
Contextual Resource Negotiation-Based
Task Allocation and Load Balancing in

Complex Software Systems
Yichuan Jiang, Member, IEEE, and Jiuchuan Jiang

Abstract—In the complex software systems, software agents always need to negotiate with other agents within their physical and
social contexts when they execute tasks. Obviously, the capacity of a software agent to execute tasks is determined by not only itself
but also its contextual agents; thus, the number of tasks allocated on an agent should be directly proportional to its self-owned
resources as well as its contextual agents’ resources. This paper presents a novel task allocation model based on the contextual
resource negotiation. In the presented task allocation model, while a task comes to the software system, it is first assigned to a
principal agent that has high contextual enrichment factor for the required resources; then, the principal agent will negotiate with its
contextual agents to execute the assigned task. However, while multiple tasks come to the software system, it is necessary to make
load balancing to avoid overconvergence of tasks at certain agents that are rich of contextual resources. Thus, this paper also presents
a novel load balancing method: if there are overlarge number of tasks queued for a certain agent, the capacities of both the agent itself
and its contextual agents to accept new tasks will be reduced. Therefore, in this paper, the task allocation and load balancing are
implemented according to the contextual resource distribution of agents, which can be well suited for the characteristics of complex
software systems; and the presented model can reduce more communication costs between allocated agents than the previous
methods based on self-owned resource distribution of agents.

Index Terms—Complex software systems, multiagents, contextual resource, negotiation, task allocation, load balancing.

Ç

1 INTRODUCTION

NOW, many software systems are very complex and have
a large number of parts that interact with each other

[1]; to manage the complexity of those complex software
systems, agent-oriented approaches are well suited for
modeling and developing them [2], [3], [4], [5]. With the
agent-oriented approaches, the systems always contain
many software agents that have many interactions under
some organizational constraints and work together to
achieve certain objectives occurring through the systems.
When a task comes to a complex software system, the
software agents in the system should coordinate their
activities to implement the task; therefore, coordination
among those software agents, which mainly includes two
aspects: task allocation and load balancing, is considered as
one of the key concepts to implement tasks effectively in a
real complex system [6], [7], [8], [9], [27].

When a multiagent complex system wants to execute a

task, the first step is to allocate the task to some software

agents, which is called task allocation. The main goal of task

allocation is to maximize the overall performance of the

system and to fulfill the tasks as soon as possible [6], [7], [8].

Generally, the task allocation in the previous related work is
always implemented based on the agents’ self-owned
resource distribution; the number of allocated tasks on an
agent is always directly proportional to its self-owned
resources, i.e., an agent may be assigned with more tasks if
it owns more resources by itself [8], [9], [10], [11].

For example, if agent a1 holds the resource set fr1; r2g,
a2 holds the resource set fr1g, and a task t needs the
resource set fr1; r2; r3g. According to the previous task
allocation method based on self-owned resource distribu-
tion, a1 may have higher probability to obtain task t.
However, an agent may share resources by negotiating
with other agents in the system; now, it is assumed that a2

can easily share resources fr2; r3g with its interacting
counterparts, but a1 cannot share any resources from other
agents, thus we should allocate task t to agent a2 but not a1.
Therefore, in this paper, we present a new idea of task
allocation: if an agent does not own plentiful resources by itself,
but it can obtain enough resources from other interacting agents
easily, it may also be allocated tasks; the number of allocated
tasks on an agent is directly proportional to not only its own
resources but also the resources of its interacting agents.

The complex software systems are always modeled both
from physical and social viewpoints. Generally, each agent
locates at a physical place and has some physically
interacting agents in the complex system; on the other
hand, the complex systems are built on the socially
organized multiagents, thus each software agent also
locates in some social organizations [12], [13], [14], [15].
Therefore, each agent in the complex system may have two
kinds of contexts, one is the physical context, and the other
is the social context [16], [17], [18]. The resources owned by
the agents within the contexts of an agent are called
contextual resources. Obviously, agents will often negotiate

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009 641

. Y. Jiang is with the Research Center for Learning Science, Southeast
University, Nanjing 210096, P.R. China and the State Key Laboratory of
Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing 100080, P.R. China.
E-mail: yjiang@seu.edu.cn, jiangyichuan@yahoo.com.cn.

. J. Jiang is with the School of Information Science and Engineering,
Southeast University, Nanjing 210096, P.R. China.
E-mail: jcjiang@163.com.

Manuscript received 20 June 2007; revised 1 Dec. 2007; accepted 25 June
2008; published online 21 July 2008.
Recommended for acceptance by R. Eigenmann.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2007-06-0200.
Digital Object Identifier no. 10.1109/TPDS.2008.133.

1045-9219/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

with the agents within their physical and social contexts
when they execute tasks. Therefore, our idea of the task
allocation in complex software systems can also be
explained as follows: the number of allocated tasks on an agent
is directly proportional to not only its self-owned resources but
also the resources of its contextual agents; the task allocation of
system should be determined by the contextual resources
distribution of agents.

Fig. 1 shows those two kinds of contexts of agents in a
complex system, where the subsystem is considered as the
physical context and the set of organizationally interacting
agents is considered as the social context. We let the set of
resources owned by ai be fr1; r2g and the set of resources
owned by aj be fr1; r2; r3g. Now, it is assumed that a task
needs the resources fr1; r2; r3; r4g; if we make task allocation
based on self-owned resources, aj will have higher prob-
ability to obtain the task since it can satisfy the resource
requirement of the task better than ai. However, now a� is
within the context ofai and has the resources fr3; r4g; thus, we
can suggest that ai has higher probability to obtain the task
since ai can obtain the resources easily by negotiating with a�.

