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Why need algorithms

• To computer science

– The concept of an algorithm is fundamental

• In developing large-scale computer systems

– Algorithms

• exist for many common problems

• designing efficient algorithms plays a crucial 
role

2

ᴯ, , қ

Algorithm
• Definition 

– is a step-by-step procedure

– a finite set of instructions to be executed in a 
certain order to get the desired output

• if followed, accomplishes a particular task

• Algorithms are generally created independent of 
underlying languages
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Characteristics
 Input

 Zero or more quantities are externally supplied 

 Output
 At least one quantity is produced

 Definiteness
 Each instructions is clear abs unambiguous

 Finiteness  
 If we trace out the instructions of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps

 Effectiveness
 Every instruction must be basic enough to be carried out


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Complexities

• Time Complexity of a program 

– is the amount of computer time it needs to run 
to completion

• Running time or the execution time of operations of data 
structure must be as small as possible

• Space Complexity  of a program 

– is the amount of memory it needs to run to 
completion

• Memory usage of a data structure operation should be as 
little as possible
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Performance Measurement
for 

Time Complexity

• Posteriori testing

– is concerned with obtaining the actual space 
and time requirements of a program
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Example : Sequential Search

int seqsearch ( int a[ ], int n, int x ) 
{
// a[0],…,a[n-1]Ϋ Ή ᵌ x Ẇ
// ὑ Ẽӌ -1ɠ

int i = 0;
while ( i < n && a[i] != x )

i++;
if ( i == n ) return -1;
return i;

}
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• Measuring the computing time of a program
function   time() or clock()

Example: 
double runTime;
double start, stop;
time(&start);
int k = seqsearch (a, n, x);
time(&stop);
runTime = stop - start;
cout << " RunTime : " << runTime << endl;

10

ᴯ, , қ

• These quantities are dependent on the particular 
compiler and options used as well as on the specific 
computer on which the program is run
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Performance analysis 
for 

Time Complexity

• Priori estimates ：

– to predict the growth in run time as the 
instance characteristics change

– asymptotic notation

• Big “oh” : O
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• f (n) = O(g(n))
– iff (if and only if) there exist positive constants c and 

n0 such that f(n)≤cg(n) for all n, n≥n0

• g(n)

– is an upper bound on the value 

– should be as small a function of n as one come up

Asymptotic Notation 
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Theorem 1.2

• if f(n) = amnm+…+ a1n+a0 , then f(n)=O(nm)

– Proof : 

ࢌ								 ࢔ ൑ ∑ |࢏ࢇ|
࢓
ୀ૙࢏ ࢏࢔ 		൑ ࢓࢔ ∑ ࢏ࢇ

࢓
૙ ࢓ି࢏࢔ 			൑ ࢓࢔ ∑ |࢏ࢇ|

࢓
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– So, f(n)  = O(nm)

– When the complexity of an algorithm is actually, say, O(log n), 

– but we can only show that it is O(n) due to the limitation of our 
knowledge

– it is OK to say so. 

– This is one benefit of O notation as upper bound. 
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• The time taken by a program P
t(P) = c + tP(n)

• c :  constant

• tP :  function fP (n)

• n :  the number of the inputs and outputs

• T(n) = O(f(n))

Time complexity
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• Compile time                                

• Run or execution time                 
 program step                            
 a syntactically or semantically meaningful 

segment of a program that has a run time

 Run time is independent of n
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 Determine the number of steps : method 1
 Introduce a global variable count with initial value 0
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int count=0;
float sum (float a[ ], int n) 
{     float s = 0.0;          //count++

count++;
for (int i = 0; i < n; i++) //count++ :  <init>;<expr1>

{     count ++; 
s += a[i]; //count++
count++;     

}
count ++             //count++:  <expr1>;<expr2>
count++;
return s;    //count++  :  return

}
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Determine the number of steps
程序步数计算工作表格

         program s/e frequency steps
{     0    1    0 
  float s = 0.0;     1    1    1 
  for ( int i=0; i<n; i++ )     1  n+1  1n+1 
    s += a[i];     1    n    n 
  return s;     1    1    1 
}     0     1    0 
    total steps 2n+3 
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 Determine the number of steps  : method 2
 build a table

s/e : steps per execution
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Determine the number of steps
程序步数计算工作表格

         program s/e 
 

Frequency 
n=0/n>0 

 Steps 
n=0/n>0

{ 0 1/1 0/0 
 if (n<=0 ) 1 1/1 1/1 
  return 0; 1 1/0 1/0
 else   
  return sum(a,n-1)+a[n-1]); 1+f(n-1) 0/1 0/1+f(n-1) 

} 0 1/1 0/0 

     total steps  2/ 2+f(n-1)
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s/e : steps per execution
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T(n) = T1(n)+T2(n)+T3(n) = O( max( 1, n, n2 ) ) = O(n2)

for ( int i = 0; i < n; i++ )
for ( int j = 0; j < n; j++ )

y ++;

T1 (n) = O(1)

T2(n) = O(n)

T3(n) = O(n2)

x = 0; y = 0;

for ( int k = 0; k < n; k ++ )
x ++;
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• T(n, m)  = T1 (n) + T2 (m)  

= O(max (f (n), g (m)))
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void bubbleSort (int a[ ],  int n ) 
{ // a[ ] , n ᾧ

for (int i = 1; i <= n-1; i++)
{     //n-1

for (int j = n-1; j >= i; j--)   //n-i
if (a[j-1] > a[j]) 
{ int tmp = a[j-1];

a[j-1] = a[j];
a[j] = tmp;

} //ͮ
}

}
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O(f (n)*g (n))  = O(n2)
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• T (n, m) = T1 (n) * T2 (m)  

=  O(f (n)*g (m))
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Execution Time Cases
three cases

• Worst Case
– This is the scenario where a particular data structure operation takes 

maximum time it can take. 

– If an operation's worst case time is ƒ(n) then this operation will not take 
more than ƒ(n) time where ƒ(n) represents function of n

• Average Case
– This is the scenario depicting the average execution time of an operation 

of a data structure. 

– If an operation takes ƒ(n) time in execution, then m operations will take 
mƒ(n) time

• Best Case
– This is the scenario depicting the least possible execution time of an 

operation of a data structure. 

– If an operation takes ƒ(n) time in execution, then the actual operation 
may take time as the random number which would be maximum as ƒ(n)
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• The space requirement of program P
S(P) = c + SP(n)

• c :  constant

• SP :   function fP (n)

• n :  the number of the inputs and outputs

• S(n) = O(f(n))

Space complexity
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• Fixed part : is independent of the number of the inputs and outputs

– Space for the code

– Constant                                       

– Simple variables                          

– Fixed-size component variables 

• Variable part : is dependent on the particular instance

– component variables                  

– Referenced variables                   

– Recursion stack space                 
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Example
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//recursive function

float Rsum (float *a, const int n) 

{   if (n <=0) return 0;

else return (Rsum(a,n-1)+a[n-1]);

}

//iterative function
float Sum (float *a, const int n) 
{ float s=0;

for(int i=0;i<n;i++)   

s+=a[i];

return s;

}


