
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 9, SEPTEMBER 2014 1529

Community-Aware Task Allocation for Social
Networked Multiagent Systems

Wanyuan Wang, Student Member, IEEE and Yichuan Jiang, Senior Member, IEEE

Abstract—In this paper, we propose a novel community-aware
task allocation model for social networked multiagent systems
(SN-MASs), where the agent’ cooperation domain is constrained
in community and each agent can negotiate only with its
intracommunity member agents. Under such community-aware
scenarios, we prove that it remains NP-hard to maximize system
overall profit. To solve this problem effectively, we present a
heuristic algorithm that is composed of three phases: 1) task
selection: select the desirable task to be allocated preferentially;
2) allocation to community: allocate the selected task to
communities based on a significant task-first heuristics; and
3) allocation to agent: negotiate resources for the selected task
based on a nonoverlap agent-first and breadth-first resource
negotiation mechanism. Through the theoretical analyses
and experiments, the advantages of our presented heuristic
algorithm and community-aware task allocation model are
validated. 1) Our presented heuristic algorithm performs
very closely to the benchmark exponential brute-force optimal
algorithm and the network flow-based greedy algorithm in terms
of system overall profit in small-scale applications. Moreover, in
the large-scale applications, the presented heuristic algorithm
achieves approximately the same overall system profit, but
significantly reduces the computational load compared with
the greedy algorithm. 2) Our presented community-aware
task allocation model reduces the system communication cost
compared with the previous global-aware task allocation model
and improves the system overall profit greatly compared with
the previous local neighbor-aware task allocation model.

Index Terms—Community-aware, heuristic algorithm, multia-
gent systems, social networks, task allocation.

I. Introduction

AS SOCIAL networks have much relevance to many
social systems and the increasing development of agent

technology, social networked multiagent systems (SN-MASs)
have been used as a platform to model and develop vari-
ous real-world applications, such as the transportation sys-
tems [1], [2], the social economic systems [3]–[6], and the
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Fig. 1. Illustration of a social network with four over lapping communities;
the nodes encircled by a common ellipse belong to the same community
and the overlapped nodes are colored in black. For example, in the air
transportation systems, each node represents a city; each edge represents a
nonstop flight between two cities, and community represents locations that
have closer geographical distance [1].

to large-scale applications due to the high time complexity.
To solve this problem effectively, we introduce a heuristic
algorithm that consists of three phases: 1) task selection: a
significance-based task ranking approach is designed to ensure
that the desirable tasks are allocated preferentially; 2) alloca-
tion to community: a significant task first heuristics is devised
to ensure that communities contribute their redundant re-
sources to the significant tasks first; and 3) allocation to agent:
a nonoverlap agent-first and breadth-first resource negotiation
mechanism is developed to ensure that the initiator agent of
the selected task negotiates with the nonoverlapping agents
and the agents with less communication distance first. The
theoretical analyses and experiments prove that this heuristic
algorithm can effectively deal with the existing problem.

To conclude, in this paper, we make the following contri-
butions.

1) We propose a novel community-aware task allocation
model for SN-MASs, where agent negotiates only with
its intracommunity partners. This model is consistent
with many real-world scenarios, for example, in an
intergroup conflict case, all of the intragroup members
are mutually beneficial if they cooperate in competing
against the out group [23].

2) Under this community-aware model, we introduce a
heuristic algorithm to allocate tasks to agents with
the aims of reducing time complexity, yielding higher
overall profit and producing less communication cost.

3) Through the theoretical analyses and experiments, the
advantages of our presented heuristic algorithm and
community-aware task allocation model are validated:
1) our presented heuristic algorithm performs very
closely to the benchmark exponential brute-force op-
timal algorithm and the network flow-based greedy
algorithm in terms of system overall profit in small-scale
applications. Moreover, in the large-scale applications,
the presented heuristic algorithm achieves approximately
the same overall system profit, but significantly reduces

the computational load compared with the greedy algo-
rithm; 2) our presented community-aware task allocation
model reduces the system communication cost compared
with the previous global-aware task allocation model and
improves the system overall profit greatly compared with
the previous local neighbor-aware task allocation model.

The remainder of this paper is organized as follows. In
Section II, we compare our work with the related work on this
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A task allocation is defined as the mapping function �: A×T
×R→ N, which indicates the amount of each resource type
that agents contribute to tasks. An allocation � is feasible
if and only if it satisfies the community consensus, that is,
each task must be executed by the agents that belong to the
community including the task’s initiator.
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TABLE I

Definitions of Notations

Fig. 3. Example instance for showing the construction from the 3-SAT to
the CA-TAP.

vlriand vlsj in S do not share an overlapping auxiliary vertex
va

r,s
i because any literal and its complement cannot be both

assigned to 1. Therefore, those k tasks residing in the k
communities can be accomplished successfully, which results
in a total of k unit payments.

Conversely, if there is an allocation for the CA-TAP with
a total of k unit payments, where the allocated tasks’ located
communities are denoted as S = {vl1i, vl2j , . . . , vlkq}, then any
two of the literals in S must belong to different clauses because
the overlapping clause vertex vcr cannot be allocated to more
than one community task (i.e., trm,trnand trp). Additionally, if
vlri ∈S, then its complement vertex ¬vlsi /∈S because vlri and
¬vlsi share the overlapping auxiliary vertex va

r,s
i . Thus, we

can assign 1 to the corresponding k literals {l1i, l2j , . . . ,lkq}
in

∑
. In other words, lri = 1 if vlri ∈S. If there are other

literals in
∑

that are not assigned yet, then we arbitrarily
assign each of them the value 1 and its complement the value 0.

