
BLESS: A BLE Application Security Scanning
Framework

Yue Zhang1,2, Jian Weng1,*, Zhen Ling4, Bryan Pearson2, and Xinwen Fu2,3

1College of Information Science and Technology, Jinan University,

Guangzhou, Guangdong,China. Email: zyueinfosec@gmail.com, cryptjweng@gmail.com
2Department of Computer Science, University of Central Florida, FL, USA.

Email: yue.zhang@ucf.edu, bpearson@knights.ucf.edu, xinwenfu@ucf.edu
3Department of Computer Science, University of Massachusetts Lowell, MA, USA.

4School of Computer Science and Engineering, Southeast University,China. Email:zhenling@seu.edu.cn

Abstract—Bluetooth Low Energy (BLE) is a widely adopted
wireless communication technology in the Internet of Things
(IoT). BLE offers secure communication through a set of pairing
strategies. However, these pairing strategies are obsolete in the
context of IoT. The security of BLE based devices relies on
physical security, but a BLE enabled IoT device may be deployed
in a public environment without physical security. Attackers who
can physically access a BLE-based device will be able to pair with
it and may control it thereafter. Therefore, manufacturers may
implement extra authentication mechanisms at the application
layer to address this issue. In this paper, we design and implement
a BLE Security Scan (BLESS) framework to identify those BLE
apps that do not implement encryption or authentication at
the application layer. Taint analysis is used to track if BLE
apps use nonces and cryptographic keys, which are critical to
cryptographic protocols. We scan 1073 BLE apps and find that
93% of them are not secure. To mitigate this problem, we propose
and implement an application-level defense with a low-cost $0.55
crypto co-processor using public key cryptography.

Index Terms—Bluetooth Low Energy, IoT Security, BLE at-
tacks, Reverse Engineering, BLE Security Scanning.

I. INTRODUCTION

We have entered the age of Internet of Things (IoT), featur-

ing various applications, such as smart healthcare, smart home,

and smart city. As a promising wireless network technology,

Bluetooth Low Energy (BLE) has positioned itself as one of

the key enabling technologies in the IoT [1], [2]. Compared

to the Bluetooth Classic, BLE maintains a larger coverage

area while considerably reducing power consumption, which

ideally meets requirements of IoT.

BLE achieves its communication security through a set

of pairing strategies at the link layer, including Just Works,

Passkey-entry, Numeric Comparison and Out of Band (OOB).

A typical BLE application scenario is that the owner of two

BLE devices pairs them together wirelessly through Bluetooth

and wants to defeat the man-in-the-middle (MITM) attack. The

Passkey-Entry and Numerical Comparison pairing protocols

ensure the owner that he/she is pairing the two devices he/she

sees and there are no MITM attacks.

However, the threat model of BLE pairing strategies is

obsolete in the era of IoT. An implicit assumption for secure

BLE pairing is that the owner owns the two pairing devices

and the physical security of these devices is ensured. However,

a BLE enabled IoT device may be deployed in a public

environment. An attacker may access and pair with such a

device. Therefore, a secure pairing strategy such as Passkey-

entry and Numerical Comparison does not prevent the attacker

from pairing with the victim device [3].

Given that the link layer BLE pairing strategies are obsolete

[3], IoT vendors may resort to the application layer mecha-

nisms for authentication. We carefully review the state-of-the-

art of authentication protocols [4]–[7] and conclude a secure

authentication protocol must involve cryptographic keys for

encryption and nonces for message freshness. Without encryp-

tion, the communication is subject to eavesdropping. Without

nonces, the communication is subject to replay attacks.

In this paper, we propose the BLE application Security

Scanning tool (BLESS) to study the security practices of BLE

products. BLESS scans a BLE app and checks if it uses

cryptographic keys and nonces. If an app does not involve

cryptographic keys or nonces, it is not considered secure. The

challenge is how to identify if cryptographic keys or nonces

are used by the BLE apps and the corresponding protocols.

The intuition of BLESS is that data flows, and their sources

and sinks can be used to identify the involvement of nonce

and keys. For example, a key can be derived from the input

of a user within an app. The app saves it onto its own disk for

further usage and distributes it to a peer device. Nonces such

as random numbers are often used in a challenge-response

protocol with back and forth message exchanges. By utilizing

these features, we use taint analysis [8], [9] to track data flows,

sources and sinks. If an app does not have such features, the

app does not use keys or nonces. We then determine that the

app does not implement an application layer authentication

protocol, and is not secure.

