
ᴯ, , қ

Data Structures

Stacks

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. ,

3. http://inside.mines.edu/~dmehta/

4. ֲ ,
1

Teacher : Wang Wei

ᴯ, , қ

Stack

• Linear list

• A LIFO (Last-In-First-Out) list

• One end is called top

• Other end is called bottom

• From the top only
– Insertions / Additions / Puts / Pushes

– Deletions / Removals / Pops

2

ᴯ, , қ 3

inserting and deleting elements in a stack:

A

B

A

add

C

B

A

del

C

B

A

add

D

C

B

A

add

top

top

top

top

top

ᴯ, , қ

Stack Presentment and Implement

• Use
• an array

• a variable top

• Initially, top = –1

private:
T* stack;
int top;
int capacity; //maxSize

0 1 2 3 4 5 6 7 8 9 maxSize-1

top

elements

Stack elements are stored in stack[0] through stack[top]

(empty)

4

ᴯ, , қ

The Class : Stack

template<class T>
class Stack
{

public:
Stack(int stackCapacity = 10);
~Stack() {delete [] stack;}
bool IsEmpty() const;
T& Top() const;
void Push(const T& item);
void Pop();
private:
T *stack; // array for stack elements
int top; // position of top element
int capacity; // capacity of stack array

};

5

ᴯ, , қ 6

template <class T>
Stack<T>::Stack(int stackCapacity): capacity(stackCapacity)
{

if (capacity < 1) throw “Stack capacity must be > 0”;
stack = new T[capacity];
top = -1;

}

template <class T>
Inline bool Stack<T>::IsEmpty() const
{ // check whether top >= 0

return(top == -1);
}
template <class T>
inline T& Stack<T>::Top()
{ // if not empty return stack[top]

if (IsEmpty()) throw “Stack is Empty”;
return stack[top];

}

ᴯ, , қ 7

template <class T>
void Stack<T>::Push(const T& x)
{ // Add an element to the top of the stack

if (top == capacity - 1) // if array full
{

ChangeSize1D(stack, capacity, 2*capacity);
capacity *= 2;

}
stack[++top] = x;

}

template <class T>
void Stack<T>::Pop()
{ // Delete top element of stack

if (IsEmpty()) throw “Stack is empty, cannot delete.”;
stack[top--];

}

0 1 2 3 4

a b c d e

top

0 1 2 3 4

a b c d e

top

ᴯ, , қ 8

Function ChangeSize
• use a 1D array to represent a stack

• 1-Dimensional array

• changes the size from oldSize to newSize

template <class T>
void ChangeSize(T* a, const int oldSize, const int newSize)
{

if (newSize < 0) throw “New length must be >= 0”;
T* temp = new T[newSize];
int number = min(oldSize, newSize);
copy(a, a + number, temp);
delete [] a;
a = temp;

}

ᴯ, , қ

Application

• Recursion

• Try-Throw-Catch

• Parentheses Matching

• Expressions

• Maze

• Chess

• Switch Box Routing

9

ᴯ, , қ

System Stack and Recursion

• Be used by a program at runtime to process function
calls

• A function is invoked

– creates a structure : stack frame and activation-record
– places it on the top of the system stack

previous frame pointer

return address

local variables

Stack frame

Activation-record
10

ᴯ, , қ

long Factorial(long n)
{

if (n == 0) return 1;
else return n*Factorial(n-1);

}

时当

时当

 1 ,)!1(

 0 ,1
!

n

n

nn
n

11

ᴯ, , қ

Activation-record

……………….
<下一条指令>

Function(<参数表>)
……………….