Obviously, this assignment satisfies the formula
∑

. Now, we
can determine that 3-SAT is reducible to the subproblem of
allocating overlap agents to communities, which in turn proves
that the community-aware task allocation problem is NP-hard.

IV. Task Allocation Algorithm

Recall the community-aware task allocation problem de-
fined in Definition 4: given a set of networked agents and
a set of tasks initiated by these agents, we consider an
approach to allocate each task to a group of agents that must
satisfy the constraint of community structure. Under the limit
of cooperation among intracommunity partners, to maximize
social welfare and to avoid producing heavy communication
cost, agents should decide which tasks to execute and how
many resources to contribute for these tasks. To solve such an
NP-hard problem effectively, we present a heuristic algorithm
that can be implemented through the following three phases:

1) Task selection: we rank tasks with respect to a sig-
nificance measure and allocate them in order of their
ranking (Section IV-A);

2) Allocation to community: for each community that the
selected task belongs to, we calculate its resource con-
tribution to this selected task (Section IV-B);

3) Allocation to agent: for each community that makes con-
tribution to the selected task, the initiator of the selected
task negotiates with the agents in that community to
procure the contributed resources (Section IV-C).

A. Task Selection

In economics, the metric of profitability is always used as
an important index for a firm stake holder’s decision making,
which is given by the ratio between a firm’s annual income
and its annual capital investment [32]. Such an idea can be
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introduced in the measure of a task’s profitability. Next, by
referring to the related definition in [3], we present the concept
of a task’s profitability.

Definition 5: Task Profitability. Let W(t) denote the sum of
the resources that task t requires. The profitability, pro(t), of
task t is defined as the payment p(t) of t divided by W(t), i.e.,
pro(t) = p(t)/W(t).

A task that has a higher profitability indicates that either the
task possesses a larger payment or the task requires fewer re
sources, or both; the system will achieve a higher efficiency
if this kind of task is completed preferentially. However, the
above heuristics considers only a task’s payment and resource
properties, ignores the task’s fitness to its residing community.
For example, now there are three tasks t1 = <{4,6},8,ai>,
t2 = <{8,6},10,aj>, t3 = <{15,15},20,ak> submitted to agents
ai, aj and ak, respectively, where pro(t1)>pro(t2)>pro(t3).
Only by the profitability heuristics, tasks t1 and t2will be
executed preferentially. In case that after executing t1 and t2,
task t3 cannot be satisfied anymore, the system will obtain
18 unit payments. Alternatively, if the system completes task
t3 successfully before executing tasks t1 and t2, it will obtain
at least 20 unit payments. Therefore, it is also necessary to be
aware of a task with a large payment that lies in somewhere
where there are sufficient resources to access.

Definition 6: Task Fitness. The accessible resources of a
task t, ar(t), is defined as the sum of available resources of
these agents that belong to the community including the task’s
initiator. The fitness of t, fitness(t), then, is defined as

fitness(t) = 1 −
∑k

i=1 max(ar(t, ri) − req(t, ri), 0)∑k
i=1 ar(t, ri).

(2)

Finally, we combine the two factors of task profitability and
task fitness and make a tradeoff between them to introduce the
concept of task significance.

Definition 7: Task Significance. Let pro(t) and fitness(t)
denote the profitability and fitness of task t, respectively. The
significance of t, sig(t), is defined as

sig(t) = α · pro(t) + (1 − α) · fitness(t) (3)

where α is the parameter within the closed interval [0,1]. This
parameter α is used to determine the relative importance of
the two measures of a task.

The heuristic algorithm ranks the tasks in order of de-
scending significance first and then allocates these tasks to
communities in turn.

B. Allocation to Community

We are mainly concerned with the social position of agents
and tasks in social networks when addressing the allocation
problem. The social position of agents and tasks can be
categorized into nonoverlap and overlap.

Definition 8: Social Position. Given a CA-SN-MAS =
<A, E, C> and a set of tasks T = {t1, . . . , tn} initiated by
these agents A. An agent ai ∈A is denoted as a nonoverlap
agent if and only if it belongs to one community and the
task tj ∈ T initiated by ai is called a nonoverlap task; the

other agents and tasks are called overlap agents and tasks,
respectively.

Now, we are ready to introduce the task allocation to
community mechanism. This mechanism can be divided into
rounds and it ends when there are no more tasks to be
allocated. In each round, we sort the remaining unallocated
tasks in decreasing order of significance and allocate the first
task that with the maximum significance value. Without loss
of generality, in a certain round, we assume the sorted tasks
are T ’ = {t1’,t2’, . . . ,tn’}, and the current task to be allocated
is t1’. The process of allocating t1’ to communities consists
of the following two stages.
Checking stage: If task t1’can be satisfied by the remaining
resources of its accessible agents �(t1’), we will allocate t1’ to
its accessible communities in the next stage. Otherwise, task
t1’ will be removed from the system.
Allocation stage: In this stage, we adopt different strategies
to allocate t1’ according to its social position.

1) Nonoverlap case: Task t1’ is a nonoverlap task, then
we will allocate t1’ to the community com(ini(t1’)) it
belongs to.

