

To computer science

- The concept of an algorithm is fundamental

Why need algorithms

- In developing large-scale computer systems
- Algorithms

•

•

- exist for many common problems
- designing efficient algorithms plays a crucial role

Algorithm

Definition

- is a step-by-step procedure
- a finite set of instructions to be executed in a certain order to get the desired output
 - · if followed, accomplishes a particular task
- Algorithms are generally created independent of underlying languages

Characteristics

- Input
- Zero or more quantities are externally supplied
- Output
 - At least one quantity is produced
- Definiteness
- Each instructions is clear abs unambiguous
- Finiteness
- If we trace out the instructions of an algorithm, then for all cases, the algorithm terminates after a finite number of steps
- Effectiveness
 - Every instruction must be basic enough to be carried out
 - •

Complexities

Time Complexity of a program

- is the amount of computer time it needs to run to completion
 - Running time or the execution time of operations of data structure must be as small as possible

Space Complexity of a program

- is the amount of memory it needs to run to completion
 - Memory usage of a data structure operation should be as little as possible

Performance Measurement for Time Complexity

Posteriori testing

- is concerned with obtaining the actual space and time requirements of a program

```
Example : Sequential Search

int seqsearch ( int a[ ], int n, int x )

{

// a[0],...,a[n-1] x

// -1

int i = 0;

while ( i < n && a[i] != x )

i++;

if ( i == n ) return 1;

return i;

}
```

Measuring the computing time of a program function *time()* or *clock()*

Example:

double runTime; double start, stop; time(&start); int k = seqsearch (a, n, x); time(&stop); runTime = stop start; cout << '' RunTime : '' << runTime << endl;</pre>

Performance analysis for Time Complexity

Priori estimates

- to predict the growth in run time as the instance characteristics change

- asymptotic notation
 - Big "oh" : O

Asymptotic Notation

$f(n) = \mathbf{O}(g(n))$

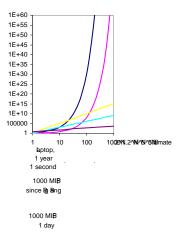
iff (if and only if) there exist positive constants *c* and n_0 such that $f(n) \le cg(n)$ for all $n, n \ge n_0$

• g(n)

- is an **upper bound** on the value
- should be as small a function of n as one come up

Theorem 1.2

- if $f(n) = a_m n^m + ... + a_1 n + a_0$, then $f(n)=O(n^m)$
 - Proof :
 - $$\begin{split} f(n) &\leq \sum_{i=0}^{m} |a_i| \, n^i \; \leq n^m \sum_{0}^{m} |a_i| \, n^{i-m} \; \leq n^m \sum_{0}^{m} |a_i|, \, n \geq 1 \\ \; \text{So, } f(n) \; = O(n^m) \end{split}$$
 - When the complexity of an algorithm is actually, say, O(log n),
 - but we can only show that it is O(n) due to the limitation of our knowledge
 - it is OK to say so.
 - This is one benefit of O notation as upper bound.



• The time taken by a program Pt(P) = c + t_P(n)

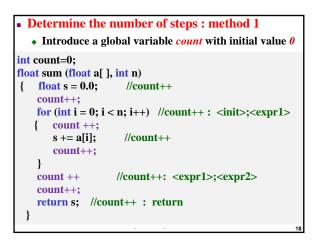
- c: constant
- t_P : function $f_P(n)$
- *n*: the number of the inputs and outputs

• T(n) = O(f(n))

- Run or execution time
 - program step
 - a syntactically or semantically meaningful segment of a program that has a run time

16

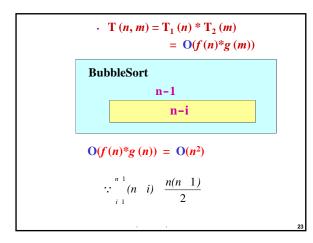
Run time is independent of n



program	s/e	frequency	steps
{	0	1	Ô
float $s = 0.0$;	1	1	1
for (int i=0; i <n;)<="" i++="" td=""><td>1</td><td>n+1</td><td>1n+1</td></n;>	1	n+1	1n+1
s += a[i];	1	n	n
return <mark>s;</mark>	1	1	1
}	0	1	0
-	tot	al steps	2n+3

	s/e :	steps per exe	ecution
program	s/e	Frequency	Steps
		n=0/n>0	n=0/n>0
{	0	1/1	0/0
if (n<=0)	1	1/1	1/1
return 0;	1	1/0	1/0
else			
<pre>return sum(a,n-1)+a[n-1]);</pre>	1+f(n-1)	0/1	0/1+f(n-1)
}	0	1/1	0/0
	tota	l steps	2/2+f(n-1)
			20

$ T(n,m) = T_1(n) + T_2(m) $ = $O(\max(f(n), g(m))) $		
x = 0; y = 0;	$T_1(n) = O(1)$	
for (int k = 0; k < n; k ++) x ++;	$\mathbf{T}_2(\mathbf{n}) = \mathbf{O}(\mathbf{n})$	
for (int $i = 0$; $i < n$; $i++$) for (int $j = 0$; $j < n$; $j++$) y ++;	$\mathbf{T}_{3}(\mathbf{n}) = \mathbf{O}(\mathbf{n}^2)$	



three cases

Worst Case

- This is the scenario where a particular data structure operation takes maximum time it can take.
- If an operation's worst case time is f(n) then this operation will not take more than f(n) time where f(n) represents function of n

Average Case

- This is the scenario depicting the average execution time of an operation of a data structure.
- If an operation takes f(n) time in execution, then m operations will take mf(n) time

Best Case

- This is the scenario depicting the least possible execution time of an operation of a data structure.
- If an operation takes f(n) time in execution, then the actual operation may take time as the random number which would be maximum as f(n)

- The space requirement of program PS(P) = c + S_P(n)
 - c: constant
 - S_P : function $f_P(n)$
 - *n*: the number of the inputs and outputs

• S(n) = O(f(n))

Fixed part : is independent of the number of the inputs and outputs

25

- Space for the code
- Constant
- Simple variables
- Fixed-size component variables

Variable part : is dependent on the particular instance

- component variables
- Referenced variables
- Recursion stack space

Example

//iterative function
float Sum (float *a, const int n)
{ float s=0;
 for(int i=0;i<n;i++)
 s+=a[i];</pre>

return s;

}

}

//recursive function

- float Rsum (float *a, const int n)
 { if (n <=0) return 0;</pre>
 - else return (Rsum(a,n-1)+a[n-1]);