To validate our tool, we performed several case studies of

BLE products, including popular blood pressure monitors from

Smart Pulsewave and BP3L at Amazon. These two products

are denoted as insecure by our tool. Specifically, without keys

and nonces, blood pressure monitors from Smart Pulsewave
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are subject to eavesdropping and replay attacks. The BP3L

blood pressure monitor uses a hard-coded key and is subject

to spoofing attacks. Anybody who extracts the hard-coded key

from the app can pretend to be the blood pressure monitor and

bypass the authentication of the app. This allows us to forge

the blood pressure reading data sent by the blood pressure

monitor. Due to the fake blood pressure reading, a patient’s life

may be in danger for medication mistakes and wrong medical

treatment accordingly.

The major contributions of this paper can be summarized

as follows.

1) We design and implement BLESS. To the best of our

knowledge, we are the first to use taint analysis to

determine whether an app implements an application

layer authentication protocol.

2) We apply BLESS to BLE apps, although it can be used

in other contexts (e.g., Wi-Fi, Zigbee and so forth).We

obtain 1073 BLE apps from androzoo [10] and find

that 76% of the apps do not implement authentication

protocols, and 93% are not secure.

3) The recent advance of hardware allows us to implement

an application level authentication protocol with a low-

cost $0.55 crypto coprocessor, ATECC608A, based on

public key cryptography. We evaluate its performance

and show its feasibility in IoT BLE applications.

The rest of the paper is organized as follows. We begin with

a brief introduction to BLE in Section II. Section III presents

the design and implementation of BLESS. In Section IV, we

preform case studies to validate our design. Section V presents

our countermeasures. Section VI evaluates the performance of

BLESS and our countermeasures. We study related works in

Section VII and conclude the paper in Section VIII.

II. BLUETOOTH LOW ENERGY

This section provides a brief introduction to BLE. We first

present how two BLE devices are connected. Afterwards,

we introduce how the pairing process occurs between them.

Finally, we show how data is organized and accessed by BLE

devices through Attribute Protocol (ATT) and the Generic

Attribute Profile (GATT).

A. Connection Setup

We take the connection setup procedure between a smart-

phone and a smart lock as an example. An app on the

smartphone is designed to communicate with the smart lock.

First, the smart lock broadcasts advertising packets which

indicate that the smart lock is connectable. The app on the

smartphone receives these advertising packets, and then sends

a scan request to the smart lock to get more information from

it. Afterwards, the lock responds with a scan response packet.

The advertising packets and the scan response packet include

the basic information of the smart lock, such as the device

name, primary service description, and so forth. Based on

the information above, the app on the smartphone can decide

whether the smart lock is the device of interest. If so, the

app on the smartphone sends the connect request, and the

connection is established. According to BLE specifications,

the device which sends the connect request is called master
device, while its peered device is called slave device.

B. Pairing Process

In BLE, two parties can communicate in plaintext with

each other. They may also go through the pairing process to

negotiate keys and encrypt the communication at the link layer.

Pairing involves three phases. In the first phase, the two de-

vices exchange their pairing features. Based on these features,

a suitable pairing method can be adopted for the next phase.

In the second phase, the two devices agree on a long term

key (LTK) for future link encryption. In such a way, every

time they want to communicate with each other, the pairing

process will not be repeated. There are four pairing methods

provided by BLE as of now, including Just Works, Passkey
Entry, Numeric Comparison (Only for BLE version 4.2 and

beyond) and Out of Band. Among them, Just Works is subject

to MITM attacks [11], while others can defend against such

an attack. Therefore, the generated key also has two security

properties, namely authenticated-and-MITM-protection and

unauthenticated-and-no-MITM-protection. In the third phase,

an Identity Resolution Key (IRK) and Connection Signature

Resolving Key (CSRK) are generated from one device (either



encrypted read/write, authenticated read/write and authorized

read/write. The read/write attribute can be accessed freely,

while encrypted read/write can be accessed only when the link

is encrypted. The authenticated read/write attribute can only be

accessed when the link is encrypted by a key with the property

of authenticated-and-MITM-protection (when Passkey-Entry,

Numeric Comparison or OOB is applied). However, how the

authorized read/write attribute can be accessed is not specified

in BLE specifications as of now.