2) Overlap case: Task t1’ is an overlap task, the allocation
to community process then can be implemented through
the following three steps:

a) Allocation to a resource-rich community: If there
exists a resource-rich community Cq that t1’ be-
longs to (i.e., Cq ∈com(ini(t1’))), it can satisfy
all of its unallocated tasks uT (Cq) by only its
nonoverlap agents nov-A(Cq), then we will allocate
t1’ to this resource-rich community. Otherwise, go
to Step b).

b) Allocation to community’s redundant resources:
For each community Cq that t1’ belongs
to, it calculates its redundant resources
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Rr(Cq, uT (Cq)\{t′1}) after executing the other
unallocated tasks uT (Cq)\{t′1} residing in Cq: ∀r ∈
R, Rr(Cq, uT (Cq)\{t′1}, r) =

∑
α∈A(Cq) rsc(a, r) −∑

t∈uT (Cq)\{t′1} req(t, r), (here, we just aim at
computing the redundant resources rather than
really executing these unallocated tasks) and
contributes the redundant resources for t1’. If
the sum of the redundant resources of all of the
accessible communities are not sufficient for t1’,
go to Step c).

c) Allocation to the free resources by releasing the
tasks with lower significance values: Obviously,
the reason that task t1’cannot yet be satisfied is
that the other unallocated tasks occupy the critical
resources that t1’ requires as well. Thus, we must
free the resources occupied by these unallocated
less significant tasks. Here, we release the unallo-
cated tasks one by one according to the inverted
order of the sorted list T’, that is from task tn’ to
task t2’. Each time we release a less significant
task, we repeat Step b). We iterate this releasing
step until t1’ be satisfied.

C. Allocation to Agent

After calculating the resource contribution of a community
to a selected task, the initiator of this task should negotiate
with the partners of that community to procure the contributed
resources with aims of both improving system efficiency and
reducing communication cost.

To improve system efficiency, we present a nonoverlap
agent first (NAF) heuristic: for a task t, let there be a set
of agents � in which an overlap agent ai is included that
can satisfy t’s resource requirement. Now there exists another
agent set 
∗ where the overlap agent ai is excluded that also
satisfies all of the resources required by t. We suggest the
nonoverlap agents set 
∗ executing the task.

To reduce communication cost, we utilize the distributed
breadth first (BF) resource negotiation approach. In this nego-
tiation approach, the initiator agent negotiates with its com-
munity partners from nearby to far-away until the requested
resources are satisfied [13]. Notice that when an agent agrees
to cooperative with an initiator agent, it offers all of its
remaining available resources to this initiator. The initiator’s
resource negotiation process is outlined in Algorithm 1.

D. Heuristic Algorithm and Case Study

With the above discussion, a formal description of the
heuristic algorithm can be seen in Algorithm 2, and to illustrate
the proposed heuristic algorithm clearly, we take example 1
as a concrete case to study.
Example 1 (continue). As discussed before, the heuristic
algorithm consists of the following three phases:
[Phase 1] Task selection: According to the significance
ranking criterion, we have sig(t2)>sig(t1)>sig(t3) [sig(t2) =
α · pro(t2) + (1-α) · fitness(t2)=0.8×(16/20)+0.2×[1-((14-10) +
(16-10))/(14 + 16)] = 0.77>sig (t1) = 0.765>sig(t3) = 0.71, we
set α=0.8 in (3)]. Then the first task to be allocated is t2.
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[Phase 2] Allocation to community: Task t2 can be
allocated through the following two stages:

[Phase 2.1] Checking stage: It is easy to check that t2

can be satisfied by its accessible agents (for r1 of task t2:
req(t2, r1) = 10<

∑
a∈{a1,...,a6} rsc(a, r1) = 14, for r2 of task

t2: req(t2, r2) = 10<
∑

a∈{a1,...,a6} rsc(a, r2) = 16), then we will
allocate t2 to its accessible agents in the allocation stage.

[Phase 2.2] Allocation stage: Because of the overlap social
position of task t2, the allocation process for t2 then can be
implemented through the following three steps:

Step 1: Allocation to a resource-rich community: Neither
community C1 nor C2 can accomplish its unallocated tasks
only by its nonoverlap agents (for r1 of community C1:∑

a1,a2
rsc(ai, r1) = 3<

∑
t1,t2

req(ti, r1) = 14; for r1 of com-
munity C2:

∑
a4,a5,a6

rsc(ai, r1) = 8<
∑

t2,t3
req(ti, r1) = 18).

Then, go to Step 2.
Step 2: Allocation to community’s redundant

resources: Community C1 computes its redundant
resources Rr(C1,t1) = {2r1,4r2} after executing its
unallocated task t1(

∑
a1,a2,a3

rsc(ai, r1) − req(t1, r1) = 2,∑
a1,a2,a3

rsc(ai, r2) − req(t1, r2) = 4) and contributes these
redundant resources {2r1,4r2} to t2. Go to allocation to agent
phase (i.e., [Phase 3.1]). Now task t2’s remaining required
resources are: t2’ = {8r1,6r2}. Community C2 computes its
redundant resources Rr (C2,t3) = {3r1,4r2} after executing its
unallocated task t3 and contributes the redundant resources
{3r1,4r2} to t2. Go to [Phase 3.2]. Now, the remaining
resource requirements of t2 become t2’’ = {5r1,2r2}, which
indicates that t3has not been satisfied. Then, go to Step 3.

