
SIC2: Securing Microcontroller Based IoT Devices
with Low-cost Crypto Coprocessors

Bryan Pearson∗, Cliff Zou∗, Yue Zhang†§, Zhen Ling‡ , Xinwen Fu∗†
∗Dept. of Computer Science, University of Central Florida, USA; bpearson@knights.ucf.edu, czou@cs.ucf.edu

‡School of Computer Science and Engineering, Southeast University; zhenling@seu.edu.cn
†Dept. of Computer Science, University of Massachusetts Lowell, MA, USA; xinwen_fu@uml.edu

§Dept. of Computer Science, Jinan University; zyueinfosec@gmail.com

Abstract—In this paper, we explore the use of microcon-
trollers (MCUs) and crypto coprocessors to secure IoT appli-
cations, and show how developers may implement a low-cost
platform that provides protects private keys against software
attacks. We first demonstrate the plausibility of format string
attacks on the ESP32, a popular MCU from Espressif that uses
the Harvard architecture. The format string attacks can be
used to remotely steal private keys hard-coded in the firmware.
We then present a framework termed SIC2 (Securing IoT
with Crypto Coprocessors), for secure key provisioning that
protects end users’ private keys from both software attacks
and untrustworthy manufacturers. As a proof of concept, we
pair the ESP32 with the low-cost ATECC608A cryptographic
coprocessor by Microchip and connect to Amazon Web Services
(AWS) and Amazon Elastic Container Service (EC2) using a
hardware-protected private key, which provides the security
features of TLS communication including authentication, en-
cryption and integrity. We have developed a prototype and
performed extensive experiments to show that the ATECC608A
crypto chip may significantly reduce the TLS handshake time
by as much as 82% with the remote server, and it may lower
the total energy consumption of the system by up to 70%. Our
results indicate that securing IoT with crypto coprocessors is a
practicable solution for low-cost MCU based IoT devices.

I. INTRODUCTION

The popularity of Internet of Things (IoT) has raised grave

security and privacy concerns. There is a broad attack surface

against IoT, including vulnerabilities and issues in hardware,

firmware/operating system, application software, networking

and data. For example, hackers can force autonomous ve-

hicles to crash [20] and may also steal credentials from

consumer and medical products [2]. Botnets such as Mirai

[1] and Reaper [6] exposed vulnerable networks and com-

promised millions of devices.

IoT device manufacturers have been advancing the hard-

ware to secure IoT devices. One of the pioneers is Espressif

Systems, which produces the popular ESP8266 and ESP32

chips and claimed a shipment of 100 million of both chips

in January 2020 [25]. Particularly, ESP32 has abundant

hardware security features including secure boot and flash

encryption [27]. However, we have found potential threats

against ESP32 by using two practical software attacks,

named Same Subroutine Attack and Cross Subroutine At-

tack. In Same Subroutine Attack, the vulnerable instruction

Corresponding author: Dr. Zhen Ling of Southeast University, China.

(i.e., printf(.) or sprintf(.)) and the victim’s secret

data are co-located in the same subroutine, and an attacker

may steal this secret data via the attack. However, Cross

Subroutine Attack is more powerful, where an attacker may

extract sensitive information even if the vulnerable function

and the victim code fragment are located in different subrou-

tines. We demonstrate our attacks with a proof of concept

web server, showing that an attacker may deploy the attacks

remotely through the Internet.

To defeat software attacks, we explore the use of low-cost

cryptographic coprocessors (costing less than $1) to secure

low-cost IoT devices based on microcontrollers (MCUs).

With a cryptographic coprocessor chip that can serve as the

root of trust, private keys may never leave the chip, and

cryptographic operations over data from the main MCU are

performed inside the chip. We present a secure key provision-

ing solution, denoted as SIC2 or Securing IoT devices with

Cryptographic Coprocessors, that stores private keys inside

of a cryptographic coprocessor. Our SIC2 protects keys from

malicious personnel within the semiconductor manufacturing

line as well as cyber attacks [13]. We implement a proof

of concept by pairing the ESP32 with the ATECC608A [8]

crypto coprocessor ($0.53 at Microchip), which can provide

mutual authentication, encryption and integrity to a network.

Our major contributions can be summarized as follows:

1) We show that popular MCUs such as ESP32 can

be compromised by multiple software attacks. Private

keys can be leaked remotely.

2) We propose SIC2, a systematic solution for manufac-

tures to securely write private keys into cryptographic

coprocessors to secure IoT devices. We use ESP32

as an example, pairing the MCU with a new cryp-

tographic coprocessor ECC608A.

3) We perform extensive experiments to validate the

speed performance and energy consumption of SIC2.

Our results show that connecting to a cloud server such

as Amazon EC2 can reduce the overall TLS handshake

time by 82% and energy consumption by up to 70%.

The rest of this paper is organized as follows. In Section

II, we provide the background of the ESP32 MCU and its

processor. In Section III, we present novel format string

attacks against the ESP32 which compromise private keys

stored on the device. In Section IV, we introduce SIC2

372

2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)

2690-5965/20/$31.00 ©2020 IEEE
DOI 10.1109/ICPADS51040.2020.00057

20
20

 IE
EE

 2
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 S

ys
te

m
s (

IC
PA

DS
) |

 9
78

-1
-7

28
1-

90
74

-7
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PA
DS

51
04

0.
20

20
.0

00
57

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

and how manufacturers may securely write private keys into

cryptographic coprocessors. A proof of concept of SIC2 is

discussed in Section V which combines the ESP32 with the

ECC608A. We evaluate the ECC608 overhead and network

performance in Section VI. Section VII discusses some

related works, and Section VIII concludes the paper.

