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Abstract
Existing local differential privacy (LDP) techniques enable

untrustworthy aggregators to perform only very simple data
mining tasks on distributed private data, including statistical
estimation and frequent item mining. There is currently no
general LDP method that discovers relations between items.
The main challenge lies in the curse of dimensionality, as the
quantity of values to be estimated in mining relations is the
square of the quantity of values to be estimated in mining
item-level knowledge, leading to a considerable decrease in
the final estimation accuracy. We propose LDP-RM, the first
relation mining method under LDP. It represents items and
relations in a matrix and utilizes singular value decomposition
and low rank approximation to reduce the number of values
to estimate from O(k2) to O(r), where k is the number of all
considered items, and r < k is a parameter determined by the
aggregator, signifying the rank of the approximation. LDP-
RM serves as a fundamental privacy-preserving method for
enabling various complex data mining tasks.

1 Introduction

Benefiting from local differential privacy (LDP) techniques
[20], an untrustworthy aggregator is able to discover global
knowledge from private data owned by distributed users with-
out compromising privacy. Typically, an LDP technique com-
prises a perturbation algorithm and an aggregation algo-
rithm. The perturbation algorithm perturbs private data to
ensure privacy, and is employed by each user locally when
responding to the aggregator’s queries. The aggregation al-
gorithm extracts global knowledge from all the perturbed
responses provided by users, and is employed by the aggre-
gator. However, existing LDP techniques are only capable
of discovering simple global knowledge, such as statistical
information [12,13,42], or popular items (e.g., emojis) [3,43].

Currently, there is no general method that discovers rela-
tions between or among items under LDP while some very
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recent LDP techniques can be applied to extract specific
types of relations. Take the LDP technique that discovers
frequent item-sets as an example [43]. An item-set repre-
sents co-occurrence relation of items. The estimated frequent
item-sets are obtained through item-level perturbation and
aggregation. However, this approach relies on a strong as-
sumption that an item-set comprising two frequent items is
also frequent. This assumption is problematic as shown by a
counter example in Fig. 1 of Sec. 3.2.

To the best of our knowledge, we are the first to introduce
the generic problem of relation mining under LDP. In this
problem, we assume that each user possesses some private
items and relations among those items are private information
about the user. The untrustworthy aggregator is interested in
globally useful statistics of relations, measured by two crite-
ria: support and confidence. Support represents the relation’s
popularity and is defined as its frequency, while confidence
denotes its reliability and is calculated as the ratio of the
relation’s support to the support of the items within the re-
lation. Therefore, the goal of the aggregator is to uncover
high-support and high-confidence relations.

The primary challenge in addressing this problem lies in the
“Curse of Dimensionality”. To discover relations with high
support and high confidence, the aggregator needs to estimate
the support and confidence of all potential relations. The quan-
tity of values to be estimated in mining relation-level knowl-
edge is the square of the quantity of values to be estimated in
mining item-level knowledge [9], leading to a tremendous in-
crease in the extent to which each user disturbs her data to en-
sure privacy. In LDP, a parameter named privacy budget (typi-
cally denoted as ε) is used to determine the privacy level. Its re-
ciprocal determines the amount of noise that should be added
to a response, and it must be split among multiple responses



discovering high-support and high-confidence relations from
distributed private data. This technique serves as a fundamen-
tal building block for data mining under LDP. With LDP-RM,
the aggregator iteratively estimates the support of all rela-
tions from scratch, using a global matrix (referred to as the
aggregator matrix) to save and update the estimations. Each
row/column in this matrix corresponds to an item, and each
element represents the support of a relation. To update the
matrix, the aggregator collects perturbed reports constructed
by distributed users. Each report can be abstracted as a user
matrix that captures the user’s private items and their relations.
Directly protecting the privacy of the entire user matrix would
inevitably split the privacy budget, leading to excessive noise
and insufficient estimation accuracy. To address this issue, the
basic idea of LDP-RM is to employ singular value decompo-
sition [17] to compress the high-dimensional user matrix into
a low-dimensional vector. By perturbing and reporting this
vector instead of the user matrix, the amount of noise needed
for privacy protection is significantly reduced.

LDP-RM works as follows. Without loss of generality, let
k represent the number of all considered items. The aggrega-
tor begins by guessing an initial global matrix of size k × k.
Instead of directly aggregating and estimating the true global
matrix of size k × k, the aggregator estimates its projection
onto the initial global matrix. This projection is represented
as the singular vector (calculated using singular value decom-
position), with a length of k. As a result, the number of values
to estimate is reduced from k2 to k. The aggregator then re-
covers the global matrix from the singular vector averaged
over all users’ data. If the aggregator estimates only the best
rank-r approximation of the global matrix instead of the entire
matrix, the number of values to estimate is further reduced
to r < k. The primary challenge lies in performing singular
value decomposition without possessing knowledge of the
true global matrix. To address this challenge, LDP-RM em-
ploys an iterative scheme which updates the global matrix in
each iteration. After several iterations, the aggregator obtains
the final estimated global matrix and discovers high-support
and high-confidence relations from it. Our experimental eval-
uation demonstrates the effectiveness of LDP-RM, and the
ineffectiveness of the state-of-the-art LDP techniques — in-
cluding SVIM [43], SVSM [43], CALM [50], and PCKV [18]
— in mining relations.

Our major contributions can be summarized as follows:
• We are the first to introduce and investigate the problem

of relation mining under LDP. This is a fundamental problem
for carrying out complex data mining tasks on private data
owned by distributed users.

• We propose LDP-RM, the first relation mining method
under LDP. This method can be used to discover various kinds
of relations of high support and high confidence, including
but not limited to the co-occurrence of items.

• We conduct extensive experiments to validate the effec-
tiveness of LDP-RM.

2 Background

In this section, we introduce local differential privacy and
data mining under LDP. The notation used throughout this
paper is summarized in Tab. 1.

2.1 Local Differential Privacy
Local differential privacy (LDP) is a model of differential
privacy (DP) which offers robust privacy guarantees for
distributed users [12]. Consider each user has a private
value x from a given domain X. In the local setting, each
user applies an algorithm Ψ to perturb her individual input
value x ∈ X. The perturbed value Ψ(x) is then sent to the
aggregator. To ensure privacy, the algorithm Ψ should satisfy:

Definition 1 (ε-Local Differential Privacy). An algorithm
Ψ(·) satisfies ε-local differential privacy (ε-LDP), where ε ≥
0, if and only if for any two values x1,x2 ∈ X, we have:

∀T ∈ Range(Ψ) : Pr(Ψ(x1) = T ) ≤ eε · Pr(Ψ(x2) = T ),

where Range(Ψ) denotes the range of Ψ.

The parameter ε is commonly known as the privacy budget,
and a smaller ε guarantees a higher level of privacy. When
the aggregator needs to estimate multiple values, it must be
split among multiple reports from a user, in accordance with
the sequential composition theorem [12]. Splitting the privacy
budget can result in over-perturbed values provided by users,
leading to a significant decrease in estimation accuracy. This
problem can be mitigated by dividing users into groups, with
the aggregator estimating only one value from each group to
ensure that each user reports only once [4, 12, 32, 37, 43–45].

2.2 Data Mining under LDP
A data mining task discovers useful knowledge from large
datasets. A data mining task under LDP operates within the
confines of LDP constraints, which are imposed on distributed
user data. Existing LDP techniques facilitate two primary
types of data mining tasks: statistical estimation [12,13,42]
and item mining [3,43]. Taking the movie recommendation
scenario as an example. Statistical-estimation can quantify the
frequency of specific movie views. Item mining can identify
the most popular movies.

