
�L�Q�W�H�U�I�D�F�H�����$�3�,���� �P�H�W�K�R�G�V���W�R���S�U�R�Y�L�G�H�� �F�X�V�W�R�P�L�]�H�G���D�F�F�H�V��
�V�L�E�L�O�L�W�\���V�H�U�Y�L�F�H�V���L�Q���W�K�H�L�U���R�Z�Q���D�S�S�O�L�F�D�W�L�R�Q�V�����+�R�Z�H�Y�H�U�����W�K�H��
�D�F�F�H�V�V�L�E�L�O�L�W�\�� �V�H�U�Y�L�F�H���K�D�V���D�F�F�H�V�V���W�R���F�U�L�W�L�F�D�O���V�H�Q�V�L�W�L�Y�H��
�L�Q�I�R�U�P�D�W�L�R�Q�����L�Q�F�O�X�G�L�Q�J���L�Q�I�R�U�P�D�W�L�R�Q���D�E�R�X�W���D�S�S�O�L�F�D�W�L�R�Q�V���W�K�D�W��
�D�U�H�� �F�X�U�U�H�Q�W�O�\���U�X�Q�Q�L�Q�J�� �D�Q�G���D�F�F�R�X�Q�W���L�Q�I�R�U�P�D�W�L�R�Q�����$�W�W�D�F�N�H�U�V��
�F�R�X�O�G���X�W�L�O�L�]�H�� �V�X�F�K���D���Y�X�O�Q�H�U�D�E�L�O�L�W�\���W�R���F�R�Q�G�X�F�W���Y�D�U�L�R�X�V���W�\�S�H�V��
�R�I���D�W�W�D�F�N�V��

�7�R�� �S�U�R�Y�H���W�K�H���F�R�Q�F�H�S�W���� �Z�H�� �G�H�Y�H�O�R�S���D�� �P�D�O�L�F�L�R�X�V��
�D�S�S�O�L�F�D���W�L�R�Q���Z�K�L�F�K���H�[�S�O�R�L�W�V�� �W�K�L�V�� �Y�X�O�Q�H�U�D�E�L�O�L�W�\�����7�K�H��
�L�Q�V�W�D�O�O�D�W�L�R�Q�����D�F�W�L�Y�D�W�L�R�Q�����D�Q�G�� �W�K�H���S�D�\�O�R�D�G���R�I�� �R�X�U��
�P�D�O�L�F�L�R�X�V���D�S�S�O�L�F�D�W�L�R�Q���D�U�H���G�H�V�F�U�L�E�H�G���D�V���I�R�O�O�R�Z�V�����)�L�U�V�W�����W�R��
�L�Q�V�W�D�O�O���R�X�U���P�D�O�L�F�L�R�X�V���D�S�S�O�L�F�D�W�L�R�Q���R�Q�W�R�� �X�V�H�U���G�H�Y�L�F�H�V���� �R�X�U��
�P�D�O�L�F�L�R�X�V���D�S�S�O�L�F�D�W�L�R�Q���P�D�\���D�S�S�H�D�U���D�V���D�� �O�H�J�L�W�L�P�D�W�H��
�D�F�F�H�V�V�L�E�L�O�L�W�\�� �V�H�U�Y�L�F�H���D�S�S�O�L�F�D���W�L�R�Q���D�Q�G�� �S�U�R�Y�L�G�H�� �V�R�P�H��
�D�F�F�H�V�V�L�E�L�O�L�W�\�� �I�X�Q�F�W�L�R�Q�D�O�L�W�\�����7�K�H���L�Q�V�W�D�O�O�D�W�L�R�Q���R�I�� �R�X�U��
�P�D�O�L�F�L�R�X�V���D�S�S�O�L�F�D�W�L�R�Q�� �U�H�T�X�H�V�W�V���W�K�H��
�%�,�1�'�B�$�&�&�(�6�6�,�%�,�/�,�7�<�B�6�(�5�9�,�&�(���S�H�U�P�L�V�V�L�R�Q�����2�I��
�F�R�X�U�V�H�����R�W�K�H�U���S�H�U�P�L�V�V�L�R�Q�V���D�U�H���U�H�T�X�L�U�H�G���L�I���W�K�H���P�D�O�L�F�L�R�X�V��
�S�D�\�O�R�D�G���U�H�T�X�L�U�H�V���V�X�F�K���S�H�U�P�L�V�V�L�R�Q�V�����7�K�H���P�D�O�L�F�L�R�X�V���D�S�S�O�L�F�D�W�L�R�Q��
�L�V���W�U�L�J�J�H�U�H�G���R�Q�F�H���D�Q���$�F�F�H�V�V�L�E�L�O�L�W�\�(�Y�H�Q�W���R�E�M�H�F�W���L�V���G�L�V��
�S�D�W�F�K�H�G���� �7�K�H�U�H�� �D�U�H��







then address major challenges for such malware to
work, including detection of the launch of a victim
app and race condition between the victim app and
malware.