Step 3: Allocation to the free resources by releasing the
tasks with lower significance values: Based on the lower
significance task released first heuristics, the first task to be
released is t3(sig(t1)>sig(t3)). Now, the redundant resources
of C2 are Rr(C2,{}) = {8r1,6r2}, which is sufficient for t2’’.
Therefore, in this step, C2 will contribute resources {5r1,2r2}
(min(t2’’,Rr(C2,{}))) for t2. Go to [Phase 3.3].
[Phase 3] Allocation to agent:

[Phase 3.1]: According to the NAF and BF resource ne-
gotiation mechanism, the initiator agent a3 of t2 negotiates
with the partners in community C1 in order of a1 �a2 �a3

(the notation (�) means the prior relationship). Then, agent a1

contributes resources cr(a1,t2) = {2r1} and a2 contributes re-
sources cr(a2,t2) = {4r2} for t2. After this contribution process,
the remaining resources of agents a1 and a2 are: a1’ = {1r1}
and a2’ = {2r2}.

[Phase 3.2]: Agent a3 negotiates with the partners in
community C2 in order of a4 �a5 �a6 �a3. Then, the
partners resource contributions are: cr(a4,t2) = {3r1,2r2} and
cr(a5,t2) = {2r2}. After this contribution process, the remain-
ing resources of agents a4 and a5 become: a4’ = {} and
a5’ = {2r1,1r2}.

[Phase 3.3]: Similar to [Phase 3.2],a3 accesses re-
sources for t2 from agents a4, a5, a6, and a3 in turn. The
partners resource contributions are cr(a5,t2) = {2r1,1r2} and
cr(a6,t2) = {3r1,1r2}. Agents a5 and a6 update their remaining
available resources: a5’’ = {} and a6’ = {}.

Due to space limitations, the sub sequential location pro-
cesses for t1 and t3 are not described here.

V. Properties of Heuristic Algorithm

A. Quality Guarantee Analysis

By referring to the related work in [5], we provide the worst
performance ratio of the heuristic algorithm.

Theorem 1: For a given CA− TAP , suppose that the max-
imum number of resources of a task is M and the minimum
payment of a task is U. Then, the heuristic algorithm has
the worst performance ratio of M(1 + (n − 1)(1 − α)/αU) + 1,
where n and α are the task number and the tradeoff factor in
(3), respectively.

Proof: In the worst case, the heuristic algorithm selects only
the most significant task t* to execute, and then all of the
other n-1 tasks (T -{t*}) cannot be satisfied any more, while
the optimal solution is completing all of the tasks TOpt = T
successfully. In this worst case,1 we can derive that the number
of resources that task t* requires is at least n-1 (if the number
of resources task t* requires is less than n-1, it cannot prevent
all of the other n-1 tasks (T -{t*}) being unallocated). Based
on the fact that t* has a higher significance value than any
other task t’∈T -{t*}, we have

sig(t
′
)≤sig(t∗) ⇒ α · pro(t

′
) + (1 − α) · fitness(t

′
)≤α · pro(t∗)

+(1 − α) · fitness(t∗)

⇒ α · (pro(t
′
) − pro(t∗))≤(1 − α) · (fitness(t∗)

−fitness(t
′
))

⇒ pro(t
′
) − pro(t∗)≤(1 − α)/α. (4)

The inequality (4) follows from 0<fitness(t)≤1 for any task t.
Let W (t) denote the sum of resources required by task t, then
we have

p(t
′
)/W(t

′
) − p(t∗)/W(t∗)≤(1 − α)/α ⇒ p(t

′
)

/W(t
′
)≤p(t∗)/(n − 1) + (1 − α)/α

⇒ p(t
′
)≤M · (p(t∗)/(n − 1) + (1 − α)/α).

Let SW (Heu) and SW (Opt) denote the social welfare of
the heuristics and that of the optimal, respectively. Then, the
worst performance ratio between the optimal solution and the
heuristic solution on social welfare satisfies

SW(Opt)

SW(Heu)
=

∑
t∈TOpt

p(t)

p(t∗)
≤

p(t∗) +
∑

t∈TOpt−{t∗} M(p(t∗)
n−1 + 1−α

α
)

p(t∗)

≤M

(
1 +

(n − 1)(1 − α)

αU

)
+ 1.

B. Complexity Analysis

Besides comparing the performance of the heuristic algo-
rithm with other algorithms on social welfare, the quality of
the heuristics should also be evaluated with respect to the
computational complexity.

1The worst case is relative to the optimal case and obviously, the optimal
case is that all the tasks are completed successfully.The social welfare of the
proposed worst case is p(t∗). Suppose that after executing task t∗, there is
another task t′ that can be satisfied by the heuristics, the social welfare will
become p(t∗)+p(t′) which is greater than p(t∗). Therefore, the worst case is
executing only the most significant task t∗ and the use of resources of this
task t∗ prevents all other tasks from being satisfied.
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Theorem 2: Given a CA-TAP with m agents, n tasks, k

resource types, and q communities, the computational com-
plexity of the heuristic algorithm is O(mn2kq).