In the most general scenario, consider n users, each possess-
ing a private value x from a given domain X. The aggregator
aims to extract useful knowledge from users’ private data
without compromising privacy. A data mining task under
LDP can be formalized as an LDP protocol T , consisting of
a pair of algorithms ⟨Ψ,Φ⟩, defined as follows:

T (ε)≜ ⟨Ψ,Φ⟩. (1)

Here Ψ denotes the perturbation algorithm employed by users
to perturb local data to satisfy ε-LDP, and Φ denotes the



Table 1: Summary of Notations

Symbol Meaning
x, x, X, d Item, user’s set of items, set of all items, domain size of X
w, w, I Relation, user’s set of relations, user matrix

ε, Ψ(·), Φ(·), Privacy budget, perturbation algorithm, aggregation algorithm
s(·), c(·) Support of an item or a relation, confidence of a relation
k, ks, kc Number of high-support items, number of high-support relations, number of high-confidence relations

n, n1, n2, n3, T Number of total users, number of users in the 1st , 2nd , 3rd group, number of sub-groups/iterations
Y, Y Candidate set of high-support items, that of high-support relations
W Candidate set of high-support and high-confidence relations

Magg, Mgt , M′
agg Aggregator matrix, true matrix, updated aggregator matrix

θ, r, Mr Bias threshold, low rank, best rank-r approximation of the aggregator matrix
u, v⊤, U, V⊤, σ, Σ Left-singular vector, transpose of right-singular vector, matrix of u, v⊤, singular value, matrix of σ

P, P̂, S, DS, Ŝ Projection matrix, aggregation of P, user report vector, domain of S, estimated mean of S
l, sl ,

−→sl , (−→sl )
∗ Index of singular value in singular vector, pseudo singular value of index l, mapped sl , perturbed −→sl

G, C(·), CH(·) Hashed domain, count function, hash count function
ℓ, L, u′(L) Padding length, padding length ℓ at the 90 percentile, update factor

aggregation algorithm employed by the aggregator to extract
useful knowledge. Existing LDP protocols can be applied
to perform statistical estimation tasks and item-level data
mining tasks. However, a general method for mining relations
between items under LDP remains elusive.

2.2.1 Statistical Estimation under LDP. Numerous LDP
protocols have been proposed for various statistical estimation
tasks. Our work pertains to two specific estimation tasks:
mean estimation and frequency estimation.

In a mean estimation task, the aggregator aims to discover
the averaged value x̄ from all the n users:

x̄ ≜
1
n

n

∑
j=1

x j, (2)

where x j ∈ X = [−1,1] denotes the normalized numeric value
held by the jth user. Prominent LDP protocols for mean es-
timation include Duchi [10], PM [39], HM [39], and others.
This paper employs the HM protocol.
HM. HM stands for Hybrid Mechanism. A HM protocol
takes as inputs a value x ∈ X and a privacy budget ε. It adap-
tively invokes the perturbation algorithm of PM and Duchi
(denoted as ΨPM and ΨDuchi correspondingly), depending on
the value of ε:

ΨHM(ε)(x)≜
{

ΨPM(ε)(x), if ε > 0.61;
ΨDuchi(ε)(x), otherwise . (3)

ΦHM(x)≜
1
n ∑ΨHM(ε)(x). (4)

Appendix A gives a concise overview of PM and Duchi.
In a frequency estimation task, the aggregator aims to dis-

cover the number of users possessing a given value x. Let
x j ⊆ X = {1,2, ...,d} represent the set of categorical values

held by the jth user. The aggregator estimates the frequency
of each item xi ∈ X, denoted as s(xi), by computing:

s(xi) =
1
n

n

∑
j=1

1(xi,x j),1 ≤ i ≤ d, (5)

where 1(x,x) is an indicator function, defined as:

1(x,x)≜

{
1 if x ∈ x
0 if x /∈ x

(6)

An LDP protocol employed for frequency estimation is
also referred to as a Frequency Oracle (FO). Basic FOs, such
as GRR [42], Rappor [13], OLH [42], OUE [42], JLRR [13],
HRR [1], are applicable only in scenarios where each user
possesses a single value. Our work is partially based on an
item-level data mining LDP protocol (see Section 2.2.2) and,
as a consequence, indirectly utilizes these protocols. A con-



of each item in the value domain X, and finally outputs the
top-k frequent items (denoted as Y) along with their estimated
frequencies. ΦSVIM is defined as:

ΦSVIM(X,ε,n,k) ≜ {(x,ΦPSFO(ℓ,ε)(x))|x ∈ Y}, (7)

where ΦPSFO(ℓ,ε)(x) is the aggregation algorithm of PSFO
which outputs the support of item x. We provide a concise
overview of PSFO in Appendix C, and some more details of
SVIM in Appendix D.

3 Relation Mining under LDP

In this section, we define the problem of relation mining under
LDP, and discuss the challenges.

3.1 Problem Definition
While existing LDP techniques are unable to discover relation-
level knowledge, such knowledge holds significant impor-
tance, particularly in domains such as social network anal-
ysis, healthcare informatics, finance, and marketing [30].
For instance, association rule mining, which uncovers co-
occurrence relations among items, benefits offline retailers
like Walmart in optimizing product placement [27]. Beyond
association rules, other relations, including temporal relations,
are harnessed by popular platforms like Amazon for product
recommendations [31].

We consider an untrustworthy aggregator aiming to dis-
cover useful relations from private data owned by distributed
users. The usefulness of a relation is often measured from
two aspects, namely, support and confidence. The support
of a relation w indicates its popularity and is defined as the
proportion of users that have this relation among all n users:

s(w)≜
1
n

n

∑
j=1

1(w,w j), (8)

where w j denotes the set of relations possessed by the jth user,
and 1(·, ·) is the indicator function defined as in Equation (6).
The confidence of a relation indicates its reliability and is
defined as the ratio of the relation’s support to the first item’s
support. Let (xa,xb) denote a relation between two items xa
and xb. Its confidence can be calculated as:

c((xa,xb))≜ s((xa,xb))/s(xa). (9)

In data mining under LDP, the criteria for determining
high support or confidence differ from traditional data mining.
In traditional data mining, predefined minimum thresholds
can be employed to assess high support or confidence. As
confidence computation inherently depends on support com-
putation, a logical approach is to first identify high-support
relations and subsequently select high-confidence ones. How-
ever, in the local context with an untrustworthy aggregator,

they remain unknown beforehand. To tackle this challenge,
existing LDP methods replace the support threshold with a
parameter, denoted as k, and focus on discovering the top-k
items or itemsets with high support [4, 6, 24, 32, 37, 43–45].
Similarly, in the context of relation mining under LDP, the ag-
gregator’s objective is to initially identify the top-ks relations
with high support, from which they can derive the final top-kc
relations among all possible relations.

Mathematically, consider a set of users U = {u1,u2, ...,un}
and a set of items X = {x1,x2, ...,xd}, both known to the
aggregator. Each user possesses a private set of items x ⊆ X
and a private set of relations w ⊆ X2. The objective of relation
mining under LDP is to first identify the top-ks relations in
terms of support, and then, from these ks relations, find the
top-kc relations in confidence.

3.2 Challenges

To the best of our knowledge, no existing LDP methods can
be applied to discover relation-level knowledge in general
scenarios. A line of approaches aims to discover high-support
item-sets [32, 43]. However, these are essentially item mining
techniques, as they treat specific relations (i.e., co-occurrence
relationships of items) as items and rely on basic FO protocols
for statistical estimation. Furthermore, they are limited to
statistics on high-support items or relations, neglecting the
equally important criterion of confidence.