Generic Attribute Profile (GATT) is built upon ATT. It

organizes attributes into services. GATT allows the devices

to exchange arbitrary data in the format of attributes. By use

of GATT, two peer devices can interact in a Client-Server

Architecture. The device holding many attributes with data

is the server, while the other device requesting data from the

server is the client. Services may include other services as their

building blocks. The major service that contains subordinate

services is called the primary service, while the auxiliary ones

refer to the secondary services.

III. BLESS: BLE APP SECURITY SCANNING

In this section, we first present the assumption of our

security scanning procedure. We then introduce the scanning

strategy to identify encryption and authentication in BLE

apps. Afterwards, we introduce implementation details of the

scanning strategy.

A. Assumption

We assume that an app does not rely on BLE pairing for se-

curity given BLE’s vulnerabilities. Recall that an attacker can

pair with a victim BLE device that is deployed in public. The

attacker may also install malware on a victim’s smartphone

and deploy co-located attacks [12]–[14]. Therefore, a BLE

app shall use BLE only as a wireless communication venue

and implement security patterns at the application layer. The

BLE app implements encryption for confidentiality and two

types of cryptography based authentication services: integrity

authentication for verifying data integrity and source authen-

tication for verifying the user identity. For example, password

based source authentication can be used to verify the user,

while encryption can be applied to protect the transmission of

the password via the BLE wireless channel. We assume that

an attacker is not present during the bootstrapping process.

B. Pattern of Keys and Nonces

A secure authentication protocol must involve keys to ensure

confidentiality and the integrity of data transmission. Nonces

are needed to ensure the freshness of messages. If no key or

nonce is used in an app, the app is not considered secure. When

keys and nonces are used in cryptographic protocols, their use

follows specific patterns of data flows. BLESS is designed to

identify apps which utilize insecure data flow patterns.

We now introduce patterns of keys. In a cryptographic

protocol implemented by BLE apps, a master key must be

shared with both sides (e.g., a smartphone and a device)

through BLE communication. The master key can be used

to generate other keys such as session keys and will be saved

onto storage for future use. A master key can be a user-defined

key, smartphone-defined key, or device-defined key. Note that

in all instances, both the smartphone and peer device store the

master key for future use.

• A user-defined master key is generated from a user, stored

on the smartphone, and shared with the peer device.

• A smartphone-defined master key is generated from a

random number generator, stored on the smartphone, and

shared with the peer device.

• A device-defined master key is generated from the peer

device, stored on the device, and shared with the smart-

phone.

We now introduce patterns of nonces. In a cryptographic

protocol, a nonce is usually generated by a device and a

smartphone, and exchanged by both sides for the purpose of

guaranteeing the freshness of messages and fighting against

replay attacks. There are three type of nonces:

• Random number: A random number can be generated by

a smartphone or its peer device. It is sent from one side

to the other, and will go back to the original device as

in the challenge-response protocol. It is not saved onto

storage.

• Sequence number: A sequence number increments its

value every time it is used. A limitation of this is that

the sequence number will eventually reach its maximum

value and wrap around. Therefore, for message freshness,

a rekeying process will use a random number to gener-

ate a session key which secures the sequence number.

Therefore, for a secure cryptographic protocol, sequence

numbers must always involve an element of randomness.

• Time-stamp: A time stamp is generated from a date and

time function. This value is guaranteed to always be

unique when it is generated, as long as the source of

the time stamp is reliable.

C. Our Solutions

Based on the patterns introduced in Section III-B, we can

conduct taint analysis to check if keys or nonces are involved

in an authentication protocol. Taint analysis can build a data

flow from a specific entry point, known as the source, to a spe-

cific exit point, known as the sink. Particularly, we can identify

a key or a nonce based on the sources and sinks of data flows.

To this end, we taint the functions that may generate a key or a

nonce as sources, and taint the BLE communication APIs and

data storage APIs as sinks. We taint BLE communication APIs

since authentication only occurs when the BLE app and its

peer device exchange data. These BLE communication APIs

will not change, even if heavy obfuscation is adopted. For

example, the writeCharacteristic(.) function will write a byte

array into the device, while readCharacteristic(.) will obtain

data from the device. The callback function onLeScan(.) can

collect information from the scan responses and advertisement

packets. We taint data storage APIs because a key can be saved

onto disk after generation.
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Algorithm 1: Key/Nonce searching algorithm

Data: Paths ⇐= Taint paths get from the app

Result: KeySet, NonceSet ⇐= collected keys and nonce

from the application

initialization:

RandomSet = φ; KeySet = φ;

static APKInfo {
shareDeviceData=false; sharePhoneData=false;

shareUserInput=false; saveUserInput=false;

saveDeviceData=false; savePhoneData=false;

Sequence=false; Timestamp=false;

} ;

while foreach path in Paths do
analysisPath(path,APKInfo);

end
if APKInfo.sharePhoneData then

if APKInfo.savePhoneData then
KeySet.add(Keyphone);

else
nonceSet.add(Randphone)

end
end
if APKInfo.shareUserInput then

if APKInfo.saveUserInput then
KeySet.add(Keyuser);

end
end
if APKInfo.shareDeviceData then

nonceSet.add(Randdevice)

end
if APKInfo.saveDeviceData then

KeySet.add(Keydevice);

end
if APKInfo.Sequence then

nonceSet.add(Sequence)

end
if APKInfo.Timestamp then

nonceSet.add(T imestamp)

end
return KeySet, nonceSet;

A running example: To better understand our approach,

we take the Ultraloq smart lock as a running example. The

Ultraloq is a Bluetooth-enabled smart lock that enables a

user to control the lock remotely on a smartphone. In its

authentication protocol, a key and a random number are used

to secure the communication. To generate a key, the owner

of the lock is required to set a password. The password is

hashed and saved to the smartphone’s disk. The smartphone

then shares the hashed password with the smart lock. The

hashed password will be used as a master key in further

communications. To ensure the freshness of messages, the lock

also performs a challenge-response protocol each time the app

sends a command. For example, when the user tries to open

Algorithm 2: Path analysis algorithm

Data: path,APKInfo

initialization:

source=path.get BLE related Source();

sink=path.get BLE related Sink();

if source.fromDevice() and sink.toDevice() then
APKInfo.shareDeviceData=true;

end
if source.fromDevice() and sink.saveToDisk() then

APKInfo.saveDeviceData=true;

end
if source.fromDisk() and sink.toDevice() then

APKInfo.Sequence=true;

end
if source.readTime() and sink.toDevice() then

APKInfo.Timestamp=true;

end
if source.fromPhone() and sink.saveToDisk() then

APKInfo.savePhoneData=true;

end
if source.fromPhone() and sink.toDevice() then

APKInfo.sharePhoneData=true;

end
if source.fromUser() and sink.toDevice() then

APKInfo.shareUserInput=true;

end
if source.fromUser() and sink.savetoDisk() then

APKInfo.saveUserInput=true;

end

his door, the smart lock first sends the app a random number

as a challenge. The app receives the challenge, and feeds

the hashed password along, the control command, and the

challenge into an encryption function to generate a response.

Afterward, the app sends the response to the smart lock. The

smart lock will unlock the door accordingly, when the random

number and the pre-shared key are matched.

We first demonstrate how to determine if the app uses a key.

We taint the sources and sinks respectively. We determine that

there are two possible paths in total: (i) a path whose source

is a function that can collect user inputs and whose sink is a

function that can write data into a BLE device, which indicates

that a value is generated from a user’s input and shared with

the peer device; (ii) a path whose source is a function that

can collect user inputs and whose sink is a function that can

save the value to the smartphone’s storage, which indicates

that a value is generated from a user’s input and saved. If

the above paths are identified, we can know that a key may

be adopted in authentication. We then demonstrate how to

determine if the app uses a random number in this case. We

taint the sources and sinks respectively. In this case, the taint

path has the following feature: The source of the path is a BLE

data reading function, while the sink of the path is a BLE data

writing function. This indicates that the device sends a value to

the smartphone, and then the smartphone sends it back after
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some processing. This is a typical case of using a random

number to perform the challenge-response.

The above example is one possible case which demonstrates

our approach. We introduce algorithms that identify all the

possible paths automatically and evaluate the security of apps.

Algorithm 1 traverses all data paths and returns a set of

identified keys and nonces in an application. APKInfo is

a set of Boolean values which stores specific behaviors of the

app, based on the source and sink of a data flow. For instance,

APKInfo.shareDeviceData is set to true if the source and

sink of a data path are identified as the peer device, since this

indicates that a message (e.g., a random number) flows from

the peer device, to the smartphone, back to the peer device.

Algorithm 2 is invoked by Algorithm 1 to evaluate each taint

path from sources to sinks in order to construct APKInfo.