Proof: In Algorithm 2, for Step 3, calculating the sig-
nificance values of the remaining unallocated n tasks takes
O(mnk) computations and sorting these tasks in decreasing
order of significance by a heap sort procedure takes O(nlog(n))
operations. For Step 5, a total of O(mk) computations are used
to check whether the current task can be satisfied or not. For
Step 7, the initiator of a task requires O(2mk) computations
to access enough resources from its residing community. For
Steps 9–12, finding a resource-rich community and allocat-
ing the current task to that community takes O(mkq + mk)
operations. Next, for Steps 13–16, calculating the redundant
resources of the accessible communities and accessing the
redundant resources from these accessible communities takes
O(3mkq) operations. Finally, releasing these less significant
tasks one by one until the current task is accomplished
(i.e., Steps 17∼21) takes O(3mnkq) complexity. Up to this
point, we can determine that allocating each task by the
internal Steps 3–24 at most takes O(mnk + nlog(n) + 3mkq + 3
mnkq) = O(3mnkq) operations. Because there are n such tasks
to allocate, we have the total computational complexity of
Algorithm 2 is O(mn2kq).

C. Dependability Analysis

In this section, we will provide a special case when the
heuristic algorithm can find the optimal solution.

Theorem 3: For a given CA-TAP, if the following three
conditions are satisfied.

1) Each agent belongs to at most two communities.
2) For any two adjacent communities Ci and Cj , the sum

resources of the nonoverlap agents in Ci and Cj and
the overlap agents overlapped between Ci and Cj are
sufficient for the tasks residing in them, that is

∀r ∈ R,
∑

C∈{Ci,Cj}

∑
a∈nov−A(C)

rsc(a, r) +
∑

a∈ov(Ci,Cj)

rsc(a, r)≥
∑

t∈T (Ci)∪T (Cj)

req(t, r).

3) For either community C of the two adjacent commu-
nities Ci and Cj (C ∈ {Ci, Cj}), the sum resources of
the nonoverlaps in C and the overlap agents overlapped
between Ci and Cj are sufficient for its own community
tasks, that is

∀r ∈ R, ∀C ∈ {Ci, Cj},
∑

a∈nov−A(C)

rsc(a, r)+
∑

a∈ov(Ci,Cj)

rsc(a, r)≥
∑

t∈T (C)

req(t, r).

Then, we have that all of the tasks can be completed success-
fully by the heuristic algorithm.

Proof: Without loss of generality, we assume that in the
lth round, T* = {tl*,tl+1*, . . . , tn*} is the set of remaining
unallocated tasks residing at Ci and Cj and they have been
sorted in decreasing order of significance. By using reduction
ad absurdum, we suppose that in this round, the first task tl*

that with the highest significance value cannot be satisfied by
the heuristic algorithm. With the earlier discussion, the current
task tl* can be categorized into nonoverlap and overlap cases.

Nonoverlap case: Task tl* is a nonoverlap task, and w.l.o.g.,
we assume tl* belongs to Ci. We denote the tasks that
have been completed successfully by the system as {t1*,t2*,
. . . ,tl−1*} and denote the nonoverlap agents’ remaining re-
sources of resource type r(r∈R) of community Ci after execut-
ing tasks {t1*,t2*, . . . ,tl−1*} as θ(Ci,r), the Cj’s as θ(Cj ,r),
and the overlaps’ as θ(ov(Ci,Cj),r). Obviously, the reason that
tl*cannot be satisfied is that its certain type resource (e.g.,
resource type r) cannot be accessed,2 i.e.

θ(Ci, r) + θ(ov(Ci, Cj), r)<req(t∗l , r). (5)

By condition 3), the total remaining resources of r of the
nonoverlaps in Ci and the overlaps’ should be sufficient
for tl*
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Fig. 4. Solution efficiency comparison of Heuristic, Greedy, and Optimal algorithms (a) on the overlap degree (community number = 6), and (b) on the
community number (overlap degree = 1.3).

VI. Experimental Validation and Analyses

In this section, we perform two series of experiments, to
accomplish the following:

1) Validating the advantages of the heuristic algorithm:
we perform two types of tests: a) tests of the perfor-
mance of the heuristic algorithm on social welfare in
the small-scale applications (Sections VI-A1); and b)
tests of the scalability of the heuristics to large-scale
applications in terms of social welfare and computation
time (Section VI-A2).

2) Validating the advantages of the community-aware
task allocation model: we compare the performance of
the community-aware task allocation model with other
task allocation models in terms of the social welfare and
communication cost (Section VI-B).

A. Validating the Advantages of Heuristic Algorithm

1) Tests of Performance:
a) Network: To test the advantages of the heuristic

algorithm, we apply it to a set of artificial community explicit
networks similar to that depicted in Fig. 1. Each network is
constructed with 72 nodes divided into several overlapping
communities. These nodes are randomly distributed among
communities such that each node is a member of overlap
(≥1) communities on average (overlap indicates the network
overlap degree defined in Definition 2). Next, we connect the
nodes, with the probability pin for nodes that belong to the
same community and pout for nodes in different communities.
The probabilities pin and pout are chosen to keep the networks
with explicit community structure (Here, we set pin = 0.8 and
pout = 0.2, which was used in [33]) and to keep the average
degree of all nodes equal to a given value.

b) Experiment setting: In this experiment, there are 20
tasks submitted to agents randomly and five types of resources
available to agents and tasks. The average number of resources
required by a task is 30. The payment of a task t is drawn
uniformly from the interval [0,W (t)] (which was used in [5]).
We set the total number of resources owned by agents is
equal to the total number of resources required by tasks and
distribute the total available resources to agents uniformly. We
compare the performance of the heuristic algorithm with the
greedy and the optimal algorithms.