The primary challenge in addressing the problem of rela-
tion mining under LDP lies in the “Curse of Dimensionality”.
Given that both the set of individual items and that of indi-
vidual relations are considered private, the aggregator must
estimate the support for each item and that for each relation
under the constraint of LDP. For estimating the support of
each item, numerous item-level mining LDP protocols, such
as SVIM, can be directly employed. However, estimating the
support of relations by directly utilizing existing methods ne-
cessitates converting each 2-dimensional relation into a new
1-dimensional item (e.g., by using one-hot encoding) [43].
As a result, the quantity of values to be estimated becomes
extremely large, leading to insufficient estimation accuracy.

An intuitive solution is to guess out high-support rela-
tions based on the support of items. Following this intu-
ition, an existing approach called Set-Value itemSet Mining
(SVSM) [43], which finds high-support co-occurrence rela-
tions, assumes that items are roughly independent of each
other, so that the support of only those relations composed
of high-support items needs to be estimated. However, this
technique is not applicable to general relation mining tasks,
as it can only discover certain co-occurrence relations when
relatively low-support items are not strongly related to each
other. In contrast, in a general relation scenario, the degrees of
independence between any two items can vary significantly.

Furthermore, this intuitive approach presents challenges
even in scenarios of association rule mining under LDP. This





x1 x2 x3 x4 x5 x6
x1 40 20 20 0 0 0
x2 20 30 10 0 0 0
x3 20 10 30 0 0 0
x4 0 0 0 25 25 25
x5 0 0 0 25 25 25
x6 0 0 0 25 25 25


Figure 1: Number of users who possess xrow and xcol .

is because there is a conflict between mining high-support re-
lations and mining high-confidence relations. Referring back
to Equation (9), it is clear that, given the support of a relation,
as the support of the item increases, the confidence of that
relation decreases. The aggregator inevitably relies on high-
support items to select high-support relations, this process
tends to favor low-confidence relations, thus contradicting the
goal of high-confidence relation mining.

We present an example to clarify this conflict. An associ-
ation rule mining task is conducted under LDP with 6 items
(denoted as x1 to x6), and 75 users. A 6×6 matrix representing
the support of each item and relation is as illustrated in Fig. 1.
Diagonal elements (in gray) signify the support of items, while
other elements indicate the support of co-occurrence relations
between their row- and column-labels. The aggregator’s ob-
jective is to first identify the top-12 relations in support and
then determine the top-6 relations in confidence as the final
results. Correct results are marked in blue. However, if the
aggregator utilizes the intuitive approach to select candidate
relations, he will choose 12 relations (in orange) composed of
high-support items, ultimately failing to discover any correct
relations.

4 Method

In this section, we present LDP-RM and describe how it ad-
dresses the problem of relation mining under LDP.

4.1 Basic Idea

To address the “Curse of Dimensionality” in relation mining,
LDP-RM must reduce the quantity of data that needs to be
estimated. When dealing with binary relations defined among
d items, there is a potential existence of d × (d − 1) distinct
relations. In such instances, one must recover a quantity of
O(d2) support values, to accurately discover the relations
with the highest support. If the mining task also extends to
ternary relations or higher-order relations, the data recovery
requirement escalates to O(d3) or beyond. This results in less
accurate mining results. To facilitate understanding LDP-RM,
this section delves into a simplified scenario that concentrates
on binary relations. Later, in Sec. 6.1, we generalize LDP-RM
to enable the mining of cascading relations involving more
than two items.

By employing a widely adopted pre-estimation technique
[43], we can significantly diminish the number of items that
need to be considered. The aggregator initially estimates the
support of all d items initially and subsequently identifies
the top-k items in support (where k < d). By considering the
relations only between top-k items instead of all items, the
quantity of values to be estimated can be reduced from O(d2)
to O(k2). Many existing LDP techniques [15, 37, 44] incorpo-
rate this approach into their mechanism design to confine the
scope of the problem. Nevertheless, this pre-estimation proce-
dure alone is insufficient to tackle the curse of dimensionality
in relation mining under LDP.

Basic Idea. In what follows, we describe how LDP-RM fur-
ther reduces the quantity of values to be estimated from O(k2)
to below O(k). LDP-RM organizes all support values into a
matrix, and uses only a few singular values obtained through
singular value decomposition (SVD) and low-rank approxi-
mation to represent the entire matrix. Each user puts her infor-
mation into a user matrix of size k × k, where rows/columns
correspond to items. Off-diagonal/diagonal elements are bi-
nary (1 or 0), indicating possession of a relation/item by this
user. We use true matrix to term the aggregation of all user
matrices, and aggregator matrix to denote the aggregator’s
estimate on it. By using a variant of SVD on both the aggre-
gator matrix, and each user matrix, a local vector of length
k (i.e., the singular vector) can be obtained to indicate the
projection from the user matrix onto the aggregator matrix.
Consequently, the aggregator only needs to aggregate this
vector of size k from each user to recover the k ×k true matrix
which is the aggregation of all the user matrices. Additionally,
LDP-RM uses the best rank-r approximation of the aggrega-
tor matrix to decrease the size of users’ private vectors from
k to r, resulting in a further reduction in the number of values
to be estimated. This reduces the problem of estimating the
support of relations with a domain size of k2 to estimating the
mean value of a vector with length r (where r < k).

Technical Challenge. However, performing SVD in this con-
text is challenging since neither the aggregator nor the user
has prior knowledge of the true matrix. This creates a “catch-
22” situation since neither party has information about the
true matrix, which prevents distributed users from perform-
ing SVD and, consequently, prevents the aggregator from
estimating the matrix.

Solution. To address this challenge, LDP-RM utilizes an iter-
ative scheme, updating the estimation of the aggregator matrix
to ultimately converge to the true matrix. Initially, the aggre-
gator makes an educated guess regarding a global matrix, and
sends it to a group of users. Each user in this group com-
putes the compression of their private data onto the guessed
global matrix, samples a singular value, and then introduces
noise to this value before reporting it to the aggregator. The
noised singular values from users are aggregated to recon-
struct an estimated singular vector, utilizing LDP protocols
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Figure 2: Workflow of LDP-RM

for mean estimation. This process enables the reconstruction
of an improved estimated global matrix. With this matrix,
the aggregator selects a new group of users to initiate a new
iteration to finally obtain an accurate estimation of the true
global matrix.

4.2 Details
We now detail the workflow of LDP-RM. A flowchart illus-
trating LDP-RM can be found in Fig. 2. In LDP-RM, the
problem of RM under LDP is decomposed into the following
three distinct tasks:
Task 1. “High-Support Item Mining”, finds the top-k items in
support and estimate their support.
Task 2. “High-Support Relation Mining” finds the top-ks
relations in support which constitute a candidate set.
Task 3. “High-Confidence Relation Mining” finds the top-kc
relations in confidence from the candidate set.

To save privacy budget, LDP-RM randomly divides all
users into three groups corresponding to three tasks, with each
user queried only once in each task. We denote the number of
users in each group as n1, n2, and n3, respectively.

4.2.1 TASK 1. High-Support Item Mining. In the first
task, LDP-RM identifies the top-k items in support and es-
timates their support values. To achieve this, the aggregator
interacts with the first group of users and employs the SVIM
protocol. Each participating user perturbs their private items
and randomly reports an item. Subsequently, the aggregator
collects the reports and estimates the support of all items in
the item domain X using the aggregate algorithm defined in
Equation (7). The aggregator then selects the top-k items in
support and adds them to a set denoted as Y. This step aims
to reduce the item domain’s size from d to k and reduce the
size of the relation domain from d2 to k2.