As said above, if an agent possesses more contextual
resources, it may be assigned more tasks accordingly.
However, if too many tasks are crowded on certain agents
that are rich of contextual resources, then the tasks may be
delayed and do not obtain quick responses; therefore, we
should let some tasks be switched to other agents with
relatively fewer contextual resources but lower task loads,
which is called load balancing. In the related work about load
balancing [10], [11], [19], [20], [21], [22], the number of tasks
queuing for an agent is the determinative factor for such
agent’s right in the future task allocation; if there are too
many tasks queuing for an agent, the probability of such
agent to obtain new tasks will be reduced.

Since every agent is located within some contexts and will
negotiate with its contextual agents to borrow resources for
executing tasks, therefore, in this paper, we will develop the
load balancing method also based on the contextual resource
distribution: if an agent, aa, is allocated with too many tasks, then it
is not only aa itself but also the agents in the context of aa should be
reduced the possibilities to accept new tasks in the future.

The main novelty of this paper is that it presents a novel
model for task allocation and load balancing based on the
contextual resource negotiation but not the self-owned

resource distribution among software agents; therefore, our
model can be well suited for the characteristics of complex
software systems. The rest of this paper is organized as
follows: In Section 2, we describe the contextual resource
negotiation in complex software systems; in Section 3, we
present the task allocation model to meet the contextual
resource distribution of complex software systems; in
Section 4, we address the context-associated load balancing
for multiple tasks; in Section 5, we provide the simulation
results to validate our proposed model; in Section 6, we
present some discussions on the extension of our model.
Finally, we conclude this paper in Section 7.

2 CONTEXTUAL RESOURCE NEGOTIATION

The context of an agent can be simply regarded as the
environment it is situated [26], which includes the physical
context and the social context (organizational one). The
physical context is produced by the agent’s physical environ-
ment, which can be regarded as the agent’s physical location,
and the physically nearby agents within the subsystem; the
resources owned by the agents within its physical context are
called the physically contextual resources. On the other hand,
agents in the complex system should be organized within
somesocialorganizations [12], so thecounterpart agents in the
social organizations can be regarded as the agent’s social
context,andthe resourcesof theagents in thesocialcontextare
called socially contextual resource.

2.1 Physically Contextual Resource

If an agent lacks the necessary resources to implement the
allocated task (we call such agent as initiator agent), it may
negotiate with its physically contextual agents; if the
physically contextual agents have the required resources
(we call those agents that lend resources to the initiator agent
as response agents), then the initiator agent and the response
agents will cooperate together to implement such task.

Then, which ones will the initiator agent negotiate with?
To minimize the negotiation communication costs, the
initiator agent can implement the negotiation process from
near agents to far agents gradually within the physical
environment.

The negotiation relations from agent a to other agents
within its physical context form a directed acyclic graph with
single source a, which is called the physically contextual
resource negotiation topology (PCR-NT) of agent a.

Definition 1. PCR-NT. A PCR-NT of agent a is a directed acyclic
graph with single source a, the agents in the graph are the ones
negotiated by agent a, and the path length from a to any other
agent is the physical negotiation gradation of that agent.

Definition 2. Physical negotiation gradation. Let a be an
agent that will negotiate with other agents within its physical
context and the agents in the nth round of negotiation of
agent a be called the physical contexts with gradation n.

Let ai be the initiator agent, and the resources owned by
ai be Rai; now, task t is allocated to ai, and the set of
requested resources for implementing t is Rt. Therefore, the
set of lacking resources of ai to implement t is Rt

ai
:

Rt
ai
¼ Rt �Rai : ð1Þ

642 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009

Fig. 1. An example to demonstrate the physical and social contexts in
the complex system.

Now, it is assumed that agent aj is negotiated by ai, the set
of resources owned by aj is Raj. If aj has any resources that
are requested by ai to implement t, then the set of resources
that aj can lend to ai for implementing task t is

Rt
aj!ai ¼ rjr 2 Raj ^ r 2 Rt

ai

n o
: ð2Þ

Thus, the set of lacking resources of ai to implement t will
be reduced as

Rt
ai
¼ Rt

ai
�Rt

aj!ai ¼ Rt
ai
�Raj : ð3Þ

The initiator agent ai will negotiate with the physically
contextual agents according to the PCR-NT, until all
requested resources are satisfied. The negotiation process
is shown as Algorithm 1.

Algorithm 1. Physically contextual resource negotiation of

agent a:

//a is the initiator agent, A is the physical context of a//

1) Set the tags for all agents in A to 0 initially;
2) Create QueueðQÞ;
3) Insert Queue ðQ; aÞ;
4) Set the tag of a to 1;

5) b ¼ 0;

6) At ¼ fag; /*The allocated agent set for task t*/

7) Rt
a ¼ Rt �Ra; /*The lacking resources of agent a to

implement task t*/

8) If Rt
a ¼¼ fg, then b ¼ 1; /*Agent a can provide all

resources to implement task t*/

9) While (ð!EmptyQueue ðQÞÞ and ðb ¼¼ 0Þ) do:

9.1) aout ¼ Out QueueðQÞ;
9.2) R0 ¼ Rt

a �Raout;

9.3) If R0 6¼ Rt
a, then: /*Agent aout can satisfy some

requests of a*/

9.3.1)Rt
a ¼ Rt

a �Raout; /*Agent a obtains resources

from aout to implement t*/
9.3.2)At ¼ At [faoutg;

9.4) If Rt
a ¼¼ fg, then b ¼ 1; /*All resources for

implementing t are satisfied*/

9.5) For 8alocal 2 Laout: /*Laout is the set of all physical

neighbors of aout*/

if the tag of alocal is 0, then: /*If agent alocal was

not negotiated by a before*/

9.5.1) Insert Queue ðQ; alocalÞ;
9.5.2) Set the tag of alocal to 1;

10) If ðb ¼¼ 1Þ, then Return ðAtÞ /*All resources for

implementing t are satisfied*/

else Return (False);

11) End.