II. BACKGROUND

In this section, we discuss the system design of the ESP32

and the architecture of the Xtensa processor, which is used

by the ESP32.

A. ESP32 System Design

The ESP32 is a popular IoT MCU [25]. It supports WiFi,

Bluetooth, and Bluetooth Low Energy (BLE) capabilities

for a variety of IoT applications. It exposes Universal

Asynchronous Receiver/Transmitter (UART) and Joint Test

Action Group (JTAG) external debugging ports. UART com-

munication allows users to monitor console output, upload

new firmware to the chip, dump flash contents, and modify

security settings on the chip. JTAG allows for complete

debugging of the ESP32, including reading and modifying

the entire firmware, bootloader contents, CPU registers and

SRAM contents on the ESP32. Espressif has ported GDB to

recognize the Xtensa architecture.

The ESP32 contains a 1kB block of secure eFuse memory.

These memory contents are accessible only to the hardware,

and once an eFuse value is set, it is irreversible. The

eFuse memory controls access to the communication and

debugging ports. Another feature of the eFuse is the secure

storage of a 256-bit flash encryption key and a 256-bit secure

boot key. With flash encryption enabled, the ESP32 can use

the flash encryption key with AES cipher block chaining

(CBC) mode to decrypt data and instructions before being

processed by the CPU. With secure boot, the ROM will

calculate an AES-based SHA digest to validate the integrity

of the bootloader, which in turn may validate the firmware.

B. Xtensa Processor Architecture

In this section, we discuss architecture details about

Xtensa LX6, a 32-bit microprocessor from Tensilica [11].

ESP32 contains 2 Xtensa processors. We first provide some

basic information about the Xtensa processor. We then dis-

cuss details about the register file and how the ESP32 can

access register contents at runtime.

1) Architecture Details: Xtensa implements a modified

Harvard architecture [24], with the main memory separated

into instruction SRAM and data SRAM. The processor is

programmable to allow manufacturers to modify instructions,

the register file size, cache size, memory width, and make

various other enhancements. Tensilica provides tools for

mapping any configuration to the physical hardware.

2) The Register Window: The ESP32’s register file con-

tains 64 general-purpose registers. The Xtensa architecture

implements a feature called register window and allows a

subroutine to only access to 16 general-purpose registers at

a time. In the register file, registers are labeled AR0, AR1,

Fig. 1: Overview of the ESP32 register file. A subroutine only has access
to the registers contained within the register window.

AR2, etc. The register window allocates a contiguous block

of registers within the register file; for example, a subroutine

may only have access to AR16, AR17, AR18, and so forth,

up to AR31. When a subroutine Sub1 calls some other sub-

routine Sub2, the register window "increments" its position

in the register file, meaning new registers become available

while old registers become inaccessible. The register window

can increment by either 4, 8, or 12 registers. When Sub2
returns, the register window reverts or "decrements" to the

original position, allowing Sub1 to access the same registers.

Figure 1 provides further details. Consider Sub1, whose

register window is defined for the range AR16 to AR31.

Now when Sub1 calls Sub2, the register window increments

by 8 registers such that Sub2 can now access registers in

the range AR24 to AR39, while registers AR16 to AR23 are

no longer accessible. Similarly, when Sub2 calls Sub3, the

register window increments by 8 registers again such that

Sub3 can access registers in the range AR32 to AR47. On

each return—from Sub3 to Sub2 and from Sub2 to Sub1—the

register window will decrement by 8 registers and allow each

respective subroutine to recover the contents of its registers.

In the case where a register window attempts to allocate

registers that already belong to a parent subroutine SubP,

the CPU will initiate a window overflow exception. In this

scenario, the CPU will dump the contents of registers into

memory and allow the new subroutine to access those regis-

ters. When the program returns back to SubP, it will restore

the register contents from memory back into the registers.

In this way, register contents are never lost, even when the

registers themselves must be shared among subroutines.

III. NOVEL ATTACKS AGAINST ESP32

In this section, we present two novel format string attacks

on the ESP32, named the Same Subroutine Attack and the

Cross Subroutine Attack. We begin by explaining the threat

model of these attacks. Then we discuss implementation

details, before showing a proof of concept for a remote

format string attack. Additional proof-of-concepts, including

373

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

a “Serial-to-TCP” attack, are discussed in the technical report

of this paper in Appendix D [21].

A. Threat Model

In the following attacks, we assume that the ESP32 may

expose some kind of communication channel to the user,

such as HTTP or MQTT. We also assume that the ESP32

stores some secret data in its firmware. The adversary may be

local or remote. A local adversary can physically access the

device and view serial output directly. In the local attack, we

assume that the adversary can access the UART interface on

the ESP32. This assumption is reasonable because the UART

interface can be easily accessed by a micro USB cable, and

the ESP32’s UART interface cannot be disabled. A remote

adversary can read the data transmitted by the ESP32 over

the communication channel. This assumption is reasonable

when the communication channel fails to authenticate the

user, which is common in IoT [17]. We show that the

proposed attacks can work both locally and remotely. Finally,

we assume that the firmware contains some programming

flaw, which is reasonable due to the abundance of software

vulnerability types in C [30] [31] [29] [23].