4.2.2 TASK 2. High-Support Relation Mining. In the sec-
ond task, LDP-RM finds top-ks relations in support from Y2,
and estimates their support. To accomplish this task, the ag-
gregator interacts with the second group of users through the
following 4 stages: (1) Matrix Initialization. The aggrega-
tor initializes an aggregator matrix based on the top-k items

in support. Each user then initializes their local user matrix.
(2) Matrix Transformation. The aggregator performs singu-
lar value decomposition of the aggregator matrix. Each user
subsequently transforms her private user matrix into a private
singular vector. (3) Mean Estimation. Each user perturbs an
element sampled from her private singular vector. The aggre-
gator collects all perturbed reports and estimates the mean
vector. (4) Matrix updating. The aggregator updates his ag-
gregator matrix based on the mean vector. To accomplish the
second task, stages 2 to 4 are performed for several rounds.
The candidate set is constructed based on the final aggregator
matrix. We now detail the four stages.

STAGE 1. Matrix Initialization. In this stage, the aggregator
matrix and user matrices are initialized. The aggregator matrix
represents the support of all item in Y and that of all relations
in Y2, and a user matrix represents the user’s possession of
all items in Y and all relations in Y2. This stage is composed
of two steps.

Step 1. Aggregator Matrix Initialization. This step is per-
formed at the aggregator side. The aggregator constructs an
aggregator matrix denoted as Magg. The diagonal elements
represent the support of items, while the off-diagonal ele-
ments represent the support of relations. The initialization of
the aggregator matrix is based on the assumption that items
are independent of each other:

s̃(xa,xb) =

{
ŝ(xa), if xa = xb,
ŝ(xa)ŝ(xb), otherwise. (10)

where xa and xb are items in Y, ŝ(·) denotes the estimated sup-
port of an item and is obtained in Task 1, and s̃(·, ·) represents
the guessed support of a relation.

Step 2. User Matrix Initialization. In this step, the aggre-
gator first sends Y (the set of top-k items in support) to the
second group of users. Each user in this group constructs her
user matrix of order k × k (denoted as I) to indicate her pos-
session of items in Y and that of relations in Y2. Each element
in I is a binary value and is based on the user’s private itemset
x, private relation set w, and the global public set Y:

IIdx(xa),Idx(xb) =

 1, if (xa,xb) ∈ w or
(xa = xb and xa ∈ x)

0, otherwise.
(11)

where xa and xb are two items in Y, Idx(·) calculates a unique
index number in [1,k] for each item in Y.

STAGE 2. Matrix Transformation. In this stage, the ag-
gregator performs singular value decomposition (SVD) [17]
on the aggregator matrix Magg and calculates a low rank ap-
proximation Mr. Each user then calculates a singular vector
S, which is transformed from her user matrix I based on a
variant of SVD. This stage comprises three steps.

Step 1. Singular Value Decomposition. In this step, the



aggregator performs SVD on Magg as follows:

Magg = UkΣΣΣk(Vk)
⊤ =

k

∑
i=1

σiui(vi)
⊤. (12)

Where Uk and Vk are unitary matrices of order k×k, (Vk)
⊤ is

the conjugate transpose of Vk. ui is a column of Uk, (vi)
⊤ is a

row of (Vk)
⊤, and they are called left- and right-singular vec-

tors. ΣΣΣk is a k × k diagonal matrix whose element σi is called
the singular value of the decomposed matrix. All the singular
values are non-negative real numbers, and are arranged in
descending order from top-left to bottom-right.

Step 2. Low Rank Approximation. In this step, the aggrega-
tor specifies a positive integer r and calculates the best rank-r
approximation of Magg, denoted as Mr, defined as:

Mr ≡ argmin
M

∥Magg − M∥, (13)

s.t.: Rank(M) ≤ Min(r,Rank(Magg)) . (14)

Where ∥·∥ calculates the Frobenius norm of a matrix, Rank(·)
calculates the rank of a matrix, Min(·, ·) identifies the smaller
of two integers.

According to the Eckart-Young-Mirsky theorem [28] (de-
scribed in Appendix E), the optimal rank-r approximation of
Magg under the Frobenius norm is given by:

Mr = UrΣrV⊤
r =

r

∑
i=1

σiuiv⊤
i . (15)

Where Ur is a matrix of order k × r, identical to Uk[1 : r]. And
V⊤

r is a matrix of order r × k, identical to V⊤
k [1 : r].

Step 3. Singular Vector Generation. In this step, the aggrega-
tor first sends Ur and Vr to the users. Then, each user gener-
ates her singular vector, denoted as S of size r.

The calculation of the singular vector is as follows. Since
Ur is not square, its inverse does not exist. However, the left-
singular vectors u1, ...,ur are all orthogonal vectors, and Ur
has full column rank. Consequently, we utilize the Moore-
Penrose generalized inverse of Ur, given by:

(Ur)
+ = ((Ur)

⊤Ur)
−1(Ur)

⊤ = (Ur)
⊤. (16)

Similarly, (Vr)
⊤ has full row rank, and its Moore-Penrose

generalized inverse is given by:

(Vr)
⊤+ = Vr((Vr)

⊤Vr)
−1 = Vr. (17)

Based on the generalized inverse vectors, each user calculates
her singular vector by:

S = Diagonal(U⊤
r IVr) = [sl ]r =

[
u⊤

l · I · vl

]
r
, (18)

where Diagonal(·) calculates the diagonal of a matrix, S is a
vector of size r. We name each element of this vector as the
pseudo singular value, denoted as sl , where 1 ≤ l ≤ r.

STAGE 3. Mean Estimation. In this stage, the mean singular
vector is estimated using a sampling mechanism proposed in
[43] and a HM protocol proposed in [39]. Each user perturbs
one pseudo singular value sl sampled from her singular vector
S and reports it to the aggregator. The aggregator then collects
all perturbed reports and estimates the mean vector. This stage
consists of four steps.

Step 1. Query Value Sampling. In this step, the aggregator
samples a positive integer l from the range [1,r] for each user,
and queries this user the lth value (i.e., sl) in her singular vec-
tor. The calculation of sl is only related to ul and vl according
to Equation (18), so the aggregator only needs to send l, ul
and vl to the user, rather than the entire matrices Ur and Vr.

Step 2. Value Domain Calculation. This step is performed
at the user side. After receiving a query on a pseudo singular
value sl , the user calculates the domain of this value. This
allows her to perturb the value later to meet the constraint
of LDP. The domain of sl is only related to u⊤

l and vl and
is independent of any value in the user matrix I. If we repre-
sent u⊤

l as {ul1,ul2, · · · ,ulk}, and vl as {vl1,vl2, · · · ,vlk}⊤, a
sampled value sl can be expanded as:

sl = (ul)
⊤Ivl =

k

∑
a=1

k

∑
b=1

ula · Ia,b · vlb. (19)

Since each value in I is either 0 or 1, it is evident that the
minimum possible value of a given pseudo singular value can
be achieved when the following conditions are met:

Ia,b =

{
1, if ula · vlb ≤ 0;
0, otherwise. (20)

Thus we have:

min(sl) =
k

∑
a=1

k

∑
b=1

ula · vlb − |ula · vlb|
2

, (21)

where | · | calculates the absolute value of a real number. Sim-
ilarly, the maximum possible value is:

max(sl) =
k

∑
a=1

k

∑
b=1

ula · vlb + |ula · vlb|
2

. (22)

Let DS(sl) denote the domain of the sl , it is given by:

DS(sl) = [min(sl),max(sl)]. (23)

Step 3. Singular Value Perturbation. This step is performed
at the user side. Firstly, each user calculates the mapped
pseudo singular value −→sl , which is the mapping of sl from
DS(sl) to the range [-1,1]:

−→sl = 2 × sl − min(sl)

max(sl)− min(sl)
− 1. (24)

Afterward, to meet the constraint of LDP, the user applies the
perturbation algorithm of the HM protocol to perturb −→sl as:

(−→sl )
∗ = ΨHM(ε)(

−→sl ), (25)



and then reports the perturbed value (−→sl )
∗ to the aggregator.