Theorem 1. If all resources for implementing task t can be
satisfied by using Algorithm 1, the total communication cost
between the initiator agent and the physically response agents
is the minimum.

Proof. Let ai be the initiator agent and the set of lacking

resources of ai to implement t be Rt
ai

. If Algorithm 1 is

used, the set of response agents is A� ðA� ¼ At � aiÞ, and

the total communication cost between ai and A� is C�.

Now, if there is a set of agents A0�, A
0
� 6¼ A�, which can

provide Rt
ai

, and the total communication cost between ai
and A0� is C0�; if C0� < C�, it denotes that there are any

agents with higher gradations that provide the required

resources in Rt
ai

, but the lower gradation agents with

required resources do not provide the required resources

in Rt
ai

. Obviously, such situation cannot take place in

Algorithm 1. Therefore, we have Theorem 1. tu
Example 1. Fig. 2 is an example for constructing the

PCR-NT, where a22 is the initiator agent. In Fig. 2, the
set of resources owned by agent a22 is fr1; r2; r3; r3g.
Now, we let a task t be allocated to a22, and the
resources requested by t be fr1; r1; r2; r2; r3; r3; r3; r3g;
obviously, a22 lacks the resources fr1; r2; r3; r3g. At
first, a22 negotiates with a12 and obtains the requested
resources fr1; r3g; second, a22 negotiates with a21 and
obtains the requested resources fr2g; third, a22

negotiates with a23 but obtains no requested resources;
at last, a22 negotiates with a32 and obtains the
requested resources fr3g; now, the requested resources
of a22 to implement t are all satisfied. Therefore, the
agents fa22; a12; a21; a32g will implement task t corpo-
rately. The negotiation process is shown in Fig. 3.

JIANG AND JIANG: CONTEXTUAL RESOURCE NEGOTIATION-BASED TASK ALLOCATION AND LOAD BALANCING IN COMPLEX SOFTWARE... 643

Fig. 2. An example for constructing the PCR-NT.

2.2 Socially Contextual Resource

The complex systems can be modeled as the multiagents
organized within certain social structures [14], [23]. With
the social organizations, the social interaction relations
describe the obligations and structures among agents in the
complex systems [13]. Agents will always interact and
negotiate with other agents within the social contexts while
they execute tasks.

In the social organizations, it is more likely that the near
individuals may have more similarities and, being closer
together in the organizational hierarchy, share more
common interests than the remote individuals [24]. There-
fore, in the social organizations of complex systems, each
agent will negotiate with other agents for the requested
resources gradually from near places to remote places.

The hierarchical structure is a typical social organization,
thus first we address the negotiation of social contextual
resources within hierarchical structures; after that, we will
address the one within arbitrary social structures.

In the social contexts, the agents negotiate with other
agents also according to certain topologies. Referring to
Definitions 1 and 2, we now give the definitions of social
negotiation gradation and socially contextual resource
negotiation topology (SCR-NT).

Definition 3. Social negotiation gradation. Let a be an agent
that will negotiate with other agents within its social context
and the agents in the nth round of negotiation of agent a be
called the social contexts with gradation n.

Definition 4. SCR-NT. An SCR-NT of agent a is a directed
acyclic graph with single source a, the agents in the graph are the
ones negotiated by agent a, and the path length from a to any
other agent is the social negotiation gradation of that agent.

2.2.1 Hierarchical Structure

In the hierarchical structures, each agent can interact directly
only to its superiors and subordinates; thus, each agent will
first negotiate with its superiors or subordinates for
resources. Moreover, in the hierarchical organizations,
resource negotiation always happens between pairs of
agents that share the same immediate superior; and agents
will always negotiate resources through the lowest common
ancestor [25]. Therefore, let there be an agent a that can
negotiate with other agents within the hierarchical structure
according to the following orders:

1. the subordinates of agent a in the hierarchical
structure;

2. the immediate superior of agent a;
3. the sibling agents with the lowest common superiors.

Example 2. In Fig. 4, let agent a21 be the initiator agent, we

can see the construction of an SCR-NT according to the

above social negotiation orders in the hierarchical

structure.

Let a be the initiator agent, and the set of agents in a’s

social context be A, now the socially contextual resource

negotiation process of agent a in hierarchical structures is

shown as Algorithm 2.

Algorithm 2. Socially contextual resource negotiation of

agent a in a hierarchical social structure.

/* Tx: the subtree whose root is agent x in the hierarchical

structure; px: the parent node of x in the hierarchical

structure. */
1) Set the tags for all agents in A to 0 initially;

2) b ¼ 0;

3) At ¼ fag; /*The allocated agent set for task t*/

4) Rt
a ¼ Rt �Ra; /*The lacking resources of agent a to

implement task t*/

5) If Rt
a ¼¼ fg, then b ¼ 1; /*Agent a can provide all

resources to implement task t*/

6) If ðb ¼¼ 0Þ, then:
6.1) Negotiation ða; aÞ; /*a negotiates with the agents

within Ta by calling Algorithm 3*/

6.2) atemp ¼ a;

6.3) While (ðb ¼¼ 0Þ and ðpatemp <> NilÞ) do:

6.3.1) atemp ¼ patemp;
6.3.2) Negotiation ða; atempÞ; /*a negotiates with the

agents within Tatemp by calling Algorithm 3*/

7) If ðb ¼¼ 1Þ, then Return ðAtÞ /*All resources for
implementing t are satisfied*/

else Return (False);

8) End.

We can use the lay-based traversal method in tree to
implement the negotiation process in Algorithm 2. The
method is shown as Algorithm 3.

644 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009

Fig. 3. Physically contextual resource negotiation process of the example in Fig. 2.