B. Attack Overview

Format string vulnerabilities [29] arise when formatting

functions fail to validate a user’s input format. An example

of such a function is printf(), which accepts format string

characters as its input. Typically, if the program were to

execute an instruction such as printf("%s", name), it would

simply print the contents of name. However, if name is not

provided to the function, the program will print the contents

of a different memory location, which may leak sensitive

data. Every format string character passed to the format

function will fetch the value of the next consecutive memory

address and cast it accordingly. On the ESP32, which has a 4-

byte address width, this means every format string character

fetches the next 4 bytes in memory.

Based on our experiments on the ESP32, we found that

when no input parameters are provided to printf(), it will

begin by fetching the last five registers in the subroutine’s

register window. Afterwards, it will fetch the value at the

stack pointer (SP), then the value at SP + 4, then SP + 8,

and so forth. This means that on the ESP32, at least 6 format

string characters are required to begin accessing memory

contents. In this way, the format string attack may be used

on the ESP32 to leak arbitrary data from memory.

C. Format String Attacks

1) Same Subroutine Attack: In the Same Subroutine
Attack, the format string instruction and the private data

exist within the same subroutine. We begin by discussing

the setup of this subroutine. We then describe the details of

the registers and memory. Finally, we show how an adversary

may exploit this program and obtain the private data.

Listing 1: Same Subroutine Attack psuedocode.

vo id app_main () {
c h a r tmp [1 6] = "PRIVATE KEY" ;

c h a r * params = ma l lo c (1 2 8) ;
a c c e p t _ u s e r _ i n p u t (& params) ;
p r i n t f (params) ; }

As shown by Listing 1, the program defines a local

variable called tmp in a subroutine called app_main. In

our example, tmp is a 16-byte char array set to the string

"PRIVATE KEY". printf() will print some arbitrary input that

is provided by the user in accept_user_input().
We used JTAG debugging on the ESP32 to determine

details about this program. Communication with JTAG re-

quires the addition of OpenOCD, an open-source software

project that can communicate with the JTAG interface [22].

We attached a GDB client to the OpenOCD session in order

to debug our application.

From JTAG debugging, we determined the following de-

tails. The stack pointer address of app_main is 0x3ffb4ee0.

On the ESP32, local char arrays are always defined starting at

the stack pointer address, so tmp is defined from 0x3ffb4ee0

to 0x3ffb4eef. The register window in the subroutine is

defined between AR16 and AR31. The contents of the last

five registers in the register window (namely, AR27 to AR31)

are 0x8001f880, 0x6ff1ff8, 0x0, 0x3ffaffe0, and 0x3ffb6840.

Fig. 2: Overview of the Same Subroutine Attack. The arrows show which
addresses printf() will access.

To perform the attack, the user must provide the following

format string as input to printf(): "%p %p %p %p %p %x
%x %x %x". The first five characters print the contents of

AR27, AR28, AR29, AR30, and AR31, while the last four

characters print the contents of tmp. The attack behavior is

illustrated in Figure 2. The output to UART is shown below:

0x8001f880 0x6ff1ff8 0x0 0x3ffaffe0
0x3ffb6840 56495250 20455441 59454b
0

As shown above, the first five values correspond to the

register contents of AR27 through AR31. The next 16 bytes

correspond to the stack contents, beginning with the stack

pointer. Recall that tmp is written at the stack pointer address.

Since the bus architecture of the ESP32 is little-endian, the

bytes must be reversed to recover the original data. For

example, the value 56495250 must be changed to 50524956.

After doing this for all values, the user can obtain the desired

value 50524956415445204b45590. A hex-to-ascii converter

shall reveal the contents of this data to be "PRIVATE KEY".

2) Cross Subroutine Attack: In the Cross Subroutine
Attack, the format string instruction and the private data

are located in different subroutines. This attack is much

more powerful than the Same Subroutine Attack, since it

can steal data from any previous subroutine in the call stack.

374

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

Again, we begin by discussing the setup requirements of the

program, followed by the details of the program including

memory and register contents. We conclude by showing the

exploit and how the private data may be recovered.

Listing 2 shows that the format string function and the

private data are located in different subroutines. we have a

local variable tmp defined in app_main, but we also have two

new subroutines, sub1 and sub2. In the expected program

flow, app_main calls sub1, which calls sub2, which calls

the vulnerable printf function. The attack will leverage the

behavior of the window overflow exception in the ESP32,

where register contents are dumped to memory when the

program transfers control to a new subroutine. Namely, the

address of app_main’s stack pointer will dump to memory

when the program executes sub2, and the attacker can use the

character "%s" at this location to recover the stack pointer

address, cast it as a string, and print its value.