Step 4. Mean Vector Estimation. This step is performed
at the aggregator side. The aggregator collects all reported
values sent from users in Step 3 and estimates a mean value for
each pseudo singular value using the aggregation algorithm
of the HM protocol:

(̂−→sl )∗ = r ∗ ΦHM(−→sl ) =
r
η

η

∑
j=1

(−→sl
j)∗, (26)

where η is the number of users participating in the mean
estimation of the same query value (i.e., received the same
l in Step 1). The size of the singular vector (also the rank
of approximation) is denoted by r, which is used to correct
the sampling error. (−→sl

j)∗ represents the perturbed pseudo
singular value uploaded by the jth user. Subsequently, the
aggregator remaps each estimated mean value from [-1,1]
back to the domain DS(sl):

ŝl = min(sl)+
(
(̂−→sl )∗ +1

)
(max(sl)− min(sl))/2. (27)

Finally, the aggregator obtains the mean singular vector:

Ŝ = [ŝ1, ŝ1, ..., ŝr] (28)

STAGE 4. Matrix Updating. This stage is performed at the
aggregator side. After estimating the mean singular vector Ŝ,
the aggregator estimates the aggregator matrix as follows:

M′
agg = Ur Diag(Ŝ)V⊤

r =
r

∑
l=1

ŝl · ul · v⊤
l . (29)

Where Diag(Ŝ) diagonalizes Ŝ into a diagonal matrix.
Note that M′

agg may not be an accurate estimation since
the initial matrix Magg (in Stage 1) is not precise. To address
this issue, LDP-RM performs Stage 2 to Stage 4 iteratively,
using M′

agg in the current iteration as the new initial matrix
Magg in the next iteration. If T iterations are employed, the
n2 users participating in the second task should be divided
into T subgroups, each with n2/T users. All n2 users in the
second group participate in Stage 1, while only one subgroup
of users takes part in Stage 2 to 4 in each iteration. In the
final (i.e., T th) iteration, the final estimated aggregator matrix
is obtained, and the aggregator selects the top-ks relations in
support and moves them to a candidate set, denoted as Y.

4.2.3 TASK 3. High-Confidence Relation Mining. In the
third task, LDP-RM identifies top-kc relations in confidence
from the candidate set Y. The aggregator interacts with the
third group of users and initiates an SVIM protocol. Each par-
ticipating user randomly selects a private relation, perturbs it,
and reports the perturbed value. The aggregator then estimates
the support of all relations in Y:

ΦSVIM(Y,ε,n3,ks) = {(w,ΦPSFO(ℓ,ε)(w))|w ∈ Y}, (30)

Based on the support of candidate relations in Y and the sup-
port of related items in Y (obtained in Task 1), the aggregator
computes the confidence of each candidate relation. Finally,
the aggregator selects the top-kc relations in confidence from
Y as the output of LDP-RM.

5 Analysis

In this section, we start with a proof that LDP-RM satisfies
ε-LDP, then analyze the estimation error and bias of it.

5.1 Privacy
LDP-RM satisfies ε-LDP defined on users’ items and rela-
tions. This is because, each task in LDP-RM involves the
use of protocols that satisfy ε-LDP, namely, either a SVIM
protocol or a HM protocol. Thus, LDP-RM satisfies ε-LDP.
A rigorous proof is provided in Appendix F.

5.2 Utility
The utility of the results discovered by LDP-RM is primarily
influenced by two factors: estimation error and bias.

Estimation Error. Estimation error is the difference between
the true value and the estimated value. LDP-RM employs the
HM protocol (which is built on PM and Duchi) to estimate
the mean singular vector, and employs the SVIM protocol
(which is built on PSFO, GRR and OLH) to estimate the
support of items/relations. The L∞ error of HM is bounded
by O1 = O(

√
r log(r/β)

/
ε
√

n) with probability at least 1 −
β, according to [39]. The L∞ error of SVIM is bounded by
O2 = O(ℓ

√
log(ℓ/β)

/
ε
√

n) with probability at least 1 − β.
The proof can be found in Appendix H.

Estimation Bias. Estimation bias is the deviation from the
true value during estimation. In LDP-RM, the aggregator
is tasked with estimating the best rank-r approximation as
opposed to the complete full-rank matrix. This inherently
introduces a degree of bias in the process of recovering the
true matrix. To mitigate this bias, one may contemplate the
use of a larger value for the parameter r. However, it’s im-
portant to note that opting for a larger value of r also implies
an increased number of pseudo singular values that need to
be estimated. Consequently, there exists a trade-off between
diminishing the bias and minimizing the error. Given a bias
bound denoted by θ provided by the aggregator, LDP-RM cal-
culates the smallest possible value of r that satisfies this bound
according to the Eckart-Young-Mirsky Theorem (described
in Appendix E), as follows:

minr, subject to:
r

∑
i=1

σi

/ k

∑
i=1

σi ≥ θ. (31)

Compared to the estimation error, the bias has a minimal
impact on the final results. LDP-RM strikes a balance by



selecting a relatively small r. The value of r can also be
dynamically adjusted in different iterations, e.g., a smaller
value in early iterations and a larger value in later iterations.

Biased Estimation Vs. Unbiased Estimation. We now ex-
plain why we employ a biased estimation method rather
than an unbiased one. Consider an algorithm called HM-RM,
which differs from LDP-RM in that each user in HM-RM
generates a matrix P = U⊤

k IVk in Stage 2, rather than just a
vector S. If HM-RM is directly used, each user must perturb
and report k2 elements in P, and the aggregator estimates a
mean matrix P̂ by using the HM protocol. This results in L∞

error bounded by O3 = O(k
√

log(k2/β)
/

ε
√

n) with proba-
bility at least 1 − β. We prove that HM-RM is unbiased in
Appendix G. Our experiments in Sec. 7.2.1 and 7.2.2 demon-
strate that the biased LDP-RM significantly outperforms the
unbiased HM-RM.

5.3 Computational Overhead

The computational overhead of LDP-RM comprises three
distinct components. This is because LDP-RM divides users
into three groups.Moreover, within the second group (Task 2
participants), users are further subdivided into T subgroups
across T iterations. Importantly, each user undergoes only
one query by the aggregator, rendering the user-side compu-
tational overhead independent of task or iteration round.

Specifically, for Task 1 and Task 3, LDP-RM employs
two SVIM protocols with n1 and n3 users participating in
these tasks, respectively. The user-side computational over-
head for these two tasks amounts to O(logd) and O(logks),
while the aggregator-side computational overhead is charac-
terized by O(n1 logd) and O(n3 logks), respectively. For Task
2, n2 users are involved, and each user computes a pseudo
singular value sl , resulting in a per-user computational over-
head of O(k2). Subsequently, users employ the HM protocol
to perturb and report sl , incurring a computational overhead
of O(logr). Consequently, the total computational overhead
for each user in the second group is O(k2 + logr). As the
aggregator needs to conduct SVD and update the matrix in
each iteration, incurring a computational overhead of 2k2, the
aggregator-side computational overhead for Task 2 reaches
O(n2(k2 + logr)+ 2Tk2). Thus, the cumulative aggregator-
side computational overhead is given by:

O(n1 logd+n2(k2 + logr)+2Tk2 +n3 logks). (32)

We summarize the above analysis in Tab. 2. A recom-
mended setting on all the parameters can be found in Tab. 4 of
Appendix I. Typically, d and ks are often large, whereas r, T
and k are often small. With this setting, our proposed LDP-RM
is slightly slower than SVSM [43] and PCKV [18], and su-
perior to CALM [49], in computational overhead while LDP-
RM is the only approach that can mine all types of relations.