Algorithm 3. Negotiation ða; xÞ. /* Agent a negotiates with
the agents in subtree Tx */

1) Create Queue ðQÞ;
2) Insert Queue ðQ; xÞ;
3) Set the tag of x to 1;
4) While (!EmptyQueueðQÞ and ðb ¼¼ 0Þ) do:

4.1) aout ¼ Out QueueðQÞ;
4.2) R0 ¼ Rt

a �Raout;
4.3) If R0 6¼ Rt

a, then:
4.3.1)Rt

a ¼ Rt
a �Raout; /*Agent a obtains resources

from aout to implement t*/
4.3.2)At ¼ At [faoutg;

4.4) If Rt
a ¼¼ fg, then b ¼ 1; /*All resources for

implementing t are satisfied*/
4.5) For 8achild 2 childðaoutÞ:

If the tag of achild is 0:
4.5.1) Insert QueueðQ; achildÞ;
4.5.2) Set the tag of achild to 1;

5) Return ðbÞ;
6) End.

Obviously, with Algorithms 2 and 3, we can constrain
the resource negotiation process in hierarchical social
structures as follows:

Lemma 1. If all resources for implementing task t can be satisfied
by using Algorithms 2 and 3, the set of socially response agents
in hierarchical social structure can satisfy one of the following

situations: 1) all response agents are located in the subtree of
the initiator agent or 2) the ancestor between the initiator agent
and all response agents is the lowest.

According to the information exchange criterion in [25],
our presented resource negotiation method can also have
higher probability to reduce the communication cost
compared to other random negotiation processes. Thus,
we can obtain the good performance for resource negotia-
tion, which is also tested by our simulation tests in Section 5.

Example 2 (continue). In Fig. 4, the set of resources owned
by agent a21 is fr1; r1; r2; r3; r3g. Now, a task t is allocated
to a21, and the resources requested by task t is
fr1; r1; r2; r2; r3; r3; r3; r3g; obviously, a21 lacks the re-
sources fr2; r3; r3g. The negotiation process is shown in
Fig. 5.

2.2.2 Arbitrary Structure

There are always two kinds of arbitrary social structures in
the complex systems, one is the directed structure where
agent interaction relation is unilateral, and the other is the
undirected structure where agent interaction relation is
bidirectional.

To minimize the negotiation communication time, we can
make an agent negotiate with other agents for the requested
resources based on the Breadth-First Traversal method in the

JIANG AND JIANG: CONTEXTUAL RESOURCE NEGOTIATION-BASED TASK ALLOCATION AND LOAD BALANCING IN COMPLEX SOFTWARE... 645

Fig. 4. An example for constructing the SCR-NT in a hierarchical social structure; now, it is assumed that a21 is the initiator agent. (a) Negotiation
topology evolution. (b) SCR-NT of a21. (c) The number of resources owned by agents.

Fig. 5. Socially contextual resource negotiation process of the example in Fig. 4.

graph. The algorithm for the negotiation process within

arbitrary social structure is the same as Algorithm 1.

Theorem 2. If all resources for implementing task t can be

satisfied by using our algorithm, the total communication cost

between the initiator agent and the socially response agents in

arbitrary social structure is the minimum.

Proof. The proof is similar to that of Theorem 1, so here we

skip it to save paper space. tu
Example 3. Fig. 6 is an example to demonstrate the SCR-

NTs of undirected and directed arbitrary structures.

Fig. 7 is an example of the negotiation process of a4 to

implement task t. For the reason of saving space, we do

not express the negotiation process in detail.

3 TASK ALLOCATION TO MEET THE CONTEXTUAL

RESOURCE DISTRIBUTION

3.1 Contextual Resource Enrichment Factor

An agent will be more resource predominant if its contextual

agents have more resources. Let there be an agent ai, the set

of agents within its physical context is PCi and the set of

agents within its social context isSCi. Obviously, every agent

within PCi or SCi will contribute differently to the resource

predominance of ai; the contribution of an agent within PCi
or SCi to agent ai is determined by the physical or social

distance between such agent and ai. Now, we have the

concepts of physically contextual enrichment factor and

socially contextual enrichment factor.

646 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009

Fig. 6. An example for constructing the SCR-NT in arbitrary social structure. (a) Undirected arbitrary social structure. (b) Directed arbitrary social

structure. (c) The number of resources owned by the agents.

Fig. 7. Socially contextual resource negotiation process of the example in Fig. 6.

Definition 5. The physically contextual enrichment factor of

agent ai for resource rk is

�iðkÞ ¼
X
aj2PCi

njðkÞ �
1=dpijP

aj2PCi
1=dpij

0B@
1CA; ð4Þ

where njðkÞ is the number of resource rk owned by agent aj,

dpij is the physical distance between ai and aj; ai 2 PCi.
Definition 6. The socially contextual enrichment factor of

agent ai for resource rk is

�iðkÞ ¼
X
aj2SCi

njðkÞ �
1=dsijP

aj2SCi
1=dsij

0B@
1CA; ð5Þ

where dsij is the social distance between agents ai and aj. We can

see that dsij denotes the contribution weight of agent aj to the

enrichment factor of ai, and dsij appears both in the numerator

and denominator in (5); thus, we can abstract dsij into a natural

number. If two agents are adjacent with each other in the

interaction structure, they can make resource negotiation

directly and their social distance can be set to 1; therefore, the

social distance between two agents can be denoted by the shortest

path length in the interaction structure.

Definition 7. The comprehensive contextual enrichment

factor of agent ai for resource rk is determined corporately by

the physically and socially contextual enrichment factors:

�iðkÞ ¼�p�iðkÞ þ �s�iðkÞ

¼�p
X
aj2PCi

njðkÞ �
1=dpijP

aj2PCi
1=dpij

0B@
1CA

þ �s
X
aj2SCi

njðkÞ �
1=dsijP

aj2SCi
1=dsij

0B@
1CA;

ð6Þ

where �P and �S are used to determine the relative importance

of the two kinds of contexts in the contextual enrichment factor

of an agent, �P þ �S ¼ 1.