Listing 2: Cross Subroutine Attack psuedocode.

vo id sub2 (c h a r * x) { p r i n t f (x) ; }
vo id sub1 () {

c h a r * params = ma l lo c (1 2 8) ;
a c c e p t _ u s e r _ i n p u t (& params) ;
sub2 (params) ; }

vo id app_main () {
c h a r tmp [1 6] = "PRIVATE KEY" ;
sub1 () ; }

Again, we used JTAG to debug the program and discov-

ered the following information. First, the stack pointer of

app_main, sub1, and sub2 are 0x3ffb4ee0, 0x3ffb4ec0, and

0x3ffb4ea0, respectively. As tmp is a local buffer defined in

app_main, tmp’s address is also 0x3ffb4ee0. The ESP32’s

application startup sequence makes several subroutine calls

prior to reaching app_main, and our experiments show that

the register file has already been exhausted by the time the

program reaches app_main. The call to sub1 and sub2 both

shift the register window by 8 registers. Therefore, due to the

window overflow exception, 8 registers must be dumped into

memory on both calls. The register window for app_main is

defined from AR16 to AR31. For sub1, it is defined from

AR24 to AR39. And for sub2, it is defined from AR32

to AR47. When jumping to sub1, registers AR16 through

AR23 are saved to memory; when jumping to sub2, registers

AR24 through AR31 are saved to memory. The stack pointer

address is always stored in the second register of the register

window; in the case of app_main, AR17 contains the stack

pointer value 0x3ffb4ee0. Our experiments revealed that the

second register is always dumped to the memory location

that is 12 bytes behind the new stack pointer. In particular,

this means that when the program reaches sub1, the stack

pointer address of app_main is saved to 0x3ffb4eb4, exactly

12 bytes behind sub1’s stack pointer.

If printf can be manipulated to point to 0x3ffb4eb4, the

character "%s" will cast this address as a char pointer and

print its value accordingly. This will cause the contents of

tmp to be leaked. However, as noted above, the stack pointer

address of sub1 is 0x3ffb4ec0, while the stack pointer address

of sub2 is 0x3ffb4ea0. This means that the format string

attack cannot be used in sub1, because the format string

pointer can only be moved forward in memory starting from

the stack pointer; it cannot be moved backward. Fortunately,

sub2

ESP32 uses the WebServer library of the Arduino platform,

which allows a web server to process HTTP requests from

the client and send responses back. The ESP32 application

contains a format string vulnerability based on the sprintf()
function in C, which sends the formatted output to a string

rather than stdout. The expected syntax for this instruction is

sprintf(buf, "%s", param), where buf is a string and param is

formatted as a string before being sent to buf. However, the

instruction sprintf(buf, param) is vulnerable to the format

string attack, because param is now treated as the format

parameter and can lead to memory leakage if controlled by

an attacker. If buf is passed remotely to an adversary, he can

observe the output of the format string attack.

1) Remote Same Subroutine Attack: This attack exploits

the Same Subroutine Attack through the sprintf() vulner-

ability to leak a private key on a web server. Listing 3

provides pseudocode, which starts a web server at port 80.

The handleReq() subroutine is called whenever a user visits

the root index of the server. This subroutine stores a key

and parses any HTTP GET request sent from the client,

calls sprintf() to format the request, and passes the formatted

request back to the client in an HTTP response.

Listing 3: Remote Same Subroutine Attack psuedocode.

WebServer s e r v e r (8 0) ;
vo id handleReq () {

c h a r key [3 2] = " THIS IS A PRIVATE KEY" ;
c h a r * r e s = ma l l oc (1 2 8) ;
c h a r * param = s e r v e r . a r g (0) . c _ s t r () ;
s p r i n t f (r e s , param) ;
s e r v e r . send (2 0 0 , " t e x t / p l a i n " , r e s) ; }

vo id s e t u p () { s e r v e r . on (" / " , handleReq) ; }
vo id lo op () { s e r v e r . h a n d l e C l i e n t () ; }

To send a payload, the adversary can use a web browser to

send the following GET request to the ESP32:

http://[IP addr]/?h=%25x+%25x+%25x+
%25x+%25x+%25x+%25x+%25x+%25x+%25x+
%25x+%25x+%25x

The server will receive the format string and parse it

during the sprintf() instruction, which will leak the contents

of the private key into the res buffer. The server will send the

buffer back to the adversary to read in the HTTP response.

The attacker can then derive the key from the payload by

decoding to ascii.

2) Remote Cross Subroutine Attack: This attack exploits

the Cross Subroutine Attack through the sprintf() vulnera-

bility. Similar to the printf()-based Cross Subroutine Attack,

the adversary will pass a format string containing the "%s"

character to cast the private key as a string. The web server

will pass this output to a buffer that is sent back to the

adversary in an HTTP response. The full details of this attack

are available in Appendix D of the technical report [21].

IV. SIC2: SECURING IOT WITH CRYPTO COPROCESSORS

In this section, we discuss the need of crypto coprocessors

for IoT devices and present a secure key provisioning frame-

work. Then we provide a security analysis of the framework.

A. Need of Crypto Co-processors

From our discussion in Section III, MCUs with secure boot

can be compromised and leak cryptographic keys if these

keys have no hardware protection. While the TrustZone tech-

nology has been integrated into Arm Cortex-M processors,

denoted as TrustZone-M, it can be compromised too [18]. If

an application in a MCU directly accesses cryptographic keys

for cryptographic functionalities, once the MCU system is

compromised, the cryptographic keys will leak. Therefore, a

crypto coprocessor chip is an ideal solution. The application

feeds data to the crypto coprocessor, which stores the keys,

performs cryptographic functionalities inside the chip and

returns the results to the application in the MCU.