6 Generalizing LDP-RM

In this section, we first propose an improvement to LDP-RM
that enables the discovery of relations among more than two
items. We then introduce an advanced frequency oracle on
large domains that utilizes LDP-RM.

6.1 Mining Relations Comprising More Items
We now improve LDP-RM to identify cascading relations
comprising more than two items, e.g., ((xa,xb),xc). Modifica-
tions are made in Stage 1 and Stage 4 of Task 2. In Stage 1,
after the aggregator identifies the top-k frequent items, he
guesses the support of each possible relations by multiplying
the support of any number of items. If the guessed support of
a relation surpasses that of an item in Y, the relation is treated
as a new item and moved into Y, while the item with the low-
est estimated support is moved out from Y. In Stage 4, before
the aggregator updates the aggregator matrix Magg, he verifies
whether a relation and an item exist such that the estimated
support of the relation is larger than that of the item. If so,
the set of high-support items Y is reconstructed by selecting
the top-k frequent items/relations. After T iterations, the final
top-kc relations can consist of two items or more items.

6.2 Frequency Oracle on Large Domains
Consider a frequency estimation scenario under LDP where
there is a large number of values to be estimated. In this
context, LDP-RM can serve as a fundamental FO, which
we refer to as SVD-FO. SVD-FO encodes a unidimensional
item domain into a bidimensional one and utilizes LDP-RM
for frequency estimation. Given an original item domain
X = {x1,x2, · · · ,xd}, SVD-FO examines a virtualized domain
V, where |V| = ⌈d1/2⌉. An one-to-one mapping e(·) from X
to V2 is then employed to encode any item xi ∈ X into a tu-
ple e(xi) = (a,b) ∈ V2. Subsequently, LDP-RM is applied to
estimate the matrix (Ma,b) ∈ R|V|×|V|, in which each element
Ma,b represents the frequency of an item xi = e−1(a,b).

SVD-FO surpasses the state-of-the-art FO, specifi-
cally PSFO, in estimating item frequencies within high-
dimensional contexts. This performance improvement stems
from a reduction in the number of values to be estimated, de-
creasing from d to r×T < ⌈d1/2⌉×T < d, where r represents
the approximation rank and T denotes number of iterations.
However, in cases with a small domain size, SVD-FO may
not necessarily outperform PSFO.

7 Evaluation

In this section, we first introduce the experiment setup includ-
ing computing environment, compared methods, datasets and
evaluation metrics, and then present results of experiments on
LDP-RM in various data mining tasks.



Table 2: Computational Overhead of LDP-RM and Existing Techniques.

Methods User Side Aggregator SideGroup ♯1 (n1) Group ♯2 (n2) Group ♯3 (n3)
LDP-RM O(logd) O(k2 + logr) O(logks) O(n1 logd+n2(k2 + logr)+2Tk2 +n3 logks)

SVSM [43] O(logd) O(logks) O(n1 logd+(n2 +n3) logks)

CALM [50] O(logd) O(2l) O(n1 logd+(n2 +n3)2l)

PCKV [18] O(logd) O(logks) O(n1 logd+(n2 +n3) logks)

7.1 Experiment Setup

Environment. All experiments are conducted on a desktop
with an Intel i7-1165G7 2.80GHz CPU and 16GB memory.
Each experiment is performed 20 times, with mean and stan-
dard deviation reported.

Compared Methods. LDP-RM is the first method which
addresses the problem of relation mining under LDP. We con-
sider four compared methods, including (1) SVIM [43] which
mines high-support items, (2) SVSM [43] which mines high-
support itemsets, (3) CALM [50] which estimates marginal
probabilities, (4) PCKV [18] which estimates support of a key
and the mean value of that key, and (5) HM-RM, an unbiased
relation mining method discussed in Sec. 5.2. All algorithms
are implemented using Python 3.9.

Datasets. We conduct experiments on four public datasets.
(1) The IFTTT Dataset: We construct a binary relational

dataset containing 354 non-repetitive items extracted from
top-200 applets in IFTTT in 2023 [19]. One applet can be
regarded as a relation which consists of two items. We con-
sider 300,000 users in this dataset, and the items and relations
possessed by each user is generated based on the popularity
of each applet according to official statistics. This dataset is
used to simulate a general scenario of relation mining.

(2) The Movie Dataset [29]: A movie viewing dataset con-
taining 5,000 items and 400,000 users. Each user possesses
temporal relations in the form of (xa,xb), signifying that after
viewing movie xa, the user subsequently watches movie xb.
This dataset is used to simulate a scenario of relation mining.

(3) The Modified IFTTT Dataset: A dataset modified from
the IFTTT dataset which contains 354 items and 800,000
users. Within this dataset, relations are among items and are
in the form of ((xa,xb),xc). All relations are generated based
on the relationship between IFTTT applets. This dataset is
utilized to simulate the discovery of relations among items.

(4) The Retail Dataset [7]: A retail market basket dataset
containing 2,603 items and 300,000 users. Each user possess
several items. This dataset is used to simulate a scenario of
association rule mining.

(5) The Kosarak Dataset [16]: A website click dataset con-
taining 41,270 items and 990,002 users. This dataset is used
to simulate a scenario of item mining on a large domain.

Evaluation Metrics. To measure estimation accuracy, we
employ 3 different metrics. We denote the set of true relations

with top-ks support and top-kc confidence as Wt , and the set
of estimated ones as We. Consequently, Wt ∩ We represents
the true positive instances (TP).

(1) F-Measure (F1) is a widely used metric to measure
accuracy, which is defined as the harmonic mean of precision
(denoted as P) and recall (denoted as R):

F1 ≜
2

1/P+1/R
=

2PR
P+R

, (33)

where P ≜
|Wt ∩We|

|We|
,R ≜

|Wt ∩We|
|Wt |

. (34)

(2) Normalized Cumulative Ranks (NCR) is a metric used
to evaluate the level of accuracy achieved, which takes into
consideration that the benefit of mining relations with higher
confidence ranks should be greater than those with lower
ranks. It is defined as:

NCR = ∑
w∈We∩Wt

q(w)

/
∑

w∈Wt

q(w), (35)

where q(·) is a quality function defined as follows. There are
e
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Figure 3: Performance of LDP-RM and existing techniques in mining relations comprising 2 items from IFTTT dataset. Results
of Experiment E1 are in (a), (b) and (c), that of E2 are in (d), (e) and (f). We set k = 64,kc = 32,θ = 0.5,T = 5 for both E1 and
E2, with ks = 1600 in E1, and ε = 4 in E2.
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Figure 4: Performance of LDP-RM and existing techniques in mining relations comprising 2 items from Movie dataset. Results
of Experiment E3 are in (a), (b) and (c), that of E4 are in (d), (e) and (f). We set k = 64,kc = 32,θ = 0.5,T = 5 for both E3 and
E4, with ks = 1600 in E3, and ε = 4 in E4.

