLS library is provided by the
dependency relationship between other binaries in the cycle
and the SSL/TLS library. For the sub-IBDGs containing the
SSL/TLS library, we recursively build the ACG backward.
After we construct the ACGs for all binaries on the first type
of sub-IBDG, we can identify the APIs that are exports of the



the inter-binary ACG for further basic-block-level analysis. It
can be observed that during the ACG construction, we prune
functions not related with SSL/TLS APIs of interest in the
CGs of the binaries in the IBDG to reduce the graph size at
the function level.

3) Basic block-level Reduction in Step 4⃝: Since the ACG
only illustrates the function level SSL/TLS dependency, we
leverage the intra-procedural Control Flow Graph (CFG) of
each function in the ACG to discover the SSL/TLS function
call sequence. However, CFGs contain numerous basic blocks
as nodes and control flow edges. This significantly increases
the graph size and leads to path explosion. There may
also exist loops in a CFG. The API-centric Control Flow
Graph—ACFG—is derived by eliminating basic blocks not
related with SSL/TLS APIs of interest and corresponding
edges from a loop-free CFG and its size is reduced. Edges
are added from the preceding blocks of a deleted basic block
to the succeeding blocks of the deleted block.

We address loops in CFGs that introduce complexities in
extracting API call sequences as follows. We first discover
the loop and detect the back edge in the loop with the DFS
algorithm from the root node of the CFG. For example, in Fig.
3, we perform the DFS from node 1, and discover a loop in-
cluding nodes 2 to 5. The edge from node 5 to node 2 is a back
edge. We create two copies of the loop. We then select one and
delete its back edge. The back edge of the other loop copy is
modified to point to the counterpart node in the previous loop
as shown in Fig. 3 so as to construct a new loop-free graph and
replace the original loop. Finally, based on the original loop,
we establish edges between nodes in the loop-free graph, the
entry and exit nodes, e.g., the edges from node 1 and the edges
to node 6. In this way, we can construct the loop-free CFG.
Unrolling the loop just once is sufficient, as further unrolling
operations would result in the redundant calling of specific
SSL/TLS API(s), and our document analysis indicates it does
not adversely affect the security of SSL/TLS API usage.

4) SAG Construction in Step 5⃝: We construct the final
SAG by merging the previously constructed ACFGs. Specifi-
cally, we add edges from the nodes (i.e., basic blocks) within
one ACFG that contain the instruction calling a function in
the ACG to the root node in the corresponding ACFG of the
called function.

C. Misuse Signature Representation

We present a formal expression of the SSL/TLS API misuse
signatures and can enumerate all SSL/TLS API misuse signa-
tures of different misuse types in various SSL/TLS implemen-
tations, addressing C-II. Fig. 4 shows the formal representation
of the SSL/TLS API misuse signatures. A signature can
consist of multiple Calls and Asserts that can establish an
SSL/TLS connection. The Calls are SSL/TLS API calls. The
args represent one or more arguments that can be passed to
the APIs in the signature. The Asserts are data verification and
the data can be divided into two kinds, i.e., the argument and
the function execution result. The data is used in comparing
with Integer, String, Boolean, and NULL in an expression.

Signature ::= Call
+
 | Assert

+

Call ::= f(args) | ret = f(args)

args ::= arg | arg, args

Assert ::= assert(expr)

expr ::= arg comp operand | ret comp operand

operand ::= Integers | Strings | Boolean | NULL

comp ::= == | !=

f ::= target SSL/TLS APIs

Fig. 4. SSL/TLS API misuse signature formal expression

SSL/TLS API misuse signatures can be divided into three
categories. The first category includes only T-I misuses, the
second includes only T-II misuses, and the third includes both
T-I and T-II misuses. For each API misuse signature, it may
include the misuses leading to incorrect certificate verification,
deprecated protocol support or both vulnerabilities. We have
defined 23 signatures for T-I misuses, 18 signatures for T-II
misuses, and 22 signatures for both T-I and T-II misuses for
OpenSSL and GnuTLS. Because of the page limit, please refer
to [22] for detailed signatures.