3.1. Overview

We now introduce the novel malware’s installation,
activation, malicious payloads and permission uses.
Installation: The new Android malware can provide

regular accessibility service as it claims and conduct
attacks silently. Therefore, impaired users and users
who prefer large font text may be interested in such
malware and install it onto their device. It is also rea-
sonable to assume that the malicious application could
be marketed under a category other than accessibility
services. For instance, malware authors could market a
"driving mode" app which leverages the system’s acces-
sibility features in order to provide better hands-free
operation while driving an automobile. This installation
strategy is installation.others.3rdgroup in [33], referring
to apps that intentionally include malicious functional-
ity. For brevity, we denote installation.others.3rdgroup
as trojan, “a program made to appear benign that serves
some malicious purpose" according to the taxonomy in
[27], although this definition of trojan may be contro-
versial.
Permission Uses: During installation, the malware

requests the BIND_ACCESSIBILITY_SERVICE permis-
sion. After installation, users must enable the Acces-

sibilityService in Android’s Accessibility Settings
menu. Since a legitimate accessibility service also
requests such permission and requires enabling, users
may not suspect the motivation of our malware. Of
course, other permissions are required if the malicious
payload requires them. However, Felt et al. [3] show
that only 17 percent of Android users actually pay
attention to application permissions at the time an
app is installed. Furthermore, only 56.7 percent of
participants in the study claimed they had canceled
an app installation because of issues with its permis-
sions. Given these startling statistics, the installation
of a malicious app requiring the BIND_ACCESSIBILITY_
SERVICE permission and its required payload per-
missions could realistically be performed by typical
Android users.
Activation: After the installation, our malware can

derive a list of all installed applications in that device.
This can be achieved via many sources, such as the
Package Manager. Based on which applications are
installed, our malicious application could download
various payloads and use them to launch di� erent
attacks.



• How can the malware display itself to the user
while the victim app is hidden in the background?
When the user touches an app, this app will be
launched. Which app, our impostor or the victim
app, will be displayed? How can our impostor win
the race condition?

We address these two issues below.

3.2. Detecting Application Launch

A crucial piece of our masquerade attack is the ability
to detect the launch of a victim application. There is
no public API to allow a user application to be notified
when another application is launched. An application
could poll the ActivityManager for changes in the run-
ning task list, but this solution could impact CPU and
battery performance, and some delay between launch
and the detection could occur. Another technique used
by malware authors involves using the READ_LOGS 2.010c9.9un-



Figure 2.Activity Launch State Transition Diagram

record is moved to the top of the stack. The component
which requests the Activity to be started can supply
additional flags to the startActivity Intent that may
alter this behavior, but we focus on the default behavior.
Once the stack manipulation is complete, the system
attempts to display/resume the top Activity. However,
to comply with Android’s Activity lifecycle model, the
current Activity must first be paused. This ensures
that the current Activity has a chance to save its
state before being put into the background. To protect
consistency, no Activity is allowed to be displayed
until the current Activity has finished pausing. When
the pause is complete, the system will attempt to
display/resume the Activity at the top of the history
stack.

Our malware exploits this logic by launching the
malicious Activity as soon as the victim Activity

launch has been detected. In the case where both the
malicious and victim Activities belong to tasks on
the history stack, the malicious Activity will always
be displayed over the victim. This is because the launch
detection reacts to the AccessibilityEvent that is
dispatched when the user clicks the Email application
icon, which occurs before the Launcher application
dispatches its start request. Therefore, the malicious
request is received at the ActivityManager before the
victim request, thus its history record is moved to the
top of the stack. Because the two requests are received
nearly simultaneously, the victim request is skipped
due to the logic in the ActivityStack class. This is the
fundamental property which makes this attack work
when both the victim and malicious Activities are
already on the history stack. However, when neither
the malicious or victim Activities are on the history
stack, the victim Activity is pushed onto the stack
after the malicious Activity, making it next in line to
be displayed. Figure 3 shows a timeline of when these
events occur, illustrating the state of the history stack
for each case over time.

Table 2.List of Device Screen Statuses

With flash Without flash
Victim interface shows up Ω1 Ω2
Fake interface shows up Ω4 Ω3

In Section 3.4 we show that by adding some delay
to the malicious Activity launch, we can increase the
chance that the malicious Activitywill be pushed onto
the stack after the victim.