7.2.1 Experiments in mining relations between items. We
conduct four experiments denoted as E1 to E4 on two datasets
to validate the performance of LDP-RM in mining relations.
The IFTTT dataset is used in E1 and E2. The Movie dataset
is used in E3 and E4. Since relation mining require separate
estimation of support for items and that for relations, we make
the following settings to achieve a fair comparison among dif-
ferent methods. For LDP-RM and HM-RM, it accomplishes
its Task 1, Task 2, and Task 3 by communicating with n1, n2,
and n3 users, respectively. For SVIM, SVSM, CALM, and
PCKV, they communicate with n1 users to estimate support of
items, and with n2 +n3 users to estimate support of relations.
For all methods, the ratio of n1, n2, n3 is set to 30%, 35%,
35% respectively. The parameter setting in the following ex-
periments are discussed in Appendix I.
(E1) The results on varying ε are illustrated in Figs. 3a,
3b, 3c. Among all methods, LDP-RM always performs the
best. SVSM is better than the PCKV when ε < 2 because
PCKV requires allocating an additional privacy budget for
mean estimation. SVIM and CALM struggle to identify target
relations due to the excessive value estimation requirements,
resulting in insufficient privacy budget and user participation.
The unbiased HM-RM is inferior to the biased LDP-RM,
which validates our analysis in Sec. 5.2.
(E2) The results on varying ks are illustrated in Figs. 3d,
3e, 3f. As ks increases, F1 and NCR also increases, while VAR
decreases. This is because a larger ks means a smaller support
threshold which decreases the difficulty in discovering high-
support and high-confidence relations. Among all methods,
LDP-RM always performs the best.

(E3) The results on varying ε are illustrated in Figs. 4a, 4b, 4c.
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Figure 5: Performance of LDP-RM and existing techniques in mining cascading relations (3 items) from modified IFTTT dataset.
Results of Experiment E5 are in (a), (b) and (c), that of E6 are in (d), (e) and (f). We set k = 64,kc = 32,θ = 0.5,T = 5 for both
E5 and E6, with ks = 1600 in E5, and ε = 4 in E6.
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Figure 6: Performance of LDP-RM and existing techniques in mining frequent items from Kosarak dataset. Results of Experiment
E9 are in (a), (b) and (c), that of E10 are in (d), (e) and (f). We set θ = 0.5,T = 5 for both E9 and E10, with k = 32 in E9, and
ε = 4 in E10.

Table 3: Performance of LDP-RM and existing techniques in
mining association rules from Retail and Retail* dataset. We
set ε = 4,k = 64,ks = 1600,kc = 32,θ = 0.5,T = 5.

Method Retail Retail∗
F1 NCR VAR F1 NCR VAR

LDP-RM 0.558 0.640 0.246 0.546 0.654 0.180
SVSM 0.554 0.435 0.317 0.463 0.396 0.308
CALM 0.183 0.195 0.568 0.108 0.159 0.461
SVIM 0 0 0.603 0 0 0.491
PCKV 0 0 0.603 0 0 0.491

HM-RM 0.325 0.329 0.414 0.379 0.437 0.285

of F1, while exhibiting superiority in NCR and VAR. The rea-
son for SVSM’s commendable performance lies in the fact
that the assumption of high-support relations being composed
of high-support items remains valid within the original Retail
dataset. CALM, SVIM, PCKV and HM-RM perform poorly.
(E8) This experiment investigates the performance of differ-
ent methods in association rule mining when the previous
assumption in E7 is not held. To relax this assumption, we
slightly modify the Retail dataset by excluding data related
to the top-8 items in support, since well-known relations
comprising high-support items may not be the targets of the
mining task. We denote the modified dataset as Retail∗. All
parameters are set same as in E7, and the results is presented
in Tab. 3 (right part). There is a significant decline in the
accuracy achieved by SVSM, while the accuracy achieved by
LDP-RM remains at an adequate level.

7.2.4 Experiments in item mining. The Kosarak dataset
is used to evaluate the performance of SVD-FO (described
in Sec. 6.2). To simulate the scenario of item mining in a
large domain with a small number of users, we randomly
select 50,000 users from the dataset. The number of users is
comparable to the domain size d = 41,270. SVIM and PCKV,
both employing PSFO, are selected for comparison.
(E9) The results on varying ε are illustrated in Figs. 6a, 6b, 6c.
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Figure 7: Ablation Experiments: Performance of private and non-private versions of LDP-RM in mining relations from IFTTT
dataset. Results of Experiment E11 are in (a), (b) and (c), that of E12 are in (d), (e) and (f). We set ε = 4, k = 64, ks = 1600,
kc = 32 for both E11 and E12 with θ = 0.5 in E11, and T = 5 in E12.
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Figure 8: Ablation Experiments: Performance of LDP-RM and its variant LDP-RM* that without iterative process in mining
relations from IFTTT dataset. Results of Experiment E13 are in (a), (b) and (c), that of E14 are in (d), (e) and (f). We set
k = 64,kc = 32,θ = 0.5,T = 5 for both E13 and E14, with ks = 1600 in E13, and ε = 4 in E14.

(E12) The results on varying bias bound θ are illustrated
in Figs. 7d, 7e, 7f. The rank of approximation r increases
as θ increases, according to Equation (31). For non-private
LDP-RM, F1 and NCR is nearly perfect when θ = 1 (i.e., r =
k = 64). For private LDP-RM, the accuracy starts to decrease
when θ > 0.5. This is because the larger the θ is, the more
elements are needed to be estimated.

7.2.6 Comparison of iterative and non-iterative algo-
rithms. The IFTTT dataset is used to illustrate the effective-
ness of the iterative process. We denote the variant LDP-RM
without iteration as LDP-RM*.
(E13) The results on varying ε are illustrated in
Figs. 8a, 8b, 8c. LDP-RM significantly outperforms LDP-
RM* owing to the fact that LDP-RM* relies on an imprecise
global matrix that is entirely based on guesswork to produce
results. In contrast, LDP-RM continually aggregates user in-
formation to update the matrix through T rounds of iterations.
(E14) The results on varying ks are illustrated in
Figs. 8d, 8e, 8f. It underscores the importance of the iter-
ative process.

8 Related Work

We are the first to introduce and investigate the problem of
relation mining under LDP. Consequently, there has been no
prior research focused on this problem. Nonetheless, four
lines of research are closely related to our work.

Frequent Item-set Mining under LDP. This line of research
focuses on discovering high-support item-sets, with the state-
of-the-art technique SVSM [43]. The limitations of using
SVSM for relation mining are analyzed in Sec. 3.2 and veri-
fied in Sec. 7.2. In addition to SVSM, several other approaches
have been proposed. Zhang et al. [49] mine frequent item-sets
from perturbed items. Wang et al. [40] estimate the size dis-
tribution of frequent item-sets. Afrose et al. [2] mine frequent
item-sets by splitting the privacy budget rather than group-
ing users. Ma et al. [24] utilize FP-tree in combination with
Hadamard response to improve the accuracy of the results.

Marginal Release under LDP. This line of research concen-
trates on estimating marginal probabilities. The state-of-the-
art technique, CALM [50], optimizes the trade-off between
the number and length of marginals, taking into account the
number of users, attributes, and privacy budget. Other tech-
niques skillfully balance privacy and estimation accuracy,
employing various techniques, such as Fourier Transforma-
tion [9] and Expectation Maximization [34].

Key-Value Collecting under LDP. This line of research
focuses on estimating the support and mean value of a key. Ye
et al. put forth three methods, namely PrivKV, PrivKVM, and
PrivKVM+ [47]. Gu et al. propose a state-of-the-art technique
called PCKV [18], which combines a sampling mechanism
with GRR [42] and OUE [42], to improve estimation accuracy.