For an agent, the higher its contextual resource enrich-
ment factor to one kind of resource is, the higher is its
chance to obtain enough of such kind of resource in the
system.

Example 4. Fig. 8 is an example of contextual resource
enrichment factors of agents.

3.2 Contextual Resource-Based Task Allocation

The agents are complex with multiple resources related to
the multiple tasks they implement in the complex systems.
An optimal allocation in a complex system is to maximize

the dependability that the tasks can obtain enough
resources to be implemented.

For example, in Fig. 8, let there be a task that needs
resource r1. If we implement the task allocation based on
the physically contextual resource distribution, we should
allocate the task to agent a43; if we implement the task

JIANG AND JIANG: CONTEXTUAL RESOURCE NEGOTIATION-BASED TASK ALLOCATION AND LOAD BALANCING IN COMPLEX SOFTWARE... 647

Fig. 8. An example for computing the contextual resource enrichment factors of agents, where PCs and SCs of every agent are both the whole agent
set A: fa22; a24; a43; a44; a52g. For the reason of simplicity, we can let �s ¼ �p ¼ 0:5. (a) Physical context. (b) Social context. (c) The contextual
resource enrichment factors

allocation based on the socially contextual resource dis-
tribution, we should allocate the task to agent a44; if we

implement the task allocation based on the comprehensive
contextual resource distribution, we should allocate the task
to agent a44.

From the above example, we can see that it is easy to
make definite effective allocation if the task only requires
one kind of resources. However, if a task needs many kinds
of resources, then how can we implement the allocation?

For example, in Fig. 8, we let a task need resource r1 and r2.
If we implement the task allocation based on comprehen-
sive contextual resource distribution, a44 has the highest
enrichment factor for r1 and a22 has the highest enrichment
factor for r2. Then, which one of a44 or a22 should be
allocated with the task? To solve this problem, we can
design the allocation method for the task that requires more

than one kind of resources as follows:
When a task requires more than one resource, we should

assign an agent to act as the principal one (i.e., the initiator
agent within the negotiation), which will initially negotiate
with other agents for the resources required by the task;
then, the set of all agents that provide resources for the task
is the allocated agents. To determine the principal agent, we

set some criterions as follows:

1. First Required Resource-First Satisfy (FRFS). When a
task requires many resources, it may call each
resource sequentially. Now, we can design the
criterion of FRFS, i.e., the agent that has the highest
enrichment factor for the first called resource should
be allocated as the principal one of that task. Let
there be a task t, the set of resources called by task t
orderly is fn1r1; n2r2; . . . ; nnrng; ni denotes the
required number of resource ri. So, we will
allocate t to the agent aj, which has the highest
enrichment factor for r1, i.e., the highest �jð1Þ, �jð1Þ,
or �jð1Þ. For example, in Fig. 8, if the called resource
sequence of a task is fr2; r1; r2; r3g and a22 has the
highest contextual resource enrichment factor for
resource r2, a22 will be assigned as the principal one
for such task.

2. Most Important Resource-First Satisfy (MIFS). When a
task requires many resources, there may be one
resource that is the most important for implementing
that task. Now, let there be a task t, the set of resources

called by task t orderly is fn1r1; n2r2; . . . ; nnrng; if ri is
the most important resource for implementing t, we
will allocate t to agent aj, which has the highest
enrichment factor for resource ri, i.e., the highest
�jðiÞ, �jðiÞ, or �jðiÞ. For example, in Fig. 8, if the called
resource sequence of a task t is fr2; r1; r2; r3g and r1 is
the most important for the implementation of t,
a44 will be assigned as the principle one for t since
a44 has the highest contextual enrichment factor for
resource r1.

3. All Resources-Averagely Satisfy (AAS). When a task t
requires resources Rt, we can allocate the task to
the agent, which has the highest average con-
textual enrichment factor for all resources in Rt.
Now, let Rt ¼ fn1r1; n2r2; . . . ; nnrng, we will allo-
cate task t to the following agent (according to the
comprehensive contextual resource enrichment
factor �jðiÞ):

a� ¼ arg max
aj2A

1

jRtj
X
ri2Rt

�jðiÞ
 !

: ð7Þ

Therefore, our task allocation process is explained as

follows: 1) Assign task t to a principal agent according to

the above three criterions, now it is assumed that the

principal agent is a�; 2) let the set of resources required by

task t be Rt, the resources owned by agent a� be Ra� , and

Rt
a�
¼ Rt �Ra� , now agent a� will behave as the initiator

agent and negotiate with other agents within its physical

context or social context according to the methods pre-

sented in Section 2; and 3) let the set of agents that will

provide the requested resources to a� be A0, thus task t will

be finally implemented by the allocated agent set:

At ¼ fa�g [A0.
Example 4 (continue). We use the example in Fig. 8 to

demonstrate the task allocation, as shown in Table 1. For

example, task t2 needs three kinds of resources: 2r3, 3r1,

and 3r2; if we use MIFS to determine the principal agent,

a22 will be selected and provide 2r1 and 3r2 for the task;

so now a22 will negotiate with other contextual agents for

2r3 and 1r1; if a22 negotiates with other agents within its

physical context, the agent set fa24g will be allocated; if

a22 negotiates with other agents within its social context,

the agent set fa43g will be allocated.

648 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009

TABLE 1
An Example of Task Allocation According to the Comprehensive Enrichment Factor

�The most important resource. PA: principal agent; CA: cooperated agent; PN: physical negotiation; and SN: social negotiation.

4 CONTEXT-ASSOCIATED LOAD BALANCING FOR

MULTIPLE TASKS

According to the model in Section 3, an agent may have more
tasks to queue if it has higher contextual resource enrichment
factor. Therefore, we should deal with the load balancing while
there are multiple tasks within the complex system.