We have examined over 40 MCUs and a number of

IoT development boards and solutions. Only Microsoft’s

Azure Sphere [19] and TI’s CC3220 and CC3100MOD have

integrated crypto coprocessors with the MCUs. Fortunately,

there are two standalone crypto coprocessor modules, Mi-

crochip’s ATECC608/ATECC508 (around $0.53/unit) and

NXP’s SE050 (around $0.97/unit). Only a few development

boards have begun to use these crypto coprocessor modules,

including Microchip’s SAM L11 Xplained Pro Evaluation

Kit and Arduino NANO 33 IOT. Our full dataset is provided

in Appendix A of the technical report for this paper [21].

B. Secure Key Provisioning

We introduce our secure key provisioning model, which

allows an IoT manufacturer to adopt low-cost crypto copro-

cessors without leaking secret keys written into the crypto

coprocessors. Manufacturers will defer the provisioning of

private keys and certificates to a secure facility, which is

separated from the rest of the manufacturing process and

responsible for storing data inside the crypto chips. Even

this secure facility cannot access private keys, which are

internally generated by the crypto coprocessor.

Secure key provisioning is a grand challenge while incor-

porating a crypto coprocessor into an IoT system. Without

secure provisioning, private keys may be leaked by malicious

personnel within the manufacturing line or by supply-chain

attacks [13]. An ideal IoT solution is that each IoT device

has at least one unique private key (in terms of public key

cryptography) along with a certificate stored in the secure

storage of the crypto coprocessor, and the public key associ-

ated with the crypto coprocessor can be safely derived by the

party who wants it. To solve this key provisioning problem,

we have to answer questions such as: who will inject a private

key into the crypto coprocessor? And when? We provide a

novel framework considering the entire development cycle

of the IoT system.

Our secure key provisioning framework is shown in Figure

4. It is composed of five main entities. The factory is a

generic concept that will represent the complete semicon-

ductor manufacturing line, which can be widely varied. This

includes the fabrication, packaging, assembly, and testing of

the hardware. The factory will manufacture crypto chips and

IoT devices. Additionally, end users can purchase their IoT

products from the factory. The secure facility will receive

376

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Secure key provisioning framework.

crypto chips from the factory and provision them with private

keys and certificates. The secure facility will also distribute

these certificates to the runtime server. The build server
creates the firmware for the end device. The runtime server
serves as the application server and authenticates the end

device’s public key and certificate. Finally, the end user
/ end device is the final IoT product / the owner of the

final IoT product. The factory and secure facility are part of

the generic Manufacturer group, while the build server and

runtime server are specific to the IoT Company.

1) Manufacturing Phase (Steps 1-4): In this phase, the

manufacturing line produces the hardware of the chips ac-

cording to the specification by the IoT company. The build

server will send a manufacturing request to the factory,

including hardware requirements and the identity of the

runtime server. The factory follows this request to manu-

facture and assemble the IoT device. This includes four key

steps. Wafer fabrication constructs the silicon die to connect

the electrical components together. Wafer probing performs

electrical tests on the silicon chip. Packaging packages the

die (i.e., block of semiconducting material) to protect the

electrical components from damage. And assembly refers

to the production of printed circuit boards (PCBs) and

assembling the modules and chips onto the PCB. Assembly

may occur either before or after the key provisioning phase.

2) Key Provisioning Phase (Steps 5-10): In this phase,

the secure facility performs the key provisioning process on

the crypto coprocessor and generates the device certificates.

After developing the product firmware, the build server sends

it to the factory, who forwards it to the secure facility. The

factory also notifies the secure facility about the runtime

server’s identity. Then the secure facility provisions each

crypto chip to internally generate a private key. Additionally,

the secure facility will generate and store a unique device

certificate into the device. The certificate identifier, e.g., its

Common Name, should be unique to each certificate; for

instance, it can be derived from the identity of the crypto

chip, such as a serial number. Next, the secure facility will

configure the chip such that its public key and certificate

are readable and its private key is locked from read/write

access. Finally, the secure facility will upload the firmware

to the chip and perform some final testing to ensure that

the crypto coprocessor has been correctly provisioned. The

secure facility distributes the device certificate to the runtime

server, who shall save these certificates to a registry.

3) Device Authentication Phase (Steps 11-18): In this

phase, the end user obtains the finished product and au-

thenticates it to the runtime server using the key stored

on the crypto chip. The end user orders the product from

the factory, turns on the device and sends an authentication

request to the runtime server, which includes the public key

of the crypto coprocessor. The runtime server searches its

certificate registry to ensure the validity of the public key.

Then it will initiate a challenge-response procedure to ensure

that the end device owns the public key. The end device will

use its private key to sign a challenge and prove ownership of

the key. Once authentication is complete, the runtime server

and end user can proceed with the normal application.

C. Security Analysis

With our defense enabled, all software attacks in this paper

will fail because private keys will no longer be stored in

the firmware. Based on the framework, it can be seen that

the crypto chip is provisioned in a secure environment, and

that a malicious user or factory worker can never steal the

private key. One issue is that a factory will manufacture many

different products, and the runtime server must only accept

certificates which belong to its own products. To address this,

the runtime server will receive certificates from the secure

facility and can know ahead of time which certificates to

trust. In this way, the runtime server will reject certificates

from devices that were not provisioned by the secure facility.