<return>

Invoking block

Function block

12

ᴯ, , қ

long Factorial(long n)
{ int temp;

if (n == 0) return 1;
else temp = n * Factorial(n-1);

return temp;
}

void main()
{ int n;

n = Factorial(4);

}
RetLoc1

RetLoc2

13

ᴯ, , қ

Data Structures

Application of Stacks : Mazing

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. ,

3. http://inside.mines.edu/~dmehta/

4. ֲ ,
14

Teacher : Wang Wei

ᴯ, , қ

Rat In A Maze

• Move order is: right, down, left, up

• Block positions to avoid revisit.
15

ᴯ, , қ

Rat In A Maze

• Path from maze entry to current position operates as a stack.
16

ᴯ, , қ

Standing… Wondering…

• Move forward whenever possible

– no wall & not visited

• Move back ---- HOW ?

– remember the footprints

– or …… Better ?

– NEXT possible move from previous position

• Storage ?

– STACK

17

ᴯ, , қ

A Mazing Problem

18

 Find a path from the entrance to the exit of a maze

0 1 0 0 1 1 0 1 1

1 0 0 1 0 0 1 1 1

0 1 1 0 1 1 1 0 1

1 1 0 0 1 0 0 1 0

1 0 0 1 0 1 1 0 1

0 0 1 1 0 1 0 1 1

0 1 0 0 1 1 0 0 0

entrance

exit

ᴯ, , қ

Representation

• maze[i][j] 1 i m, 1 j p

– 1 --- blocked

– 0 --- open

– the entrance : maze[1][1]

– the exit : maze[m][p]

– current point : [i][j]

– boarder of 1’s,

• so a maze[m+2][p+2]

– 8 possible moves

• N, NE, E, SE, S, SW, W, NW

19

ᴯ, , қ 20

NW
[i-1][j-1]

N
[i-1][j]

NE
[i-1][j+1]

W
[i][j-1] Ų

[i] [j]

E
[i][j+1]

[i+1][j-1]

SW

[i+1][j]

S

[i+1][j+1]

SE

To predefine the 8 moves

struct offsets

{ int a;

int b;

};

enum directions {N, NE, E, SE, S, SW, W, NW};

offsets move[8];

ᴯ, , қ 21

The basic idea :

 Given current position [i][j] and 8 directions to go

 Pick one direction d

 Get the new position [g][h]

 If [g][h] is the goal, success

 If [g][h] is a legal position, save [i][j] and d+1 in a stack

 in case, take a false path and need to try another direction

 [g][h] becomes the new current position

 Repeat until either success or every possibility is tried

ᴯ, , қ 22

 In order to prevent us from going down the

same path twice :
 mark[m+2][p+2] : use another array

 which is initially 0

 mark[i][j] : is set to 1 once the position is

visited

 Need a stack of items:

struct Items {
int x, y, dir;

};

 Set the size of stack to m*p
 to avoid doubling array capacity during stack pushing

ᴯ, , қ 23

void path(const int m, const int p)

{ //Output a path (if any) in the maze

//maze[0][i]=maze[m+1][i]=maze[j][0]=maze[j][p+1]=1,0 i p+1, 0 j m+1

// start at (1,1)

mark[1][1]=1;

Stack<Items> stack(m*p);

Items temp(1, 1, E);

stack.Push(temp);

while (!stack.IsEmpty())

{

temp= stack.Top();

Stack.Pop();

int i=temp.x; int j=temp.y; int d=temp.dir;

ᴯ, , қ 24

while (d<8)

{

int g=i+move[d].a; int h=j+move[d].b;

if ((g==m) && (h==p)) { // reached exit

// output path

cout <<stack;

cout << i<<“ “<< j<<“ “<<d<< endl; // last two

cout << m<<“ “<< p<< endl; // points

return;

}

ᴯ, , қ 25

if ((!maze[g][h]) && (!mark[g][h])) { //new position

mark[g][h]=1;

temp.x=i; temp.y=j; temp.dir=d+1;

stack.Push(temp);

i=g ; j=h ; d=N; // move to (g, h)

}

else d++; // try next direction

}

}

cout << “No path in maze.”<< endl;