Generally, the performance of load balancing is mainly
determined by the waiting time of the task. According to
Liu et al. [10], the effect of measures on load balancing is
reflected by the number and size of task teams on agents;
and we simply consider that the waiting time is only
related to the length of the task team. Let the allocated
agent set of task t be At and the set of resources required
by t be Rt. We can denote the team of tasks that queue
for the resource rk of agent ai as Qik, and the size of Qik

as sik. If task t calls its requested resources concurrently,
the waiting time of task t will be determined by the
maximum size of the queues for its required resources; if
task t calls its requested resources serially, the waiting
time of task t will be determined by the total sizes of the
queues for its required resources. Therefore, we can
define the waiting time of a task as

wt ¼ max
8ri2Rt;8ak2At

ðsikÞ; or wt ¼
X

8ri2Rt;8ak2At

ðsikÞ: ð8Þ

Now, if there are multiple tasks that arrive at the
complex system, the set of those multiple tasks is T , thus we
can define the global load balancing performance of the
system as

ew ¼ 1

jT j
X
t2T

wt: ð9Þ

Therefore, our goal of load balancing is to reduce the
average size of the queues for all resources and all agents. In
the previous research work on load balancing [10], [11],
[28], an agent’s probability to be allocated new tasks will be
reduced if it has already undertaken too many tasks; thus,
the number of undertaken tasks of an agent will only
influence the probability of itself to be allocated new tasks
in the task allocation.

However, an agent will negotiate with its contextual
agents for resources; thus, if an agent has already been
allocated with too many tasks, the probabilities of its
contextual agents to accept new tasks should also be reduced.
Thus, we will develop the load balancing method also based
on the contextual resource distribution. If an agent, a, is
allocated with some tasks, it is not only a itself but also the
agents in the context of a will be reduced the possibilities to
accept new tasks in the future. Let sik be the size of team where
tasks queue for the resource rk of agent ai, the contextual
enrichment factors of agents within the physical and social
contexts of ai will be changed as

8aj 2 PCi;��j ðkÞ ¼ �jðkÞ � �
sik
dpij

 !
; ð10Þ

8aj 2 SCi;��j ðkÞ ¼ �jðkÞ � �
sik
dsij

 !
; ð11Þ

where � is a monotonously increasing function; dpij is the
physical distance between agents ai and aj, ai 2 PCi; dsij is
the social distance between agents ai and aj, ai 2 SCi.
Example 4 (numerical simulations). Let there be three

agents in a social context, fa1; a2; a3g, the social distance
from a1 to a2 is 1, the social distance from a1 to a3 is 2, for
simplicity, we can let the social distance from a1 to itself be
0.5; Let the size of team where tasks queue for the resource
rk of agent a1, s1k, be 0 initially, and the socially contextual
enrichment factors of the three agents to rk be all 10
initially. Now, the value of s1k increases with the step of 1;
from Fig. 9, we can see that the enrichment factors of three
agents will decrease accordingly; and the nearer to a1, the
more rapidly the agent’s enrichment factor decreases.

5 VALIDATIONS AND ANALYSES

To validate the correctness and effect of our task allocation
and load balancing model based on contextual resource
negotiation, we make a series of case simulations. We can
define the task in the simulation test as follows:

It is assumed that each resource of an agent can only be
obtained by one task at the same time. Let the task is allocated
to a series of agents, and the task creates a token that will be
sent from the first agent to the next and so on along the agent
series until it arrives at the last agent and obtains the required
resources. Thus, the execution of task is given as follows:
1) First, the token is dead, 2) when the token is newly received
by an allocated agent, then it will be dead; only when it can
obtain the enough required resources from its now inhabited
agent, the token can be activated and sent to the next
allocated agent, and 3) such process will continue until the
token visits all allocated agents and is active at last.

For example, let task t1 be allocated to “a44ð3r1; 1r3Þ,
a22ð3r2Þ, a43ð1r2Þ,” so the execution of t1 is given as follows:
1) At first, a dead token is created in a44, when t1 obtains
“3r1, 1r3” from a44, the token is activated and sent to a22,
then resources “3r1, 1r3” are released; 2) now, a22 receives
the token and makes it a dead one, when t1 obtains “3r2”
from a22, the token is activated and sent to a43, then
resources “3r2” are released; 3) now, a43 receives the token
and makes it a dead one; when t1 obtains “1r2” from a43, the
token is activated and now the task is finished, and
resources “1r2” are released. Therefore, let gai denote the
time of “getting required resources” from agent ai, cai!aj

JIANG AND JIANG: CONTEXTUAL RESOURCE NEGOTIATION-BASED TASK ALLOCATION AND LOAD BALANCING IN COMPLEX SOFTWARE... 649

Fig. 9. Numerical simulation for the contextual resource enrichment

factor modification.

denote the communication time from ai to aj, then the
execution time of t1 is

Et1 ¼ ga44 þ ca44!a22 þ ga22 þ ca22!a43 þ ga43: ð12Þ

From above, we can see that the execution time of a task is

determined by the resource access time (i.e., the waiting time
of the task described in Section 4) and the communication

time among allocated agents. Therefore, the task team on an
agent is longer, the time of “getting resource” is longer, and

that leads the execution time of task to become longer; on the
other hand, the distance among allocated agents is longer, the

time of “communication time” will be longer, and that also

leads the execution time of task to become longer.

5.1 Comparison between Contextual
Resource-Based Task Allocation and
Self-Owned Resource-Based Task Allocation

In this section, we will validate the correctness of our task
allocation model, so we will compare the performances of
the following two models: 1) Contextual resource-based
task allocation model, CRM and 2) Self-owned resource-
based task allocation model, SRM. In the SRM, the task
allocation is implemented according to the self-owned
resources of agents themselves, which is always used in
the previous related work. Now, we introduce the SRM
model briefly.