Fig. 5(a) shows an example of the third category of misuse
signature used to discover a T-I misuse (API call sequence
misuse). The upper block of Fig. 5(a) is the block of appli-
cation code in question. The bottom block is the signature,
which is used to detect the misuse in the block of application
code. Specifically, SSL_get_peer_certificate(·)
is called to request the server certificate, the
SSL_get_verify_result(·) is not called to obtain the
certificate verification result, and thus the server certificate is
not correctly verified. This indicates a T-I misuse.

D. Misuse Detection

With defined misuse signatures in Sec. IV-C, we can per-
form misuse detection. We first extract SSL/TLS API call
sequences from the constructed SAG by traversing the SAG
forward from the root node. We filter out the sequences that do
not include necessary APIs such as handshake and I/O APIs
for SSL/TLS connection establishment and data transmission
since the SSL/TLS connection cannot be actually established



ctx = SSL_CTX_new (TLSv1_2_client_method());

ssl = SSL_new(ctx);

ret = SSL_connect(ssl);

ret = SSL_get_peer_certificate(ssl);

Call(TLSv1_2_client_method())

(a) Signature example 1 (T-I)

ctx = SSL_CTX_new (TLS_client_method());

SSL_CTX_set_min_proto_version(ctx, 

TLS1_VERSION);

ssl = SSL_new(ctx);

SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER);

ret = SSL_connect(ssl);

Call(TLS_client_method())

Call(SSL_CTX_new())

Assert(arg == TLS1_VERSION)

Call(SSL_CTX_set_min_proto_version(arg))

Call(SSL_new())

Assert(arg == SSL_VERIFY_PEER)

Call(SSL_CTX_set_verify(arg))

Call(SSL_connect())

(b) Signature example 2 (T-II.a)

ctx = SSL_CTX_new (TLSv1_2_client_method());

ssl = SSL_new(ctx);

ret = SSL_connect(ssl);

ret = SSL_get_peer_certificate(ssl);

if (ret != NULL){

ret = SSL_get_verify_result(ssl);

}

Call(TLSv1_2_client_method())

Call(SSL_CTX_new())

Call(SSL_new())

Call(SSL_connect())

r_1 = Call(SSL_get_peer_certificate())

Assert(r_1 != NULL)

r_2 = Call(SSL_get_verify_result())

(c) Signature example 3 (T-II.b)

Fig. 5. SSL/TLS API misuse signature examples

identified APIs prone to argument misuse, and locate the
instructions that call the APIs. Therefore, the register that
stores the argument value is used as the taint source. In
our context, the argument value passed to the APIs prone to
argument misuse are either integer or string. We designate
the assignment instructions (e.g., “mov” and “lea” in the x86
instruction set) in which the right-hand operand is an integer
or a string address as taint sinks. Now we perform backward
taint analysis to trace the taint propagation from the taint
source to sinks. Since we trace backward, the taint information
is propagated from the left-hand operand to the right-hand
operand. The analysis stops when it encounters one of the
taint sinks or reaches the first instruction in the CFG. If the
taint source reaches the taint sink, we can determine that the
right-hand operand of the sink instruction is the value passed
to the parameter. By comparing the API call sequences and the
identified argument value with each signature, we can detect
if the target binary contains the T-II.a misuse.

For example, SSL_CTX_set_min_proto_version(·,
version) can configure the minimum protocol support by
the binary with the value passed to the “version” parameter.
If a wrong value is passed, deprecated protocols can be
supported. Therefore, if we discover this API in a call
sequence, a backward taint analysis should be performed to
find the argument value. If the API usage matches the T-II.a
misuse signature in Fig. 5(b), we identify a T-II.a misuse.

To detect a T-II.b misuse, we first identify if SSL/TLS
APIs prone to execution result misuse are called in the call
sequences and then construct the intra-procedural CFGs for
the caller functions of the identified APIs. In order to track
the function execution result, we locate the register that stores
the function execution result and use it as the taint source.
We mark the compare instructions on the caller function’s
CFG as taint sinks. We now proceed to forward trace the taint
propagation. Specifically, the taint information is propagated
from the right-hand operand to the left-hand operand. The
analysis continues until it encounters a taint sink or reaches
the last instruction of the CFG. If the taint source reaches
one of the taint sinks, it indicates that the API execution
result is verified and correctly used. Otherwise, if the taint
source does not reach the taint sinks, it implies that the return

value is not adequately verified and misuse is detected. For
example, in the upper code block in Fig. 5(c), the return value
of SSL_get_verify_result(·) is not checked, and this
matches the signature depicted. A T-II.b misuse is detected.