1) The heuristic algorithm (Heuristic) is proposed by
us. We set the tradeoff parameter α between the task
profitability and the task fitness in Definition 7 to 0.8.

2) Greedy algorithm (Greedy) [5] arranges tasks in de-
scending order of task profitability first, and then allo-
cates these tasks in turn by a network flow technique.

3) Optimal algorithm (Optimal) [3] utilizes an exponen-
tial brute-force algorithm to consider all of the relevant
combinations of tasks to execute. For each combination,
it utilizes the network flow technique to check whether
this combination of tasks can be satisfied.

The performance is measured by the solution efficiency
(SE), which is computed as follows:

Definition 9: Solution Efficiency. If there are two algo-
rithms X and Y for a CA-TAP, and their social welfares are
SW(X) and SW(Y ), respectively. Then, the solution efficiency
of X relative to Y is defined as SE(X/Y ) = SW(X)/SW(Y ).

In this test, we compare the solution efficiencies of the
heuristic algorithm and the greedy algorithm relative to the
optimal algorithm, i.e., Heuristic = SE(Heuristic/Optimal),
Greedy = SE(Greedy/Optimal).

c) Simulation results: Fig. 4 shows the solution efficien-
cies of the greedy and the heuristic algorithms on the overlap
degree (Fig. 4(a)) and on the community number (Fig. 4(b)).
From the experimental results in Fig. 4, we conclude the
following:

1) In Fig. 4(a): The solution efficiency of the Heuristic
drops from 0.97 to 0.93 as the overlap degree varies from
1.0 to 2.2 and revives when the overlap degree varies
in the range [2.3, 6.0], and can eventually reach 0.98.
This trend can be explained by the fact that when there
are no overlap agents (i.e., overlap = 1.0), the Heuristic
can allocate tasks to agents without any collision, which
performs as well as the optimal algorithm. Once there
are some overlaps (e.g., overlap = 1.1∼2.2), the optimal
can lead the overlap agents to execute the more desirable
tasks, while the overlaps of the Heuristic perform not
as well. However, if the overlap degree becomes larger
to some extent (e.g., overlap = 2.3∼6.0), agents can
negotiate with a number of community partners and then
nearly all of the tasks can be completed even by the
Heuristic. Therefore, the Heuristic can obtain a relatively
good performance in these cases with larger overlap
degree.

2) In Fig. 4(b): The solution efficiency of the Heuristic
drops from 0.98 to 0.92 as the community number
varies from 2 to 10 and rebounds when the network
is highly separated (i.e., community number = 12∼20).
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This trend can be explained by the fact that when the
network is partitioned into large size communities (e.g.,
community number = 2), the agents of the Heuristic can
find sufficient resources for tasks as well as finding the
optimum. In case that the network is highly separated
(e.g., community number = 20), only a few tasks can be
successfully completed even by the optimal approach
due to the limited number of community partners.

3) In all of the experiments, Greedy performs very close
to the Optimal (SE(Greedy/Optimal)>0.94) due to its
high computational complexity (the detailed compar-
ison of the Heuristic and the Greedy is shown in
Section VI-A2). This finding verifies the rationale that
we compare the Heuristic with the Greedy in large-scale
applications on social welfare.

In conclusion, the heuristic algorithm is effective compared
with the optimal solution in terms of the social welfare: in the
worst case (overlap = 1.3 and community number = 10), the
solution efficiency is still higher than 0.92.

2) Tests of Scalability:
a) Dataset and experiment setting: Dataset: To study

the scalability of the heuristics to real large-scale applications,
the dataset we utilize in this experiment is the scientist co-
authorship network [34], in which there are 1589 scientists
from a broad variety of fields, and an edge between authors i
and j is included in the network if they co-authored a paper. We
utilize the overlapping community detection algorithm [33] to
divide the network into 300 overlapping communities with the
overlap degree be equal to 1.034. Experiment setting: We vary
the number of tasks from 100 to 500 with steps of 100. The
other settings are similar to those described in Section VI-A1.

Because it is not feasible to compute the optimal solution
in large-scale applications, and in Section IV-A1, we have
verified that the Greedy is very close to the optimal solution
(SE(Greedy/Optimal)>0.94) in various scenarios. Thus, it
makes sense to validate the scalability of the Heuristic to large-
scale applications by comparing it with the Greedy on solution
efficiency and computation time.

b) Simulation results: Table II shows the scalability
results of the heuristic algorithm. Through the experimental
results in Table II, we determine the following:

1) The heuristic algorithm performs very close to the
greedy algorithm on social welfare for any large-scale
cases (the average solution efficiency approximates
0.99).