Additionally, the framework can be extended to provision

private keys for other devices besides crypto coprocessors.

V. PROOF OF CONCEPT OF SIC2

As a proof of concept, we have implemented SIC2

via the ESP32 and ECC608 to achieve software security.

The ECC608 chip will store a 256-bit ECC private key

that can serve as the root of trust for many applications,

including network security via X.509 certificates and the TLS

cryptographic protocol. In the case of a software exploit,

the developer does not need to worry that the private key

has been compromised, since the key will be stored in the

377

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

secure ECC608 chip instead of the compromised ESP32

chip. In addition, the ECC608 provides hardware accelera-

tion of cryptographic functions such as ECDH and ECDSA,

allowing the ESP32 to authenticate to a network faster.

Furthermore, we have combined the ESP32 and ECC608

with the DHT22 temperature and humidity sensor from

Adafruit [12]. A prototype of our defense can be found in

Figure 5. This project was written in ESP-IDF version 4.0

and is publicly available on Github *.

Fig. 5: Schematic of ESP32 with ECC608 and DHT22.

A. ATECC608A Overview

The ECC608 comes packaged in the Small Outline IC

(SOIC) format. In the manufacturing line, the SOIC may be

directly soldered onto a PCB for maximum area efficiency.

Alternatively, a user may solder the SOIC to a socket adapter

which can be used on a breadboard. Figure 6 illustrates

the pairing of an ESP32-based development board with the

ECC608 on a socket adapter.

The ECC608 contains an EEPROM which is capable of

storing up to 16 keys, certificates, or user data. Storage re-

gions are organized into slots. The slot and its corresponding

key may be configured in various ways. Our configuration

allows the ECC608 to generate and verify signatures and

extract the public key. The private key cannot be read

or modified. The ECC608 may also generate a certificate

signing request (CSR) from the private key. This is necessary

for attaining a valid X.509 certificate. To prevent malicious

configuration or overwriting of data, the user should lock the

configuration and data memory zones.

A device can communicate with the ECC608 via the Cryp-

toAuthLib software library [10]. CryptoAuthLib allows an

MCU to communicate with the ECC608 via the I2C protocol

to lock the memory zones and send other commands. The

host MCU and ECC608 may also share a mutual input/output

secret, which obscures the I2C traffic by encrypting data

with the secret value. This results in a safer I2C channel.

To achieve network communication, we use MbedTLS [7],

a lightweight crypto library that implements TLS functions

on embedded systems. We have modified this library to out-

source private key operations to the ECC608. The most crit-

ical of these operations is the signature generation function,

which is used to sign a challenge packet from the server and

*Available at https://github.com/PBearson/ESP32-With-ECC608.

prove ownership of a certificate. We have also added support

for signature verification and ECDH establishment, in case

the server provides an ECC-based certificate. Altogether, the

necessary modifications to MbedTLS are quite minimal, as

the majority of the code base remains untouched.

Apart from secure key storage, the ECC608 can serve a

WiFi-enabled application in other ways. For instance, the

ECC608 provides a secure boot feature that can validate

a firmware; this can provide additional security to chips

such as Arduino or ESP8266. If the ECC608 stores the

device certificate or CA certificate, then TLS performance

could potentially increase even further. Finally, each ECC608

contains a 72-bit unique serial number that can be used to

identify the chip.

B. Integration with ESP32
To combine the ESP32 with the ECC608, we provide

details for a complete hardware and software implementa-

tion. The CryptoAuthLib and MbedTLS libraries must be

ported correctly to compile within ESP-IDF’s build system.

We provide implementation details with the DHT22 in the

technical report [21].

Fig. 6: ESP32 with the ECC608 and DHT22 on a breadboard.

We have paired the crypto chip with a development

board that incorporates ESP-WROOM-32 module and 4 MB

external flash. To utilize the I2C interface, we use GPIO

ports 15 (SCL) and 4 (SDA) on the ESP32, although other

ports such as 21 and 22 can be used. The power supply of

the ECC608 connects to the ESP32’s 3.3V output pin. We

have soldered the ECC608 to a SOIC socket adapter. Figure

6 illustrates our hardware setup on a breadboard.

We have used Atmel Crypto Evaluation Studio (ACES) to

set the configuration parameters. ACES is a programming

software that can communicate with the ECC608 via an

external programmer, such as the ATSAMD21 board [9].

We have developed a provisioning app that generates an

ECC private key in slot 0 and corresponding X.509 CSR. It

will also lock the data zone once the private key is set. To

port CryptoAuthLib to ESP-IDF, we have cloned the source

code from Github and added a “CMakeLists.txt” (a file exe-

cuted by CMake which describes the build instructions for a

project) to the root directory. The file includes the source and

header files of this library. The library contains a hardware

378

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

abstraction layer that specifies communication settings with

many devices including the ESP32 over I2C; this setting is

included as a compile option in "CMakeLists.txt".