3.4. Optimal Delay
There exists a source of contention for our malicious
Activity. An attacker wants the malicious Activity

to be displayed instead of the victim Activity without
any suspicious screen flash, flicker, or transition
animation that may alert the user to the presence of
malware. To achieve this goal, the timing of launching
malicious Activity should be carefully adjusted so
that the malicious Activity is processed soon after
the victim Activity. Therefore, the problem is how to
derive an optimal delay for the malicious Activity. We
present our analysis below.
We find that di� erent delay of the malicious

Activity produces four di� erent statuses of the
device screen. Before introduce the four statuses,
please note that when the malicious Activity is
processed, a fake interface is created and displayed.
Please also note that when the victim Activity is
processed, a victim interface is created and displayed.
Depending on the timing of processing each activity,
there are four scenarios. (I) The malicious Activity

is processed before the victim Activity. The fake
interface will be displayed first, and then replaced
by the victim interface. In this scenario, we can
observe the victim interface showing up with a flash,
and the status of device screen is defined to be
Ω1. (II) The malicious Activity is processed before
the victim Activity, but these two activities are
processed nearly simultaneously. In this scenario, only
the victim interface is displayed without a flash. The
status of device screen is defined to be Ω2. (III)
The malicious Activity is processed after the victim
Activity, but these two activities are processed nearly
simultaneously. In this scenario, only the fake interface
is displayed without a flash. The status of device screen
is defined to be Ω3. (IV) The malicious Activity

is processed after the victim Activity. The victim
interface will be displayed first, and then replaced by
the fake interface. In this scenario, we can observe the
fake interface showing up with a flash, and the status
of device screen is defined to be Ω4. These statuses are
listed in Table 2.
It is obvious that an attacker will want the device

screen status to be Ω3. Therefore, we need to derive
an optimal delay time for the malicious Activity.

6





click does contain the title, however this is not the case
in CyanogenMod 9.
We tested the launch detection capability on the

HTC Nexus One for the following six Android
applications: Messaging, Email, LinkedIn, Facebook,
Bank of America, and Browser. For each application,
a shortcut icon was created on the home screen. The
launch detection was successful for all six applications.

4.2. Winning Race Condition

During the launch detection testing, we noticed that
the malicious Activity was not displayed instead of
the victim Activity 100% of the time, especially when
the victim application was being launched for the first
time since system boot. To test this, we performed
two separate experiments. In the first experiment, we
ensured the application we were launching was not
running by pressing the Force Stop and Clear Data
buttons under the corresponding Settings -> Manage
Applications -> All menu for that application. These
two operations e� ectively force the application to be
reloaded from its initial state, as if the system had
just booted. We then returned to the home screen,
launched the application normally, and recorded which
Activity, malicious or victim, was displayed. In the







simply delay the start of the malicious Activity for
some short time, ensuring that the malicious Activity
is displayed after all. The di� erence here is that there
may be some obvious transition animation, if the
developer of the legitimate app has not disabled it, from
the legitimate Activity to the malicious Activity.

6. Related Work

In 2009, Schmidt et al. [31] made a survey of mobile
malware and found that most malware targets Symbian
OS. They reported F-Secure Research in Helsinki
counted 418 malware samples, some of which were not
public, while they collected information of 288 public
malware. 278 of these 288 public malware targeted
Symbian OS. A note is On February 11 2011, Nokia
announced to adopt Microsoft’s Windows Phone OS
as its primary smartphone platform, and Symbian has
faded out since then. Since Android OS was getting
attention at that point and the authors investigated
possibilities of malware on Android, they explored
“social engineering"-based Android malware, where
the malicious functionality is hidden in a seemingly
benign host app. They demonstrated such functionality
can be binary code. android.os.Exec can be used to
finally execute such binary code. The binary code
is the payload of the malware. The authors show
the payload can be crafted to bypass the Android
permission system such as accessing /proc and /sys/,
deplete the device’s battery by using energy consuming
FPU (Floating Point Unit) operations, and run arbitrary
ARM instructions on a rooted G1 Android smartphone.
Felt et al. [26] classify threats from third-party
smartphone applications into malware, grayware, and
personal spyware. Malware intends to damage finance or
property of the smartphone owner. An “attacker" such
as a spouse who has physical access to a smartphone
can install personal spyware on the victim smartphone
and gather information about the smartphone owner,
for example, tracking the victim. Grayware is often
commercial applications with real functionality while
stealing user information. The distributor may have
a privacy policy with varying degree of clarity. The
authors conduct a survey of 46 pieces of smartphone
malware and their incentives and conclude that Apple’s
mechanisms of application permission and review
process can avoid approving malware. Becher et
al. [22] examine mechanisms securing sophisticated
mobile devices in 2011. Although no major incidents
of attacking smartphones have happened, small-scale
attacks have been emerging. Threats were classified
into four classes: hardware centric, device independent,
software centric, and user layer attacks for the purpose of
eavesdropping, availability attacks, privacy attacks and
impersonation attacks. Existing security mechanisms
are enumerated for various attacks.