2) The computational load of the Heuristic is significantly
reduced compared with that of the Greedy (e.g., the
runtime of the Greedy is 1.16×105 times that of the
Heuristic when the task number reaches 500). Before
explaining the phenomenon, it is necessary to introduce
the network flow technique that is involved in the greedy
and optimal algorithms briefly. In [5], a flow network is
constructed as follows: 1) create a source node s and a
sink node s’; 2) for each agent aiand each resource type
rk, if rsc(ai,rk)>0, then create an agent resource node
ai,rk and an edge from the source node s to this node with
capacity rsc (ai,rk); 3) for each task tj and each resource

TABLE II

Performance in Large-Scale Network

type rk, if req(tj , rk)>0, then create a task resource node
tj,rk and an edge from this node to the sink node s’
with capacity req(tj ,rk); 4) for each agent ai and each
resource type rk, connect the agent resource nodes ai,rk

to its accessible task resource nodes tj,rk (i.e., δ(ai,int
(tj)) = 1), and give this connection unlimited capacity;
and 5) solve the maximum flow problem and check
whether the maximum flow is sufficient for the resources
required by the set of allocated tasks or not. In this
paper, we utilize the Basic Ford–Fulkerson algorithm
[35] to solve the maximum flow problem. Thus, to
check the total n tasks, the greedy takes O(n(xa + yt)(qxa

yt/mk)2) operations to return the allocation result, where
m, k, q indicate the numbers of agents, resource types,
and communities in a CA-TAP, and xa, yt , xa + yt , and
qxayt/mk indicate the numbers of agent resource nodes,
task resource nodes, total nodes and total edges in the
constructed flow network of the CA-TAP.

Now, we are ready to explain the phenomenon that the
heuristic algorithm is superior to the greedy algorithm on
the running time. The running time of the greedy algorithm
mainly depends on the numbers of agent resource nodes and
task resource nodes in the constructed flow network. In the
worst case, the numbers of agent resource nodes and task
resource nodes of a flow network are mk and nk, respectively
(m and n indicate the numbers of agents and tasks), whose
complexity is O(n(mk + nk)(qnk)2). As discussed in Section
V-B, the complexity of the heuristic algorithm is O(3mn2kq).
The time complexity ratio between greedy algorithm and
heuristic algorithm then is O(n(mk + nk)(nqk)2)/O(3mn2kq)
= (m + n)nqk2/ (3m). (It approximates 1.74× 106when there
are 500 tasks, which is in accordance with the experimental
results).

In conclusion, in large-scale scenarios, the heuristic algo-
rithm achieves approximately the same social welfare as the
greedy algorithm, but its computational load is significantly
reduced. In fact, for large-scale applications, the greedy algo-
rithm will be computationally infeasible. Thus, the heuristic
algorithm is probably a better choice to achieve a relatively
efficient social welfare with limited computational cost.

B. Validating the Advantages of Community-Aware Task Allo-
cation Model

a) Network and Experiment Setting: In this section,
we compare the performance of task allocation models on
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Fig. 5. Performance comparison of global-aware, community-aware, and local neighbor-aware task allocation models on the real-world applications in terms
of (b) social welfare and (c) communication cost. (a) is the real-world karate club friendship network studied by Zachary [17], the nodes belong to the common
community are with the same color.

Fig. 6. Performance comparison of global-aware, community-aware, and local neighbor-aware task allocation models on the network degree in terms of
(a) social welfare and (b) communication cost. Here, we fix the overlap degree to 1.3.

Fig. 7. Performance comparison of global-aware, community-aware, and local neighbor-aware task allocation models on the overlap degree in terms of
(a) social welfare and (b) communication cost. Here, we fix the network degree to 8.

a real-world friendship network and the computer generated
networks. The real-world friendship network is The Zachary’s
karate club [17], in which there are 34 club members and
78 edges among these members. An edge between members i
and j is included in the network if they are friends. Moreover,
this karate club is constituted of two communities which are
already known in reality (see Fig. 5(a)). The computer gener-
ated networks and the experiment settings are similar to those
described in Section VI-A1. We compare the community-
aware task allocation model with the local neighbor-aware and
the global-aware task allocation models.

1) The community-aware task allocation model
(Community-aware) is proposed by us. In this model,
agents can cooperate only with its intracommunity
partners.

2) The local neighbor-aware task allocation model
(Neighbor-aware) such as[5] constrains the cooperation
within immediate neighbors. In this model, a central
controller utilizes the network flow technique to allocate
tasks in decreasing order of their profitability.

3) The global-aware task allocation model (Global-
aware), such as [13] permits agent to cooperate with
any other system agents. This model sorts all system
tasks in decreasing order of profitability first, and then
allocates them by a breadth first negotiation approach.

The performance of these task allocation models is eval-
uated by social welfare and communication cost. The social
welfare is the sum of the payments of these tasks that are com-
pleted successfully. The communication cost is computed as
follows: if an initiator agent ai negotiates with its community
partners a1, a2 and a3 for its initiated tasks tj , the communi-
cation cost of agent ai for task tj is: Ccost(ai,tj)=dist(ai,a1)
+ dist(ai,a2) + dist(ai, a3), where dist(ax,ay) is the length of
the shortest path between agents ax and ay.

b) Simulation results: Fig. 5 shows the performance
comparison of the community-aware (Community), local
neighbor-aware (Neighbor), and global-aware (Global) task
allocation models in the real-world applications. From the
experimental results in Fig. 5, we can determine that the social
welfare of the Community performs very close to that of the
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Global, which far exceeds that of the Neighbor (Fig. 5(b)).
This can be explained by the fact that in the neighbor-aware
model, each member has average four partners to cooperate
with; while in the community-aware model, the members in
white community has 16 partners to cooperate with and these
members in gray community has 18 partners. Obviously, there
will be more tasks completed successfully in the community-
aware model than the local neighbor-aware model. On the
other hand, the Community reduces the communication load
to a large extent compared with the Global (Fig. 5(c)).