V. EVALUATION

In this section, we first introduce the experiment setup and
evaluate the effectiveness of SAMBA. We then present the
results of detecting vulnerabilities in real-world IoT binaries



TABLE I
GROUND-TRUTH EVALUATION RESULTS (RQ1)

Ground Truth Results
P N Suc TP FP TN FN Coverage Precison Recall

ICV SSLint 42 24 66 42 0 24 0 100% 100% 100%
SAMBA 42 24 48 32 0 16 0 72.73% 100% 100%

DPS1 SSLint2 50 7 - - - - - - - -
SAMBA 50 7 42 36 0 6 0 73.68% 100% 100%

1 The SSL/TLS protocol supported in 9 SSL/TLS connections is determined during execution.
2 Related work SSLINT does not discover the deprecated protocol support vulnerability.

(i) we locate all the SSL/TLS API usage that can establish SS-
L/TLS connections in the selected programs; (ii) we manually
check each connection to identify if it is vulnerable to ICV
(incorrect certificate verification) or DPS (deprecated protocol
support) because of SSL/TLS API misuses. Since the manual
examination of SSL/TLS usage is performed at the source code
level, the correctness of the labeling can be guaranteed.

After about 45 man-hours of manual examination, we
discover 66 SSL/TLS API sequences that establish SSL/TLS
connections in these 30 programs as shown in Tab. I. For
the certificate verification among the 66 connections, 24 con-
nections have correctly verified the server certificate, while
the other 42 have the certificate verification misuse issue. In
terms of DPS, we find 50 connections support at least one
deprecated SSL/TLS protocol and only 7 connections support
secure SSL/TLS protocols. Note that we do not label the
protocols supported in the other 9 connections because their
supported protocols are determined during program execution,
e.g., configured with command line argument.

Baseline. To the best of our knowledge, all existing SS-
L/TLS API misuse detectors rely on source code. We compare
SAMBA with SSLINT



results are presented in Tab. II. Among the vulnerable 115
executables, 94 executables are vulnerable to ICV. 112 exe-
cutables are found to be vulnerable to DPS. More specifically,
there are 31 executables supporting SSL 2.0, 93 executables
supporting SSL 3.0, 104 executables supporting TLS 1.0,
and 55 executables supporting TLS 1.1. All these detected
executables are vulnerable to MITM attacks or side-channel
attacks, including POODLE [3] and Lucky 13 [26].

Analysis of Failures: For the 33 executables that SAMBA
fails to analyze, we manually investigate these cases and find
four causes. (i) SAMBA fails to obtain a complete call graph
for 12 of them due to the limitations of IDAPython in fully
extracting the call graph. SAMBA cannot discover all target
APIs and extract correct API call sequences from a partial call
graph. (ii) SAMBA does not find the invocation of read/write-
related SSL/TLS APIs (e.g., SSL_read and SSL_write)
in 8 executables. In this situation, it is impossible for SAMBA
to extract a complete API call sequence for vulnerability
signature matching. (iii) SAMBA crashes when analyzing 8
executables due to unknown bugs maybe in IDAPython. (iv)
SAMBA encounters timeout errors for 5 executables.

Efficiency. To evaluate the efficiency of SAMBA, we mea-
sure its analysis time for all successfully analyzed IoT binaries.
We find that the average time cost for SAMBA to analyze an
executable is only 55.45 seconds, which is quite efficient. We
further evaluate the contribution of the CFG pruning technique
in improving the analysis efficiency of SAMBA. To this end, we
implement a raw version of SAMBA which extracts API call
sequences without CFG pruning and compare its performance
with SAMBA. In the raw method, we first generate the inter-
procedural CFG and then directly traverse all blocks to extract
the SSL/TLS API call sequences. The results show that the raw
version of SAMBA cannot extract the API call sequences of 67



the caller function of the SSL/TLS APIs. To address this issue,
an inter-procedure data analysis is required and our system
may generate inaccurate reports. However, while constructing
our ground truth dataset, we notice that the argument value
and the API execution result verification are closely associated
with the SSL/TLS API prone to misuse. Thus, in our context,
intra-procedure data flow analysis suffices.