Enck et al. [25] implemented ded, a Dalvik decom-
piler. ded transfers .dex file into Java source code. It was
then used for analyzing security of 1,100 popular free
Android applications. The followingmajor observations
were made: misuse of privacy sensitive information
including phone identifiers such as IMEI, IMSI, and
ICC-ID and geographic location; “no evidence of tele-
phony misuse, background recording of audio or video,
abusive connections, or harvesting lists of installed
applications"; wide use of ad and analytic network
libraries by 51% of the applications; no exploitable
vulnerabilities leading to control of the phone. Zheng
et al. [32] developed ADAM, an automated system for
evaluating the detection of Android malware. ADAM
uses repackaging and code obfuscation to generate
di� erent variants of a malware. They collected 222
malware samples and used ADAM to generate vari-
ants of those malware. Those variants were fed into
VirusTotal [21], “a free service that analyzes suspicious
files and URLs and facilitates the quick detection of
viruses, worms, trojans, and all kinds of malware".
They have observed that commercial anti-virus showed
di� erent detection rate for di� erent variants. New anti-
virus software such as Antiy [14] shows better perfor-
mance than older anti-virus software. Rastogi, Chen
and Jiang [30] made similar e� ort to test state-of-the-
art Andoroid commercial mobile anti-malware prod-
ucts for detecting transformed malware. Such trans-
formation techniques include polymorphism (where
transformed code is still similar to the original code)
and metamorphism (where transformed code is totally
di� erent from the original code, but with similar mal-
ware functionality). Zhou et al. [34] developed a system
called DroidRanger, evaluating the health of Android
markets, including the o�cial Android Market, eoe-
Market [16], alcatelclub [12], gfan [17], and mmoovv
[20]1. To detect known Android malware, DroidRanger
uses permission-based filtering to detect malware using
suspicious permissions and behavioral footprint match-
ing to detect malware performing suspicious behav-
ior such as listening to system-wide broadcast mes-
sages and sending and monitoring SMS messages. To
detect unknown Android malware, DroidRanger uses
two steps: heuristics based filtering and dynamic exe-
cution monitoring. The heuristics based filtering can
utilize Android features misused to load new code,
either Java binary code from a remote server or native
machine code. Dynamic execution monitoring checks
what APIs an app is using. DroidRanger was able to
find 211 malicious or infected apps out 204,040 apps
from the five studied marketplaces, including two zero-
day malware. Zhou and Jiang [33] made a one year
e� ort and analyzed more than 1,200 malware samples,

1Link is no longer valid

11



which covered a majority of state-of-the-art Android
malware. They obtained those samples by manually or
automatically crawling various Android markets. They
characterize Android malware by their installation,
activation, payload and permission use. Installation of
malware on a victim device uses three main social engi-
neering based approaches, repackaging, update attack,
and drive-by download. In repackaging, a benign app
is downloaded, piggybacked with malicious code and
uploaded onto a market again. In update attack, a
malware author put code into an app, and the rest
of the malicious code will be downloaded when the
malware is running. In drive-by download, ad is used
in a malware to attract the victim to download more
spyware and other malware. Other attacks also exist:
spyware, fake apps masquerading as other legitimate
apps, apps with malicious functionality such as sending
unauthorized SMS messages, apps exploiting root priv-
ilege. Malicious apps can be activated by various sys-
tem events including BOOT_COMPLETED, SMS_RECEIVED,
and UI interaction events. Malware can have a vari-
ety of payloads, targeting privilege escalation, remote
control, financial charges, and personal information
stealing. Malware without root exploits often uti-
lizes INTERNET, READ_PHONE_STATE, ACCESS_NETWORK_
STATE, and WRITE_EXTERNAL_STORAGE permissions. The
authors have found that malware have been evolving to
avoid detection and have more sophisticated function-
ality such as making the device part of a botnet. Current
anti-virus software downloadable from Google market,
AVG Antivirus Free, Lookout Security & Antivirus,
Norton Mobile Security Lite, and Trend Micro Mobile
Security Personal Edition, do not perform well in
detecting malware the authors collected. Bugiel et al.
[24] studied ways to defend against privilege-escalation
attacks on Android. Such privilege-escalation attacks
include confused deputy attacks and colluding attacks.
Confused deputy attacks exploit unprotected interfaces
of a benign application. Colluding attacks involve mul-
tiple apps. For example, one app can record audio and
another one has the Internet permission. In this way,
the second app can send the overheard credit numbers
out. The authors designed and implemented a security