Relation Mining under DP. This line of research is under
the constraint of DP in the centralized setting, not LDP. Tra-
ditional DP techniques perturb individual data by using the



Laplace mechanism [11], exponential mechanism [26], or
some other mechanisms [14, 23]. These mechanisms destroy
the relationship among the data values, rendering the per-
turbed data unsuitable for complex data mining tasks. Sev-
eral researches have been proposed for relation mining. Li et
al. [22] uses a trusted publisher to perturb the support of nu-
merous high-support item-sets, and extracts the top-k subsets
in support [5] from the perturbed data. To speed up compu-
tation in perturbation and extraction, some techniques such
as transaction truncating [8, 36, 48], Markov Chain Monte
Carlo [35], and binary estimation [46] have been proposed.
Other techniques, such as frequent pattern tree [21] and se-
quence exponential mechanism [38], aim to save privacy bud-
get. In addition to the techniques that focus on high-support
relation mining under DP, Maruseac et al. [25] introduce a
method that enables high-confidence relation mining.

9 Conclusion

It is a fundamental problem in performing complex data min-
ing tasks on private data owned by distributed users. To ad-
dress this problem, we propose LDP-RM, the first general
relation mining method under LDP. By employing singular
value decomposition and low rank approximation, it reduces
the number of values to estimate, thereby improving the final
estimation accuracy. Experimental evaluation demonstrates
the effectiveness of LDP-RM in mining relations.
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Optimized Local Hashing (OLH). An OLH protocol [42]
is a FO protocol that utilizes GRR and is composed of a pair
of algorithms: ⟨ΨOLH,ΦOLH⟩. The reporting protocol ΨOLH
maps an input value from a large domain X into a smaller
domain G by first randomly selecting a hash function H from
a predefined family of hash functions, then computing the
hashed value H(x). Next, a GRR protocol is used to perturb
the hashed value. It has been proven in [42] that minimal
variance is achieved when |G| = ⌈eε +1⌉. The definitions of
ΨOLH and ΦOLH are as follows:

ΨOLH(ε)(·)≜ ⟨H,ΨGRR(ε)(H(·))⟩,

ΦOLH(ε)(·)≜
CH(·)− n/|G|

eε/(eε + |G| − 1)− 1/|G|
.

Where ΨGRR(ε) is a GRR protocol, CH(·) counts the number
of possible input values that share the same hash result with
the user’s input value x ∈ X, n is the total number of users.

C The PSFO Protocol

A Padding-and-Sampling-based Frequency Oracle (PSFO)
protocol [43] is specified by the following parameters: an
item set x ∈ X, a padding length ℓ, and a privacy budget ε.
The PSFO adaptively selects a GRR protocol ⟨ΨGRR,ΦGRR⟩



F Proof that LDP-RM Satisfies ε-LDP

LDP-RM is proven to satisfy ε-LDP, as follows.
For the first task, the SVIM protocol is utilized, which has

already been proven to satisfy ε-LDP [43]. For the second
task, the rank of the approximation matrix is determined by
the bounded bias threshold θ, and each user reports a pseudo
singular value only once. The reported value is perturbed us-
ing the HM mechanism, which has also been proven to satisfy
ε-LDP [39]. For the third task, the SVIM protocol, which
satisfies ε-LDP, is used again. Benefiting from the property
of post-processing of LDP [12], the calculation performed
by the aggregator does not affect whether ε-LDP is satisfied.
Overall, the sub-procedure in LDP-RM for each task satisfies
ε-LDP, and since each user only participates in one task, the
entire procedure of LDP-RM also satisfies ε-LDP.

G Proof that HM-RM is Unbiased

To prove that HM-RM is an unbiased method, it is only neces-
sary to show that the aggregator matrix M′

agg can be estimated
in an unbiased manner in Task 2, since the first and third task
are accomplished using the unbiased SVIM protocol.

We assume that the user item-sets in different groups are
identically distributed to that of all users. In HM-RM, the
jth user generates a matrix P j = U⊤

k I jVk, and she needs to
sample one element in the matrix to perturb and report. Since
the HM protocol is unbiased, the aggregated mean estimation
of P, represented as P̂, satisfies:

E[P̂] = ∑
j

P j/n = ∑
j

U⊤
k I jVk/n

Let the true matrix be denoted as Mgt . Because Uk and Vk are
both orthogonal matrices, it satisfies Uk(Uk)

⊤ = E. Similar
with Equation (29), we have:

E[M′
agg] = E[UkP̂V⊤

k ] = UkE[P̂](Vk)
⊤

= Uk(Uk)
⊤

n

∑
j=1

I jVk(Vk)
⊤/n =

n

∑
j=1

I j/n = Mgt

where P̂ is the aggregated result of P. In HM-RM, users can
calculate and report the complete singular value matrix to the
aggregator, allowing for support of relations to be obtained in
only one iteration.

H L∞ Error of SVIM

The L∞ error of SVIM depends on that of PSFO, since PSFO
is invoked many times in SVIM. Let Px be the true support
of x and P∗

x be the estimated support of x. We have P∗
x =

ΦPSFO(ℓ,ε)(x). Since P∗
x is an unbiased estimation of Px and

it invokes GRR or OLH adaptively according to whether the

Table 4: Parameter Setting Guideline.

Param. Recommended setting
ε 4 (default), 2(high privacy protection restrictions)
k 64 (default), 128(large domain)
ks 1600 (default), recommended range (1000,3000)
kc 32 (default), recommended range (32,64)
T 5 (default)
θ 0.5 (default), flexible setting based on the dataset

condition of d < ℓ(4ℓ− 1)eε +1 is met, the variance of P∗
x is:

Var(P∗
x ) =

{
n eε∗ℓ+d−1

(eε−1)2 if d < ℓ(4ℓ− 1)eε +1;

n 4ℓ2eε

(eε−1)2 otherwise.

For any given positive integer t, the probability that the
L∞-norm of the difference between P∗

x and Px (denoted as
||P∗

x − Px||∞) is greater than t, is calculated as:

||P∗
x − Px||∞ = Pr[||1

n

n

∑
j=1

(1(x)∗ −1(x))||∞ ≥ t]

(Let y∗ ≜ 21(x)∗ − 1 ∈ [−1,1],y ≜ 21(x)− 1 ∈ [−1,1])

=Pr[||1
n

n

∑
j=1

(y∗ − y)||∞ ≥ 2t] ≤ 2exp(
−(2nt)2

1
n ∑

n
j=1Var(y∗)+ 2nt

3

)

(according to Bernstein’s inequality [33])

=2exp(− 4(nt)2

4n 4ℓ2eε

(eε−1)2 +
2nt
3

) = O(exp(−nt2(ε/l)2)).

Taking t = O
(

l
√

log(l/β)
/
(ε

√
n)
)

, we have that the L∞ er-

ror is O
(

l
√

log(l/β)
/
(ε

√
n)
)

with probability at least 1− β.

I Parameter setting

The primary parameters of LDP-RM include ε, k, ks, kc, θ, T .
ε determines the balance between privacy and utility, where
a smaller ε implies higher privacy. k, ks, and kc continuously
prune the relation domain, reducing it from d2 to k2 to ks to
kc, aiding in identifying target relations. These parameters
indirectly affect the trade-off between privacy and utility. If
set too small, they risk overlooking relations with infrequent
items. Conversely, if set too large, it requires estimating nu-
merous relation frequency values, reducing accuracy. θ limits
r-rank approximation, balancing estimation error and bias. T
influences the number of iterations and user groups in Task
2, indirectly affecting the trade-off between error and bias. In
our experiments, we set these parameters reasonably: k = 64,
ks = 1600, kc = 32, θ = 0.5, and T = 5. Based on our param-
eter tuning experience, we provide a recommended parameter
configuration guideline, summarized in Tab. 4, as a reference
for future LDP-RM applications.