Fig. 6 shows the performance comparison of the Com-
munity, Neighbor and Global task allocation models on the
network degree. From the experimental results in Fig. 6, we
conclude the following:

1) In Fig. 6(a), when the network degree varies from 4 to
18, the social welfares of the Global and the Community
stay almost invariant, while the Neighbor’s is in direct
proportion to it. This can be explained by the fact
that in the Neighbor model, the more neighbors, the
more resources that agents can access, and the more
tasks will be completed successfully. In contrast, in
the Community model, the intracommunity agents are
always allowed to cooperate with each other regardless
of whether there exists a connection between a pair of
community partners or not. It should also be noticed that
when the network degree becomes large enough (e.g.,
network degree≥16), the social welfare of Community
is even smaller than the Neighbor’s. The reason is that
when the network degree≥16, the number of tasks that
be accomplished in the Neighbor model is larger than
the number of tasks accomplished in the Community
model.

2) In Fig. 6(b), the communication cost of the Neighbor
is in direct proportion to the network degree, while the
communication costs of the Global and Community are
in inverse proportion to the network degree. The po-
tential reason is that when the network degree becomes
larger, agents negotiate with each other easily (i.e., the
average social distance among agents becomes shorter)
for the Community and Global models. Notice also that
when the network degree reaches 18, the communication
cost incurred by the Community is even smaller than
that of the Neighbor, which is much less than that of
the Global.

Fig. 7 shows the performance comparison of the Commu-
nity, Neighbor, and Global models on the overlap degree.
From the experimental results in Fig. 7, we have the following
observations:

1) In Fig. 7(a), as the overlap degree increases, the social
welfare of the Community performs better as well,
while the social welfares of the Global and Neighbor
stay almost the same. The potential reason is that in
the Community model, the more overlaps, the more
community partners that agents can cooperate with and
then the more tasks will be completed successfully.
For the case overlap≥2.0, the social welfare yielded

by Community performs approximately as large as the
Global, which far exceeds that of the Neighbor.

2) In Fig. 7(b), when overlap ranges from 1.0 to 2.0,
the communication cost of the Community is in direct
proportion to it and when overlap degree becomes larger
to some extent (i.e., overlap>2.0), the communication
cost of the Community remains almost flat. The potential
reason is that in the latter cases (i.e., overlap>2.0),
the Community model has reached its extreme capacity
for accomplishing tasks (this can also be inferred from
Fig. 7(a)). Moreover, when overlap varies from 1.0
to 1.5, the communication cost of the Community is
smaller than that of the Global, while overlap>1.5, the
communication cost of the Community becomes larger
than that of the Global. This can be explained by the
fact that in our heuristic algorithm of the Commu-
nity model, the initiator agent first negotiates with the
nonoverlap agents and then negotiates with the overlap
agents. However, in the Global model, the initiator
agent negotiates with agents from nearby to faraway
gradually. In case that the nonoverlap agents have longer
negotiation distance, the Community will produce more
communication cost than the Global.

In conclusion, on one hand, the community-aware task
allocation model increases the social welfare greatly compared
with the neighbor-aware model. On the other hand, it reduces
the communication cost to a large extent compared with
the global-aware model. Thus, the community-aware task
allocation model is a favor option to achieve a relatively higher
system overall profit with less communications cost.

VII. Conclusion

In this paper, we introduce a new variant of task alloca-
tion model for SN-MASs, where agent negotiates only with
its intracommunity members. Under such community-aware
scenarios, we prove that it is NP-hard to maximize the social
welfare and to minimize system communication cost. To solve
such an NP-hard problem effectively, we introduce a heuristic
algorithm in which tasks are first arranged in a decreas-
ing order of significance and then a significant task-first,
nonoverlap agent-first, and breadth-first heuristics is utilized
to allocate the sorted tasks in turn. We also conduct a series
of experiments to validate the advantages of this community-
aware task allocation model. From the experiments, we can
find that: 1) in our community-aware model, besides these
direct neighbor partners, agents can also cooperate with a num-
ber of other indirect community members, which will yield
more system overall profit compared to the local neighbor-
aware model; 2) in our community-aware model, because
of the dense intracommunity connections, it is easy for the
community members to cooperate, which will produce less
system communication cost compared to the global-aware task
allocation model; and 3) because of the lower time complexity
of the proposed heuristic algorithm, our community model can
be exploited well in large-scale applications.

One limitation of this paper is that we assume agents are
cooperative; in other words, agents always contribute their
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idle resources to desirable tasks from the system perspective.
However, this assumption may not be realistic, for example,
in the economics, when an agent is asked to perform tasks,
it always serve for the optimal task that maximizes its own
benefit rather than maximizes system overall profit. In our
future work, we will investigate the effect of agent selfish
behavior on the community-aware task allocation problem
and extend our centralized algorithm to a totally distributed
fashion, which can be applied to the situation where agents
are selfishness.

Another interesting topic for the future work is to consider
the dynamic community structure in SN-MASs. In this paper,
the communities are fixed during task allocation. However,
in reality the communities may be dynamic [8], [36]. Such
a dynamic situation may bring about new problems to our
current task allocation model, for example, due to agents join
and leave communities dynamically, the task execution may
be unsuccessful. Therefore, it is essential to devise feasible
approaches to deal with the emergent problems in dynamic
SN-MASs.
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