In addition, we have developed an app that connects with

a remote server via Message Queueing Telemtry Transport

(MQTT) over TLS. Our app integrates the CryptoAuthLib

and Espressif’s MbedTLS libraries. Like CryptoAuthLib, we

write a "CMakeLists.txt" file for MbedTLS that includes the

required source files as well as dependencies to CryptoAuth-

Lib. We have modified the ECDSA and ECDH source files

included in MbedTLS. We have written alternative functions

in these source files which can be enabled or disabled

in the port directory, via a configuration file. In ECDSA,

we write function overloads for signature generation and

signature validation which offload these operations to the

ECC608. atcab_sign and atcab_verify_extern will provide

the required operations. In ECDH, we overload the public

key generation and shared key generation functions. at-
cab_genkey will generate a key in the temporary key slot,

while atcab_ecdh_tempkey will establish the shared key.

C. Secure Provisioning of the ESP32

The ESP32 can provide flash encryption and secure boot

to prevent readout and modification of the firmware. These

features rely on two private keys stored in the secure eFuse

memory. However, enabling these features presents a chal-

lenge due to the security risks involved in key provisioning,

as discussed in Section IV.

The details for enabling the ESP32’s security features

are as follows. 1) Flash Encryption (FE): The program-

mer should use Espressif’s build framework to compile the

bootloader to support FE. During the boot sequence, the

bootloader will detect FE is supported, and the hardware

will generate a key to store in the eFuse. Then, the chip will

encrypt the complete flash contents. 2) Secure Boot (SB):
The programmer should compile the bootloader to support

SB. On first boot, the ROM will generate a SB key to store

in the eFuse. Then, the ROM generates an AES-based SHA

digest over the bootloader using the SB key. The digest

is stored in the flash. The programmer will also sign the

firmware with an ECC private key, while the ECC public

key is stored in the bootloader to verify the firmware.

A reliable and trusted secure facility can meet the provi-

sioning requirements of the ESP32. Similar to the ECC608,

the ESP32 is fully capable of generating and storing
its own private keys, which significantly reduces the risk

of exposure. As long as the build server has compiled the

bootloader with the security features and the firmware has

been signed, the secure facility only needs to upload these

images to the flash, which will trigger the ESP32 to enable

the security features. The secure facility can also perform

some tests to check that security has been enabled. This

ensures that the private keys are never exposed to anyone.

VI. EVALUATION

In this section, we discuss the area overhead of the

ECC608 added to an MCU. We also explore the improve-

ments to the speed and energy consumption of the TLS

handshake provided by the integrated ECC608 crypto chip.

For performance assessment of the ESP32 security features,

please refer to Appendix C of the technical report [21].

A. ECC608 Area Overhead

PCB size is an important factor when considering IoT

production costs. We have calculated the size of the ECC608

and WROOM and determined the area overhead of this

crypto chip. The physical dimensions of the WROOM are

roughly 459 mm2, while the ECC608 dimensions are about

29.4 mm2. This results in an area overhead of about 6.4%

relative to the WROOM module. When considering the area

of the overall circuit board, this shows that the area overhead

of the ECC608 is quite minimal and will likely have an

acceptable impact on production costs for IoT companies.

B. AWS Versus EC2

We have measured the network performance of SIC2 on

Amazon Web Services (AWS) IoT Core and Amazon Elastic

Compute Cloud (EC2). AWS IoT Core, or simply AWS,

is an IoT management cloud service. AWS can generate

certificates for the end user that are signed by the Amazon

Root CA. AWS also serves as an MQTT message broker,

meaning end devices can connect to AWS using MQTT.

This broker uses TLS on port 8883, allowing for a protected

connection. Meanwhile, EC2 is a service that allows users

to configure and run virtual machines in the cloud. Our EC2

instance runs Ubuntu 18.04. To set up MQTT over TLS, we

used the Mosquitto software which can be used to establish

an MQTT broker; Mosquitto can be configured to use TLS

for mutual authentication and encryption, similar to AWS.

The difference in the network connection between AWS

and EC2 lies in their server certificates. During the TLS

handshake, AWS will present a server certificate signed by a

RSA private key, while EC2 is configured to use a certificate

signed by an ECC private key. This means that during the

TLS handshake, the ECC608 cannot be used to verify the

AWS certificate and negotiate the session key, since ECC608

only supports ECC for public key cryptography. However,

the ECC608 can be used to verify EC2’s certificate and take

advantage of the hardware acceleration.

C. ECC608 Speed

The ECC608 contains hardware acceleration of crypto

operations, resulting in much better performance when com-

pared to equivalent software implementations. We have mea-

sured the TLS handshake time between a remote server and

a standalone ESP32 vs. one paired with the ECC608. We

observe how clock speed impacts the handshake time by

setting the ESP32 CPU speed to 240, 160, or 80 MHz. We

also compare performance between AWS IoT and an EC2

server, the latter of which uses an ECC-based certificate and

can perform ECDH with our ESP32. Each benchmark was

executed 100 times, and we recorded the average runtime.

Figure 7 shows the total handshake time when connecting

to AWS, while Figure 8 measures the EC2 handshake time.

Connecting to AWS does not impact the connection time

379

Authorized licensed use limited to: Southeast University. Downloaded on June 13,2021 at 02:52:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: AWS handshake time. Fig. 8: EC2 handshake time. Fig. 9: ECDSA sig. gen. time. Fig. 10: ECDSA sig. verify time.