When a task requires more than one resource, we can
also use the three criterions described in Section 3.2. Now,

let there be a task t, the set of resources called by task t is
Rt ¼ fn1r1; n2r2; . . . ; nnrng, njðiÞ denotes the number of ri
owned by agent aj, Ri denotes the set of resources owned

by agent ai, then the task allocation processes of SRM are
shown in Table 2.

Then, we make a series of case simulations to test the two
models. In the simulations, the agent number is 200, the
physical distribution and social structure can be set
randomly. We can use SRM and CRM models to make task
allocation; the allocated agents will execute the tasks, then
the total execution time of tasks is tested. The results are
shown in Fig. 10.

From the results, we can obtain the following: 1) when
CRM model is used, the allocated agents will always incline
to be located within the near physical contexts or social
contexts, so the communication time will be reduced;
however, the allocated agents in SRM model will always
be distributed through the system, so the communication
time among agents will incline to be more than the one of
CRM model. Therefore, the task execution time of CRM
model is always less than the one of the SRM model and
2) while the number of tasks increases, the communication
time will also increase; so the difference between the two
models will increase accordingly.

Therefore, we can conclude that the CRM model can
reduce the total communication time among allocated
agents so as to reduce the total task execution time
compared to SRM, especially while the number of tasks
is large.

5.2 Comparison between Contextual
Resource-Based Load Balancing and
Self-Owned Resource-Based Load Balancing

Now, we will compare the contextual resource-based load
balancing and the self-owned resource-based load balancing.

650 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 5, MAY 2009

TABLE 2
The Task Allocation Processes in the SRM Model

Fig. 10. Execution time comparison between SRM and CRM models. (a) FRFS. (b) MIFS. (c) AAS.

In Section 4, we have addressed the contextual resource-

based task allocation with load balancing (CRM-LB), now we
briefly introduce the self-owned resource-based task alloca-

tion with load balancing (SRM-LB).
Let sjk be the size of teams where tasks queue for the

resource rk of agent aj, the number of rk owned by agent aj
is njðkÞ, so the self-owned resource enrichment factor of
agent aj on rk, ’jðkÞ, should be changed as (13) when we

consider the load balancing:

’jðkÞ ¼ njðkÞ � fðsjkÞ; ð13Þ

where f is a monotonously increasing function. Therefore,
while an agent is allocated with more tasks, its probability

to obtain new task in the future will be reduced. When a

task t is allocated to some agents that are At, all agents in At

should modify their self-owned resource enrichment factor
according to (13).

We make some case simulations to test the two models.

In the simulations, the agent number is 200, the physical

distribution and social structure can be set randomly. We

can use the CRM-LB model and SRM-LB model to make the
task allocation; the allocated agents will execute the tasks,

then the total execution time for the tasks is tested. The

results are shown in Fig. 11.
From the results, we can obtain the following:

1. The total execution time in CRM-LB is less than the
one in SRM-LB, since the CRM-LB model can reduce
the total communication time among allocated

agents so as to reduce the total task execution time
that is better than SRM-LB, especially while the
number of tasks is large.

2. The gap between the two models in Fig. 11 is bigger
than the one in Fig. 10, so the load balancing in
CRM-LB outperforms the one in SRM-LB. We
conclude that CRM-LB is better suited for the
characteristics of complex software systems, since
CRM-LB adjusts the contextual resource enrichment
factors of allocated agents themselves as well as their
contextual agents, but SRM-LB only adjusts the self-
owned resource enrichment factors of allocated
agents themselves.

5.3 Comparison between CRM-LB and CRM

We now compare CRM-LB and the contextual resource-based

task allocation without load balancing (CRM). In the simula-

tions, the agent number is 200, the physical distribution and

social structure can be set randomly. We can use the CRM-LB

and CRM models to make the task allocation; the allocated

agents will execute the task, then the total execution time for

the tasks is tested. The results are shown in Fig. 12.
From the results, we can see that CRM-LB outperforms

CRM; while the task number increases, the CRM-LB will

outperform CRM more and more. Therefore, our load

balancing model can make an effective load balancing and

reduce the task waiting time for resources while there are

multiple tasks in the complex systems.

JIANG AND JIANG: CONTEXTUAL RESOURCE NEGOTIATION-BASED TASK ALLOCATION AND LOAD BALANCING IN COMPLEX SOFTWARE... 651

Fig. 11. Execution time comparison between SRM-LB and CRM-LB models. (a) FRFS. (b) MIFS. (c) AAS.

Fig. 12. Execution time comparison between CRM and CRM-LB models. (a) FRFS. (b) MIFS. (c) AAS.

6 DISCUSSION

In our model, the agents are assumed to only differ
essentially in their resources and they have the same
computable functions; thus, the task allocation and load
balancing are implemented only based on the contextual
resource distribution. In some real situations, such assump-
tion is reasonable since all agents are identical. For example,
in a hotel-booking system, all booking agents may have the
same functions but different hotel information; thus, the
booking tasks are always assigned to the agents with rich
hotel information.

However, in many circumstances, the above assump-
tion does not match the peculiarities of real multiagent
systems; in real systems, some agents may have different
computable functions as well as different resources.
Therefore, now we should make task allocation and load
balancing by considering the resources together with
computable functions.

First, if we only consider the computable functions, now
the model based on computable function negotiation can be
explained in brief as follows:

If an agent, a, does not have necessary computable
function to implement a task by itself, whereas its
contextual agent has such function, with our model, a
may entrust the task to its contextual agent to implement;
thus, the number of allocated tasks on an agent is directly
proportional to not only its own computable functions but
also the ones of its contexts. (The model based on contextual
function negotiation.)