B. Advantages of Binary-level Analysis

With the evolution of the SSL/TLS libraries, some APIs
have been deprecated and replaced with new ones to
support similar functionalities. However, for the consid-
eration of compatibility, some deprecated APIs are re-
named to the corresponding new APIs by preprocessor
macros instead of directly removed. For example, the
SSLv23_client_method() in OpenSSL is used to con-
figure the client application to support SSL 2.0 and later
protocols, and it has been deprecated after OpenSSL 1.1.0.
If an application calls SSLv23_client_method() and
is compiled with OpenSSL 1.1.0, the API call is replaced
with TLS_client_method() instead. In this situation, the
SSL/TLS protocols supported by the application are SSL3.0
and later protocols. Such practice illustrates the advantages of
binary analysis in detecting SSL/TLS misuses. That is, the
source code based methods [1], [2] will report more false
positives than binary-level analysis tools due to the usage of
preprocessor macros in SSL/TLS libraries.

VII. RELATED WORK

In this section, we present the most related work on API
misuse vulnerability detection and static analysis based vul-
nerability detection methods.

A. API Misuse Vulnerability Detection

Third-party libraries play an important role in simplifying
program development and the issue of API misuse attracts
increasing attention [29], [30]. To address the API misuses,
several detection methods [1], [2], [7], [31], [32] have been
proposed. These methods can be divided into two categories:
source-code-based misuse detection [1], [2], [31] and binary-
code-based misuse detection [7], [32]. The ource-code-based
methods require access to source code of the target SSL/TLS
application, and this limits their usage when the source code of
the application and/or its dependent libraries is not available.
The binary-code-based methods are more general since only
binary files are required. Previous works focus on detecting
cryptographic misuses [7], [32], mainly target the arguments
passed to cryptographic APIs, and analyze if a specific API is
used and if the argument passed to the API violates the correct
usage rules. However, by analyzing documents of SSL/TLS
libraries, we find the execution result of some APIs should
be examined to verify the certificate authenticity. SAMBA can
address the deficiencies of related work.

B. Vulnerability Detection with Static Analysis

Software analysis can be either static or dynamic analysis.
In this paper, we focus on analyzing the IoT applications.
Due to the diverse instruction sets and peripherals used in
IoT devices, it is difficult to dynamically execute binaries
even with an emulator such as QEMU. Therefore, we adopt
static analysis methods to discover SSL/TLS API misuse
vulnerabilities. There is related work using static analysis to
discover IoT application vulnerabilities [33], [24], [34], [35],
For example, Shoshitaishvili et al. [33] present a system to
automatically discover authentication bypass vulnerabilities in
binaries based on backward slicing and symbolic execution.
However, our work is the first to detect SSL/TLS API misuses
in IoT firmware.

VIII. CONCLUSION

This paper introduces SAMBA, the first automatic tool
designed to detect misuses of SSL/TLS APIs in IoT binaries.
SAMBA utilizes a three-level reduction technique to construct
an SAG for API call sequence extraction. Backward and for-
ward taint analyses are then applied based on these sequences
to understand the data flows of APIs prone to data misuse. By
formulating API misuse signatures for OpenSSL and GnuTLS,
SAMBA matches these signatures at the control and data
flow levels to identify SSL/TLS API misuses in IoT binaries.
Extensive experiments are conducted to validate SAMBA. We
evaluate SAMBA with 30 Ubuntu SSL/TLS binaries, are able
to analyze 73.21% of those binaries and achieve a precision of
100%. We also use SAMBA and successfully analyze 115 IoT
binaries. We find 94 of the 115 IoT binaries are vulnerable to
incorrect certificate verification, and 112 out of them support
deprecated protocols. To validate the identified vulnerabilities,
we emulate 37 IoT binaries with QEMU, and confirm the
vulnerabilities are indeed present in these binaries. Particularly,
we find vulnerabilities related to certificate verification in all
the 37 binaries and 36 binaries support deprecated proto-
cols. Our experiment results highlight the effectiveness and
efficiency of SAMBA, shedding light on the insecure use of
SSL/TLS APIs in today’s IoT devices.
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