Fig. 11: ECDH time. Fig. 12: AWS handshake energy draw. Fig. 13: EC2 handshake energy draw. Fig. 14: ECDSA sig. gen. energy draw.

Fig. 15: ECDSA verify energy draw. Fig. 16: ECDH energy draw.

so drastically, since the ECC608 can only use the signature

generation function to prove ownership of its certificate.

However, when connecting to EC2, the handshake time

reduces significantly, as much as 82% when the CPU clock

speed is set to 80 MHz. This is because the ECC608 can

also verify the server’s certificate and perform ECDH. It

can be observed that these operations form the majority of

computation, as the CPU clock speed has almost no impact

on the handshake performance when the ECC608 is in use.

Figures 9 and 10 show metrics for ECDSA signature

operations. In the worst case of 80 MHz, the ESP32 takes

roughly 1.3 seconds to generate a signature and 2.3 seconds

to verify a signature. By comparison, the ECC608 can

consistently perform signature generation and verification in

about 0.25 seconds.

Finally, we measure the time delay of ECDH which

establishes the session key among the client and the server.

Figure 11 shows these results. In the worst case of 80

MHz, the standalone ESP32 can perform ECDH in about

to the AP; if a malicious AP responds with a “success”

packet, the ESP32 will crash [3]. In NONOS SDK (the

official ESP8266 developer framework) 3.0 and earlier, the

802.11 MAC library fails to validate the bounds of the

AuthKey Management (AKM) Suite Count value and the

Pairwise Suite Count value. A malicious AP can send an

arbitrarily large AKM packet and trigger a crash [4]. Note

that ESP-IDF version 3.3 and NONOS version 3.1 address

all of the aforementioned vulnerabilities. Carel Van Rooyen

and Philipp Promeuschel [24] have shown that some ESP32

applications may be vulnerable to a stack-based buffer over-

flow attack if stack smashing protection is not enabled by

the compiler. Our format string attacks differ from the above

related works because our attacks are more general in nature

(i.e., not specifically tied to any libraries), and the ESP32

provides no formal protection against format string attacks.

VIII. CONCLUSION

In this paper, we explore how low-cost cryptographic

coprocessors may offer security protection to low-cost MCU

based IoT devices by providing a hardware root of trust for

private keys and a secure execution environment. Software

attacks are a major concern on IoT devices. We demonstrate

two remote format string attacks on the popular ESP32

MCU. To thwart against these attacks, we pair the ESP32

with the ATECC608A crypto coprocessor, show how a

manufacturing facility may provision private keys securely,

and present implementation details on pairing the ESP32

with the ECC608. Finally, we show that the addition of a

cryptographic coprocessor can advance the network perfor-

mance of MCU based IoT devices by decreasing the TLS

handshake time and energy consumption.

ACKNOWLEDGEMENTS

This research was supported in part by National Key R&D

Program of China 2018YFB0803400, 2018YFB2100300,

and 2017YFB1003000, US National Science Foundation

(NSF) Awards 1643835, 1931871 and 1915780, US De-

partment of Energy (DOE) Award DE-EE0009152, National

Natural Science Foundation of China (Grant Nos. U1736203,

61877029, 62022024, 61972088, 61532013), Jiangsu Provin-

cial Natural Science Foundation for Excellent Young Schol-

ars under Grant BK20190060. Any opinions, findings, con-

clusions, and recommendations in this paper are those of

the authors and do not necessarily reflect the views of the

funding agencies.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou. Understanding the mirai botnet.
In 26th USENIX Security Symposium (USENIX Security 17), Aug.
2017.

[2] C. Cimpanu. Hacker leaks passwords for more than 500,000 servers,
routers, and iot devices. https://www.zdnet.com/, 2020.

[3] M. E. Garbelini. Esp32/esp8266 eap client crash (cve-
2019-12586. https://matheus-garbelini.github.io/home/post/
esp32-esp8266-eap-crash/, 2019.

[4] M. E. Garbelini. Esp8266 beacon frame crash (cve-
2019-12588. https://matheus-garbelini.github.io/home/post/
esp8266-beacon-frame-crash/, 2019.

[5] M. E. Garbelini. Zero pmk installation (cve-2019-12587. https://
matheus-garbelini.github.io/home/post/zero-pmk-installation/, 2019.

[6] A. Greenberg. The reaper iot botnet has already
infected a million networks. https://www.trendmicro.
com/vinfo/pl/security/news/cybercrime-and-digital-threats/
millions-of-networks-compromised-by-new-reaper-botnet, October
2015.

[7] A. Holdings. Arm mbed. https://tls.mbed.org/, 2020.
[8] M. T. Inc. Atecc608a. https://www.microchip.com/wwwproducts/en/

ATECC608A, 2018.
[9] M. T. Inc. Atsamd21g18. https://www.microchip.com/wwwproducts/

en/ATsamd21g18, 2020.
[10] M. T. Inc. Cryptoauthlib - microchip cryptoauthentication library.

https://github.com/MicrochipTech/cryptoauthlib, 2020.
[11] T. Inc. Xtensa Instruction Set Architecture (ISA) Reference Manual.
[12] A. Industries. Dht22 temperature-humidity sensor + extras. https:

//www.adafruit.com/product/385.