Moreover, to determine whether an app is secure, we introduce

Algorithm 3. Specifically, after taint analysis, there are 4 cases

in total: (i) An app that does not use either a key or a nonce

is not secure. Its communication is subject to replay attacks

and fails to ensure data integrity. (ii) An app not using a key

fails to ensure the data integrity, and suffers from spoofing

attacks and eavesdropping attacks. (iii) An app that does not

use nonces will suffer from replay attacks. (iv) An app that

uses keys and nonces is potentially secure from these attacks.

However, security cannot be guaranteed, since an app may use

the key or nonce in an insecure way.

Algorithm 3: Vulnerabilities Detection algorithm

Data: Paths ⇐= Taint paths get from the app

Result: VulSet ⇐= Vulnerabilities

if KeySet == φ and NonceSet == φ then
VulSet.add(V ulreplay);

VulSet.add(V ulnointegrity);

else
if KeySet �= φ and NonceSet == φ then

VulSet.add(V ulreplay);

else
if KeySet == φ and NonceSet �= φ then

VulSet.add(V ulnointegrity);

end
end

end
return VulSet;

D. Implementation

BLESS extends the Amandroid framework [9], which pro-

vides prerequisites for taint analysis. We use this framework

because it can handle Inter-Component Communication (ICC).

ICC is a mechanism that allows different components (e.g.,

”activities”) to communicate with each other. BLE apps often

involve ICC. For example, a BLE app may obtain data from

advertisement packets in scanning Activity and pass it to

controlling Activity. The tool must be equipped to handle ICC,

otherwise it will invoke false positives, where secure apps are

mistakenly identified as insecure. Particularly, by customizing

the profile “TaintSourcesAndSinks” in Amandroid, we are

able to fully trace the taint path of interest. After identifying

all these paths, we apply the algorithms in Section III-C to

evaluate the security of an app.

Tainting Sources: A taint source can be either of the

following cases: a source from a user, a source from a

smartphone, and a source from a device. To identify a source

from a user, the API getEditText() is tainted, which allows us

to focus on the data from user inputs. To identify a source

from a smartphone, (i) we taint functions that can gener-

ate a random value, such as java.util.Random.nextBytes and

java.util.Random.nextLong; (ii) we taint functions that can get

the current system time such as System.currentTimeMillis();
(iii) we taint functions that can read data from storage, in-

cluding file reading functions like FileReader.read(), database

operation functions such as Cursor.getString(), and profile op-

eration functions such as SharedPreferences.getString(). Note

that smartphone defined keys, random values, serial numbers

and time-stamps may be generated from (i) and (ii). To

identify a source from a device, (i) we taint functions that

can read data from device services, such as getValue() and

gattCharacteristic, which indicate that the source is from a

device’s GATT Services; (ii) we taint functions that can read

data from advertisement packets and scan response packets,

since these packets may offer random numbers. Different

from framework APIs, the android system uses the callback

OnLeScan() to handle the advertisement packets. The par-

ents of these callback functions may be located in different

packages and classes. To taint advertisement packets, we have

implemented our own subclass that extends the class Android-
SourceAndSinkManager in their framework and overwrites the

function isCallbackSource(). The framework can then filter

these sources while performing the analysis.

Tainting Sinks : A taint sink can be either of the following:

(i) a sink that relates to data storage on the smartphone, i.e.,

functions that can write data to a smartphone’s storage, such

as FileWriter.write() and SQLiteDatabase.insert(); (ii) a sink

that relates to writing data onto a peer device, i.e., functions

that can write out the data through BLE, such as setValue().

IV. SECURITY ANALYSIS OF BLE-ENABLED

APPLICATIONS

In this section, we perform security analysis of BLE-enabled

applications to validate our tool. Two examples are presented

in this section, including blood pressure monitors from BP3L

and Smart Pluswave. Both devices are denoted as insecure

since the Pluswave does not use a key o (y)-43(a)-non5 (vi(o (y)35 (ans)-277 (the)]TJ
334 ((the)-3oxampleh)-34437 (the)-TD
4 (a)20 (aol)20 (v)15uch)-315uch)-438 (k)10 (e)165VasAndrkSouree()



app. Specifically, static analysis is used to identify the authen-

tication protocol adopted by the application, while dynamic

analysis is used to identify the authentication parameters (e.g.

a key) used in authentication protocol.