}

ᴯ, , қ

Idea ̔
• scan expression from left to right

• when a left parenthesis is encountered, add its position
to the stack

• when a right parenthesis is encountered, remove
matching position from stack

26

ᴯ, , қ

Data Structures

Application of Stacks : Expressions

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. ,

3. http://inside.mines.edu/~dmehta/

4. ֲ ,
27

Teacher : Wang Wei

ᴯ, , қ

Arithmetic Expressions

(a + b) * (c + d) + e – f/g*h + 3.25

• Expressions comprise three kinds of entities
– Operators : +, -, /, *

– Operands : a, b, c, d, e, f, g, h, 3.25, (a + b), (c + d), etc.

– Delimiters : (,)

How to generate machine-language instructions to evaluate an
arithmetic expression ?

28

ᴯ, , қ

Operator Degree

• Number of operands that the operator requires

• Binary operator (ԋᾝ ᵬ) requires two operands (2ҩ ᵬ)
– Such as a + b , c / d , or e - f

• Unary operator (ѿᾝ ᵬ) requires one operand (1ҩ ᵬ)
– Such as + g or - h

29

ᴯ, , қ

Infix Form

• Normal way to write an expression

• Binary operators come in between their left and right
operands
– Such as

a * b

a + b * c

a * b / c

(a + b) * (c + d) + e – f/g*h + 3.25

30

ᴯ, , қ

Operator Priorities
• Such as

priority(*) = priority(/) > priority(+) = priority(-)

• When an operand lies between two operators, the operand
associates with the operator that has higher priority

31

ᴯ, , қ

• When an operand lies between two operators that have the
same priority, the operand associates with the operator on
the left

a + b - c

a * b / c / d

• Sub-expression within delimiters is treated as a single
operand, independent from the remainder of the expression
– Such as parentheses ()

(a + b) * (c – d) / (e – f)

32

ᴯ, , қ

• Postfix and Prefix expression forms
– it is easier for a computer to evaluate expressions that are in

these forms
– do not rely on operator priorities, a tie breaker, or delimiters

33

ᴯ, , қ

Postfix Form

• The postfix form of a variable or constant is the same as
its infix form
– a, b, 3.25

• The relative order of operands is the same in infix and
postfix forms

• Operators come immediately after the postfix form of
their operands
– Infix : a + b

– Postfix : ab+

34

ᴯ, , қ

Unary Operators

• Replace with new symbols

+ a => a @

+ a + b => a @ b +

- a => a ?

- a-b => a ? b -

35

ᴯ, , қ 36

Problem:

how to evaluate an expression?

ᴯ

= A /

ᴯ, , қ

Infix to Postfix

Idea: note the order of the operands in both infix and

postfix

infix: A / B – C + D * E – A * C

postfix: A B / C – D E * + A C * –

immediately passing any operands to the output

store the operators somewhere until the right time

A*(B+C)*D  ABC+*D*

40

ᴯ, , қ 41

Next token stack output

A # A

* #* A

(#*(A

B #*(AB

+ #*(+ AB

C #*(+ ABC

) #* ABC+

* #* ABC+ *

D #* ABC+ *D

ABC+ *D*

A*(B+C)*D  ABC+*D*

ᴯ, , қ 42

 isp : in-stack priority (栈内优先级)

　 icp : in-coming priority (入栈/栈外优先级)

Operator x # (- *, /, % +, -)
isp 8 8 1 2 3
icp 0 1 2 3

Rule : when operators are taken out of stack

 their isp less than icp of the new operator

 in-stack priority is number

 their isp equal to icp of the new operator

Such as, assume :

ᴯ, , қ 43

// output the postfix of the infix expression e. It is assumed
// that the last token in e is ‘#’. Also, ‘#’ is used at the bottom
// of the stack.
//

void Postfix (Expression e)
{

Stack<Token> stack; //initialize stack

stack.Push(‘#’);

