
1

ᴯ, , қ

Data Structures

Algorithms

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. ,

3. http://inside.mines.edu/~dmehta/

4. ֲ ,
1

Teacher : Wang Wei

ᴯ, , қ

Why need algorithms

• To computer science

– The concept of an algorithm is fundamental

• In developing large-scale computer systems

– Algorithms

• exist for many common problems

• designing efficient algorithms plays a crucial
role

2

ᴯ, , қ

Algorithm
• Definition

– is a step-by-step procedure

– a finite set of instructions to be executed in a
certain order to get the desired output

• if followed, accomplishes a particular task

• Algorithms are generally created independent of
underlying languages

3

2

ᴯ, , қ

Characteristics
 Input

 Zero or more quantities are externally supplied

 Output
 At least one quantity is produced

 Definiteness
 Each instructions is clear abs unambiguous

 Finiteness
 If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps

 Effectiveness
 Every instruction must be basic enough to be carried out



3

ᴯ, , қ

Complexities

• Time Complexity of a program

– is the amount of computer time it needs to run
to completion

• Running time or the execution time of operations of data
structure must be as small as possible

• Space Complexity of a program

– is the amount of memory it needs to run to
completion

• Memory usage of a data structure operation should be as
little as possible

7

ᴯ, , қ

Performance Measurement
for

Time Complexity

• Posteriori testing

– is concerned with obtaining the actual space
and time requirements of a program

8

ᴯ, , қ

Example : Sequential Search

int seqsearch (int a[], int n, int x)
{
// a[0],…,a[n-1]Ϋ Ή ᵌ x Ẇ
// ὑ Ẽӌ -1ɠ

int i = 0;
while (i < n && a[i] != x)

i++;
if (i == n) return -1;
return i;

}

9

4

ᴯ, , қ

• Measuring the computing time of a program
function time() or clock()

Example:
double runTime;
double start, stop;
time(&start);
int k = seqsearch (a, n, x);
time(&stop);
runTime = stop - start;
cout << " RunTime : " << runTime << endl;

10

ᴯ, , қ

• These quantities are dependent on the particular
compiler and options used as well as on the specific
computer on which the program is run

11

ᴯ, , қ

Performance analysis
for

Time Complexity

• Priori estimates ：

– to predict the growth in run time as the
instance characteristics change

– asymptotic notation

• Big “oh” : O

12

5

ᴯ, , қ

• f (n) = O(g(n))
– iff (if and only if) there exist positive constants c and

n0 such that f(n)≤cg(n) for all n, n≥n0

• g(n)

– is an upper bound on the value

– should be as small a function of n as one come up

Asymptotic Notation

13

ᴯ, , қ

Theorem 1.2

• if f(n) = amnm+…+ a1n+a0 , then f(n)=O(nm)

– Proof :

ࢌ								 ࢔ ൑ ∑ |࢏ࢇ|
࢓
ୀ૙࢏ ࢏࢔ 		൑ ࢓࢔ ∑ ࢏ࢇ

࢓
૙ ࢓ି࢏࢔ 			൑ ࢓࢔ ∑ |࢏ࢇ|

࢓
૙ ࢔ , ൒ ૚

– So, f(n) = O(nm)

– When the complexity of an algorithm is actually, say, O(log n),

– but we can only show that it is O(n) due to the limitation of our
knowledge

– it is OK to say so.

– This is one benefit of O notation as upper bound.

14

ᴯ, , қ

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

6

ᴯ, , қ

16

• The time taken by a program P
t(P) = c + tP(n)

• c : constant

• tP : function fP (n)

• n : the number of the inputs and outputs

• T(n) = O(f(n))

Time complexity

ᴯ, , қ

• Compile time

• Run or execution time
 program step
 a syntactically or semantically meaningful

segment of a program that has a run time

 Run time is independent of n

17

ᴯ, , қ

 Determine the number of steps : method 1
 Introduce a global variable count with initial value 0

18

int count=0;
float sum (float a[], int n)
{ float s = 0.0; //count++

count++;
for (int i = 0; i < n; i++) //count++ : <init>;<expr1>

{ count ++;
s += a[i]; //count++
count++;

}
count ++ //count++: <expr1>;<expr2>
count++;
return s; //count++ : return

}

7

ᴯ, , қ

Determine the number of steps
程序步数计算工作表格

 program s/e frequency steps
{ 0 1 0
 float s = 0.0; 1 1 1
 for (int i=0; i<n; i++) 1 n+1 1n+1
 s += a[i]; 1 n n
 return s; 1 1 1
} 0 1 0
 total steps 2n+3

19

 Determine the number of steps : method 2
 build a table

s/e : steps per execution

ᴯ, , қ

Determine the number of steps
程序步数计算工作表格

 program s/e

Frequency
n=0/n>0

 Steps
n=0/n>0

{ 0 1/1 0/0
 if (n<=0) 1 1/1 1/1
 return 0; 1 1/0 1/0
 else
 return sum(a,n-1)+a[n-1]); 1+f(n-1) 0/1 0/1+f(n-1)

} 0 1/1 0/0

 total steps 2/ 2+f(n-1)

20

s/e : steps per execution

ᴯ, , қ

T(n) = T1(n)+T2(n)+T3(n) = O(max(1, n, n2)) = O(n2)

for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)

y ++;

T1 (n) = O(1)

T2(n) = O(n)

T3(n) = O(n2)

x = 0; y = 0;

for (int k = 0; k < n; k ++)
x ++;

21

• T(n, m) = T1 (n) + T2 (m)

= O(max (f (n), g (m)))

8

ᴯ, , қ

void bubbleSort (int a[], int n)
{ // a[] , n ᾧ

for (int i = 1; i <= n-1; i++)
{ //n-1

for (int j = n-1; j >= i; j--) //n-i
if (a[j-1] > a[j])
{ int tmp = a[j-1];

a[j-1] = a[j];
a[j] = tmp;

} //ͮ
}

}

22

ᴯ, , қ

O(f (n)*g (n)) = O(n2)









1

1 2

1n

i

)n(n
i)(n

BubbleSort

n-1

ị n-i

23

• T (n, m) = T1 (n) * T2 (m)

= O(f (n)*g (m))

ᴯ, , қ

Execution Time Cases
three cases

• Worst Case
– This is the scenario where a particular data structure operation takes

maximum time it can take.

– If an operation's worst case time is ƒ(n) then this operation will not take
more than ƒ(n) time where ƒ(n) represents function of n

• Average Case
– This is the scenario depicting the average execution time of an operation

of a data structure.

– If an operation takes ƒ(n) time in execution, then m operations will take
mƒ(n) time

• Best Case
– This is the scenario depicting the least possible execution time of an

operation of a data structure.

– If an operation takes ƒ(n) time in execution, then the actual operation
may take time as the random number which would be maximum as ƒ(n)

24

9

ᴯ, , қ

25

• The space requirement of program P
S(P) = c + SP(n)

• c : constant

• SP : function fP (n)

• n : the number of the inputs and outputs

• S(n) = O(f(n))

Space complexity

ᴯ, , қ

• Fixed part : is independent of the number of the inputs and outputs

– Space for the code

– Constant

– Simple variables

– Fixed-size component variables

• Variable part : is dependent on the particular instance

– component variables

– Referenced variables

– Recursion stack space

26

ᴯ, , қ

Example

27

//recursive function

float Rsum (float *a, const int n)

{ if (n <=0) return 0;

else return (Rsum(a,n-1)+a[n-1]);

}

//iterative function
float Sum (float *a, const int n)
{ float s=0;

for(int i=0;i<n;i++)

s+=a[i];

return s;

}