1) Static analysis: An attacker may want to obtain the

source code and understand the details of the authentication

protocol. We employ APKTool [15] to obtain Smali code from

an Android Package (APK) and use Smali2Jar to convert

Smali code into the Java format. If this conversion fails, We

read Smali code directly. Heavy obfuscation [16] may be

employed to defend against reverse engineering of an app.

Direct use of Android APK decompilers does not work against

obfuscation. Therefore, we adopt source code instrumentation

[17] to explore the workflow, inputs, temporary values and

outputs of interest. Source code instrumentation also enables

us to directly use some functions as the building blocks of our

customized app for testing and attacking. When performing

static analysis of an app, we mainly focus on the functions

that communicate with the peer BLE device. Tracing these

functions can reveal the core engine of the authentication

protocol, such as how a command is generated, and how an

app resolves an authentication message from the device.

2) Dynamic Analysis: Static analysis is not omnipotent

since it cannot trace the outputs generated by different inputs.

In other words, static analysis may not observe the impact of

various parameters on the authentication process. Therefore,

we resort to dynamic debugging to address this issue. We use

the hook technology to trace each authentication parameter

(e.g., a random number) of an app. Xposed [18] is a popular

hook framework which can record, modify and replay the

inputs and outputs of a function. We use Xposed to write our

own code in order to observe the changes of the workflow,

as well as the variation of the authentication parameters. For

example, hooking the function writeCharacteristic enables

us to observe how the write commands, which are sent by

the app, change in different contexts. Hooking the function

readCharacteristic allows us to obtain the value of an attribute

set by the device.

B. Case Studies

With the analytic techniques above, we now present the

discovered attacks that are able to compromise blood pressure

monitors from Pluswave and BP3L. From these attacks, we

can observe that our tool can detect the vulnerabilities of apps

effectively.

1) Smart Pluswave: According to our analysis, the blood

pressure monitor from Smart Pluswave does not use a key or a

nonce to implement authentication. The confirm this, we first

launch a spoofing attack by creating a fake device that acts as

the original blood pressure monitor. Therefore, the smartphone

app will send all its authentication data and control command

to our fake device. For example, we discover that the byte

array ”cc80020301030003” is an encoded command that is

used to start the measurement. When the user is off-line, we

can launch a replay attack by re-sending the encoded control

command and authentication data. In this way, we can take

control of the blood pressure monitor.

2) BP3L Blood Pressure Monitor: We now demonstrate

how we can compromise the Blood Pressure Monitor from

BP3L. According our experiment, the BP3L does not use a

key to secure communication. We first present the workflow

of the blood pressure monitor. At first, the device broadcasts

the basic information, including the manufacturer data and

device name. The smartphone receives the data and checks

if the device belongs to the specific vendor. Authentication is

then performed. Specifically, the device and the smartphone

use the challenge-response protocol with a fixed key value

to perform authentication. When the authentication is done,

the application receives a fixed confirmation message from

the device, indicating that the smartphone and blood pressure

monitor are ready to communicate. The blood pressure monitor

will encrypt a measurement and send the encrypted data to the

smartphone. The smartphone will decrypt it with a function

named deciphering and show the data to the user. The key used

to encrypt and decrypt the data is generated from a function

getKey, which uses the hardware version number of the device

as its input. As long as the hardware version number does not

change, then getKey will produce a fixed key.

We can deploy a spoofing attack on the blood pressure

app without any changes. Specifically, we create a fake blood

pressure monitor that acts as the original one. In the original

authentication process, the monitor sends the smartphone a

confirmation message to show that the monitor is authenti-

cated. Since the confirmation message is fixed, our fake blood

pressure monitor can send the message to the smartphone. In

this way, we bypass the authentication process. Afterwards,

we re-write an encryption function based on the source code,

then feed the function the key and the fake blood pressure

measurement to generate the cipher text. We send the gen-

erated cipher text to the smartphone to deploy the fake data

injection attack.

It can be observed that there are two fixed keys in the case

of BP3L. One key is used to perform the challenge-response

protocol, while the other is used to encrypt the measurement

from the blood pressure monitor. However, these two keys fail

to ensure data integrity, since they can easily be extracted by

an attacker. This case study indicates that it is not sufficient to

only detect apps without keys. An app that uses a fixed key,

which is not secure, should also fall into the same category.

Moreover, an attacker can control a victim device as long as

an official app is installed on his smartphone.

V. COUNTERMEASURE

As discussed earlier, we assume that an attacker is not

present during the bootstrapping process. However, if an

attacker can perform the sniffing process at the initiation of

password setting, he can obtain the key and control the smart

device freely. In this regard, we present an application level

defense that enhances the security of BLE based apps.