ᴯ, , қ 44

for (Token x=NextToken(e); x!=‘#’; x=NextToken(e))
if (x is an operand) cout<<x;
else if (x==‘)’)

{ // unstack until ‘(‘
for (; stackTop()!=‘(’; stack.Pop())

cout<<stack.Top();
stack.Pop(); // unstack ‘(‘
}

else { // x is an operator
for (; isp(stack.Top()) <= icp(x); stack.Pop())

cout<<stack.Top();
stack.Push(x);

}

// end of expression, empty the stack
for (; !stack.IsEmpty()); cout<<stack.Top(), stack.Pop());
cout << endl;

}

ᴯ, , қ

Data Structures

Queues

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. ,

3. http://inside.mines.edu/~dmehta/

4. ֲ ,
45

Teacher : Wang Wei

ᴯ, , қ

Queues

• Linear list

• A FIFO (First-In-Fist-Out) list

• One end is called front

• Other end is called rear

• Additions are done at the rear only

• Removals are made from the front only

46

ᴯ, , қ

The Queue

47

A A B A B C A B C D B C D

delete

rrrf,r ffff r

add add add

f = queue front r = queue rear

ᴯ, , қ

Queue Presentment and Implement

• Use
• an array

• a circular representation

– two variable front and rear

• Initially, front = rear = 0

private:
T* queue;
int front,
int rear,
int capacity; //maxSize

0 1 2 3 4 5 6 7 8 9 maxSize-1

front

elements

Queue elements are stored in queue[front] through queue[rear]

rear

(empty)

48

ᴯ, , қ

Custom Array Queue use a circular representation

queue 0 1 2 3 4 5 6 7

A B C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B C D E F G

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front rear
front rear

frontrear

49

ᴯ, , қ

• Possible configuration
with 3 elements

[0]

[1]

[2] [3]

[4]

[5]

A B

C

• Another possible configuration
with 3 elements

[0]

[1]

[2] [3]

[4]

[5]
AB

C
front

• Use integer variables front and rear
– front is one position counter clockwise from first element

– rear gives position of last element

rear
front

rear

50

ᴯ, , қ

Push An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front rear

• Move rear one clockwise • Then put into queue[rear]

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front

rear

51

ᴯ, , қ

Pop An Element

[0]

[1]

[2] [3]

[4]

[5]

A B

C
front rear

• Move front one clockwise

• Then extract from queue[front]

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front

rear

52

ᴯ, , қ

Moving rear Clockwise

[0]

[1]

[2] [3]

[4]

[5]

A B

C

front rear

rear++;

if (rear = = capacity) rear = 0;

rear = (rear + 1) % capacity;

53

ᴯ, , қ

• When a series of removes causes the queue to
become empty
– front = rear

• When a queue is constructed, it is empty

• So initialize front = rear = 0

Empty a Queue

54

ᴯ, , қ

Full a Queue

• When a series of adds causes the queue to become full

• front = rear

• So , cannot distinguish(≢) between a full queue and
an empty queue

55

ᴯ, , қ 58

template <class T>
inline T& Queue<T>::Front()
{

if (IsEmpty()) throw “Queue is empty. No front element”;
return queue[(front+1)%capacity];

}

template <class T>
inline T& Queue<T>::Rear()
{

if (IsEmpty()) throw “Queue is empty. No rear element”;
return queue[rear];

}

ᴯ, , қ 59

template <class T>
void Queue<T>::Pop()
{ // Delete front element from queue

if (IsEmpty()) throw “Queue is empty. Cannot delete”;
front = (front+1)%capacity;
queue[front];

}

 For the circular representation
 the worst-case add and delete times are O(1)
 assuming no array resizing is needed

ᴯ, , қ 60

template <class T>
void Queue<T>::Push(const T& x)
{ // add x at rear of queue

if ((rear+1)%capacity == front)
{ // queue full, double capacity

// code to double queue capacity comes here
}
rear = (rear+1)%capacity;
queue[rear] = x;

}