Therefore, with the model based on contextual function
negotiation, we only need to modify the contextual resource
enrichment factors in Section 3 to the contextual function
enrichment factors; then, the task allocation and load
balancing can be implemented according to the contextual
function enrichment factors of all agents. Obviously, all
algorithms in the new model are the same as the model
based on contextual resource negotiation.

Moreover, if we want to make task allocation based on
both resources and functions of agents, we can further
extend our presented model by only further modifying the
contextual resource enrichment factors. Now, we can
present the concept of contextual resource and function (RF)
enrichment factor, which makes trade-off between the
resource difference and the function difference. If an agent
has higher contextual RF enrichment factor, it may have
higher probability to obtain tasks.

Therefore, despite our presented model assumes that all
agents have the same computable functions and differ in
resources only, the model can easily be extended into other
real situations where agents have different computable
functions as well as resources.

7 CONCLUSION

This paper has presented a novel model for task allocation
and load balancing based on contextual resource negotiation.
The presented model can be well suited for the characteristics
of complex software systems, thus it outperforms the
previous methods based on the self-owned resource dis-
tribution of agents. With the model, the communication costs
between agents to execute the allocated task are reduced, so

the total execution time of tasks can also be reduced
accordingly. Through the simulations, we can see that the
model can work well especially while the task number is
large. Therefore, the idea presented in this paper can be used
to develop real large-scale complex systems. Moreover, we
recognize that how to make trade-off between physical and
social negotiations should be explored in our future work
since we know that a good trade-off between the two
negotiations can bring benefit for us [16].

ACKNOWLEDGMENTS

This research was supported by the National Natural Science
Foundation of China (No. 60803060), the National High
Technology Research and Development Program of China
(863 Program) (No. 2009AA01Z118), the Excellent Young
Teachers Program of Southeast University (No. 4050181013),
the Specialized Research Fund for the Doctoral Program of
Higher Education (No. 200802861077), and the Scientific
Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry of China. The author
would like to thank the associate editor, Dr. Rudolf
Eigenmann, for his timely handling of the submission and
the three anonymous reviewers for their constructive com-
ments and suggestions.

REFERENCES

[1] H.A. Simon, The Sciences of the Artificial. MIT Press, 1996.
[2] J. Liu, X. Jin, and K.C. Tsui, Autonomy Oriented Computing (AOC):

From Problem Solving to Co

[16] Y. Jiang, J. Jiang, and T. Ishida, “Compatibility between the Local
and Social Performances of Multi-Agent Societies,” Expert Systems
with Applications, vol. 36, no. 3, part 1, pp. 4443-4450, 2009.

[17] Y. Jiang and T. Ishida, “A Model for Collective Strategy Diffusion
in Agent Social Law Diffusion,” Proc. 20th Int’l Joint Conf. Artificial
Intelligence (IJCAI ’07), Jan. 2007.

[18] Y. Jiang and T. Ishida, “Local Interaction and Non-Local
Coordination in Agent Social Law Diffusion,” Expert Systems with
Applications, vol. 34, no. 1, pp. 87-95, 2008.

[19] A. Schaerf, Y. Shoham, and M. Tennenholtz, “Adaptive Load
Balancing: A Study in Multi-Agent Learning,” J. Artificial
Intelligence Research, vol. 2, pp. 475-500, 1995.

[20] J. Bigham and L. Du, “Cooperative Negotiation in a Multi-Agent
System for Real-Time Load Balancing of a Mobile Cellular
Network,” Proc. Second Int’l Joint Conf. Autonomous Agents and
Multiagent Systems (AAMAS ’03), pp. 568-575, 2003.

[21] J. Guo and L.N. Bhuyan, “Load Balancing in a Cluster-Based Web
Server for Multimedia Applications,” IEEE Trans. Parallel and
Distributed Systems, vol. 17, no. 11, pp. 1321-1334, Nov. 2006.

[22] S. Dhakal, M.M. Hayat, J.E. Pezoa, C. Yang, and D.A. Bader,
“Dynamic Load Balancing in Distributed Systems in the Presence
of Delays: A Regeneration-Theory Approach,” IEEE Trans. Parallel
and Distributed Systems, vol. 18, no. 4, pp. 485-497, Apr. 2007.

[23] Y. Jiang, “Extracting Social Laws from Unilateral Binary Con-
straint Relation Topologies in Multiagent Systems,” Expert Systems
with Applications, vol. 34, no. 3, pp. 2004-2012, 2008.

[24] F. Wu, B.A. Huberman, L.A. Adamic, and J.R. Tyler, “Information
Flow in Social Groups,” Physica A: Statistical and Theoretical
Physics, vol. 337, no. 1/2, pp. 327-335, June 2004.

[25] P.S. Dodds, D.J. Watts, and C.F. Sabel, “Information Exchange and
the Robustness of Organizational Networks,” Proc. Nat’l Academy
of Sciences of the US, Oct. 2003, doi:10.1073/pnas.1534702100.

[26] A. Dey and G. Abowd, “Towards a Better Understanding of
Context and Context-Awareness,” Proc. CHI Workshop What, Who,
Where, When and How of Context-Awareness, Apr. 2000.

[27] P. Faratin, C. Sierra, and N.R. Jennings, “Negotiation Decision
Functions for Autonomous Agents,” J. Robotics and Autonomous
Systems, vol. 3-4, no. 24, pp. 159-182, 1998.

[28] Y. Le Quéré, M. Sevaux, C. Tahon, and D. Trentesaux, “Reactive
Scheduling of Complex System Maintenance in a Cooperative
Environment with Communication Times,” IEEE Trans. Systems,
Man,
Cybernetics—Part C: Applications TJ
T*
50.4(Rev.,)]TJ
/F5 1 Tf
23.1959 0 TD
[(vol.)-347.6(33,)-343.8]no. 2,

pp. 225-234, May 2003.

Yichuan Jiang received the PhD degree in
computer science from Fudan University,