641





76%

14%

3%
7%

bƻƴŜ

Key Only

bƻƴŎŜ Only

.ƻǘƘ

Fig. 3: Security State of BLE

Products

41%

15%

44%

Device Key
Smartphone Key
User Key

Fig. 4: Ratio of different types of

keys that used by device

device generated
phone generated

1% 

99% 

Fig. 5: Ratio of different types of

nonces that used by device

Fig. 6: Command Execute Time

HMACAES DECAES ENC

Fig. 7: Time for AES and HMAC Fig. 8: Time for ECDSA/ECDH

TABLE I: Accuracy Comparison

Tool Secure Apps Insecure Apps Throw Errors

BLESS 75 (86%) 100 (100%) 0 (0%)

BLECryptracer 7 (10.7%) 94 (94%) 6 (6%)

Figures 4 and 5 show the proportion of keys/nonces of

different types used by BLE apps. We can observe that user-

defined keys are more widely used than smartphone-defined

keys or device-defined keys. The user-defined key is more

feasible when compared with others. As long as the user

remembers his/her password, he/she can always perform the

authentication process without resetting a device or backing

up configurations. We also find that developers prefer to let

the device generate nonces, which will let the device verify

commands sent from the smartphone. This is because the

smartphone is a master device which controls its peer device.

Replay attack usually occurs when the smartphone sends

a command to its peer device; in a BLE application, the

peer device does not typically send control commands to the

smartphone.

B. BLESS vs. BLECryptracer

BLECryptracer is a BLE security detection tool introduced

by Sivakumaran et al. [14]. The key insight of their tool is to

identify the cryptographic API existing in BLE Apps. That is, a

BLE app is considered secure if and only if cryptographic APIs

are detected. In this section, we will perform a comparison

between BLESS and BLECryptracer in terms of accuracy.

There is no dataset of wild BLE apps that are considered

as secure. Therefore, we must manually check the security

of 75 apps that are denoted as secure by BLESS in section

VI-A. The principles used for manual analysis is whether

the app has a key and a nonce. 65 of these apps are secure

according to our manual analysis, which means that BLESS

identified 10 false negatives in its analysis. Then, we use

BLECryptracer to perform a similar detection process. Table

I shows the results. It can be observed that BLECryptracer

can only detect 7 secure apps, since these secure apps contain

Java Cryptography Architecture, such as the java.security and
javax.crypto. Their tool will fail when an app implements a

customized cryptographic algorithm. For example, the smart

lock Ultraloq uses customized cryptographic algorithm and

denoted as insecure by BLECryptracer.

Similarly, there is no dataset of wild BLE apps that are

considered insecure. We manually checked 100 apps that

are denoted as insecure by BLESS in Section VI-A as our

testing dataset. It can be observed from Table I that 94 apps

are denoted as insecure by the BLECryptracer. Furthermore,

there are 6 apps that can not be analyzed by BLECryp-

tracer. BLECryptracer throws errors when processing these

apps. Although we can not see much difference from this

experiment, we argue that BLESS has advanced features

when compared with BLECryptracer: (i) As demonstrated in

section V, our tool can handle an app that uses a fixed key,

while BLECryptracer can not. Therefore, BLECryptracer may

report a false alert when dealing with such apps. In their

paper, the authors introduce another tool named CogniCrypt

to identify this case. (ii) Their tool does not take nonces into

consideration, which is not comprehensive. (iii) Their tool does

not take the data exchanged via advertisement packets into

643



consideration. This is also not comprehensive, since an app

may receive keys or nonces from advertisement packets. An

app named “com.flyjiang.dongha.activity” uses advertisement

packets to receive a random number from its peer device.

C. Application Layer Defense with ATECC608A

1) Command execution time: Fig. 6 shows the time for

executing a command on Microchip’s Atmel Samd21 devel-

opment board with ARM’s Cortex-M0+ MCU operating at 32

MHz. We evaluate two metrics: (i) the time for decrypting

a received command with integrity checking; (ii) the time

for performing the authenticated ECDH with ECDSA. We

run each test 50 times. It can be observed that the average

runtime for decrypting a received command and performing

the authenticated ECDH is 15 ms and 150 ms, respectively.

2) Crypographic operation performance: Figs. 7 and

8 show the cryptographic operation performance of

ATECC608A on Samd21. Fig. 7 gives the time for AES

encryption/decryption and HMAC. Fig. 8 gives the time for

performing ECDH/ECDSA. The input of AES and HMAC is

1 block (16 bytes), and the input of ECDSA is 2 blocks (32

bytes). We run each operation 50 times. The average time of

AES encryption and decryption on ATECC608 is around 9

ms. The average time of performing HMAC is around 6 ms.

The average time for performing ECDSA alone by the device

is around 100 ms. The average time measured at the device

side for performing ECDH alone without ECDSA is around

57 ms. The data is consistent with the performance data for

the authenticated ECDH with ECDSA together. Fig. 8 also

provides the average time for verifying the ECDSA signature

at the device, which is around 50 ms. Note that the device

does not need to perform this ECDSA signature verification

in our context, although it can be used in other applications.

VII. RELATED WORK

In this section, we review the most relevant works. From

the discussion in previous sections, it can be observed that our

work in this paper is quite different from other related works.

Our work presents a novel security scanning tool for BLE

enabled applications. In addition, we include relevant attack

examples and hardware based countermeasures.

We first present Bluetooth sniffing tools and focus on the

open source tools. FTS4BT Bluetooth protocol analyzer and

packet sniffer is a commercial tool and often costs tens

of thousands of dollars [26]. Michael Ossmann presented

Ubertooth One, the first open-source low-cost Bluetooth test

tool, at Shmoocon 2011 [27]. In 2013, Mike Ryan built a BLE

sniffer on Ubertooth and demonstrated that the passkey pairing

method for LE legacy connections was not secure. He devel-

oped a tool, crackle, which is able to crack such connections

[28]. The Adafruit Bluefruit LE sniffer was introduced in 2014

[29]. BlueEar was built upon Ubertooth in 2016 [30] and able

to sniff the traffic of Bluetooth Classic.

We now review recent survey papers related to BLE security.

Hui Jun Tay et al. presented a survey of the vulnerabilities in

the BLE beacons [31] and provided an overview of the current

state of iBeacon security by summarizing three vulnerabilities

(spoofing, DOS, and Hijack) in beacon platforms, and citing

specific case studies. Hassan et al. summarized major security

threats in Bluetooth Classic and BLE communication and

discussed mitigation techniques [32]. Celebucki et al. [33]

presented security features and shortcomings of BLE, Zig-

bee, and Z-Wave protocol. As for BLE, they pointed out that

devices utilizing the legacy mode pairing were vulnerable to

MITM attacks during the pairing process.

We now review related work on specific BLE attacks. Ryan

et al. [28] showed a method that can brute fore the encryption

of the BLE link layer. Jasek et al. [34] discovered a set of

attacks between an mobile app and its peer devices. Their

attack vectors include replay attack and brute force attack.

Zegeye et al. cracked the BLE temporary key used in the

pairing process by using the brute-force attack [35], which

extended the attack in [28]. All these works do not involve a

framework to detect the proposed attacks. Pallavi Sivakumaran

et al [14] presented the Co-located attack, through which a

malware can access the sensitive data on its peer device.

In their work, they also proposed a detection framework.

However, their detection framework determined whether an

app is secure by testing the involvement of cryptographic

operations. As discussed earlier, this may cause false alerts.

We now review related work on BLE security enhancement.

Muhammad Naveed et al. [12] developed an OS-level protec-

tion mechanism to identify the binding relationship between

an app and a device, and then used the relationship as the

security policy. Giwon Kwon et al. [36] proposed a security

method that can increase the length of the temporary key

(TK) in BLE pairing, which could thwart the TK brute-

force attack presented by Mike Ryan. Thrinatha [37] presented

a countermeasure of MITM attacks by applying the anti-

jamming techniques to the SSP model.

VIII. CONCLUSION

In the era of IoT, a BLE app should implement authentica-

tion protocols at the application layer since BLE devices may

be deployed in public, and anybody may pair with it and use it.

In this paper, we design a BLE security scanning tool (BLESS)

to examine the security and identify the vulnerabilities of

Android BLE apps. We use taint analysis to identify keys and

nonces by exploring their data flow patterns. We find that at

least 93% of these apps are not secure. To defend against those

attacks, we propose and implement a practical application

layer defense protocol with a low-cost ($0.55) crypto co-

processor ATECC608A for authentication and authorization.

Extensive evaluation is performed to validate the application

level defense measure.
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