
IE
EE

Pr
oo

f

Received 28 June 2014; revised 19 October 2014; accepted 7 February 2015. Date of publication 00 xxxx 0000;
date of current version 00 xxxx 0000.

Digital Object Identi�er 10.1109/TETC.2015.2403200

Multiagent-Based Allocation of Complex
Tasks in Social Networks

WANYUAN WANG, (Student Member, IEEE), AND YICHUAN JIANG, (Senior Member, IEEE)
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China

Key Laboratory of Computer Network and Information Integration, Ministry of Education,
Southeast University, Nanjing 211189, China

CORRESPONDING AUTHOR: Y. JIANG (yjiang@seu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61170164 and Grant 61472079, in part by
the Funds for Distinguished Young Scholars of the Natural Science Foundation of Jiangsu Province under Grant BK2012020, and in part by

the Program for Distinguished Talents of Six Domains in Jiangsu Province under Grant 2011-DZ023.

ABSTRACT In many social networks (SNs), social individuals often need to work together to accomplish
a complex task (e.g., software product development). In the context of SNs, due to the presence of
social connections, complex task allocation must achieve satisfactory social effectiveness; in other words,
each complex task should be allocated to socially close individuals to enable them to communicate and
collaborate effectively. Although several approaches have been proposed to tackle this so-called social task
allocation problem, they either suffer from being centralized or ignore the objective of maximizing the social
effectiveness. In this paper, we present a distributed multiagent-based task allocation model by dispatching
a mobile and cooperative agent to each subtask of each complex task, which also addresses the objective
of social effectiveness maximization. With respect to mobility, each agent can transport itself to a suitable
individual that has the relevant capability. With respect to cooperativeness, agents can cooperate with each
other by forming teams and moving to a suitable individual jointly if the cooperation is bene�cial. Our
theoretical analyses provide provable performance guarantees of this model. We also apply this model in a set
of static and dynamic network settings to investigate its effectiveness, scalability, and robustness. Through
experimental results, our model is determined to be effective in improving the system load balance and social
effectiveness; this model is scalable in reducing the computation time and is robust in adapting the system
dynamics.

INDEX TERMS Complex task allocation, social networks, multiagent, social effectiveness, load
balancing.

I. INTRODUCTION
Today’s many online social networks (SNs) [1], such as
LinkedIn [2] and GitHub [3], provide a good marketing
platform for enterprises, organizations or individuals con-
ducting business. Through social network platforms, the
enterprises (organizations or individuals) post their tasks to
all users and recruit a set of professional users to accom-
plish their tasks. In this so-called social task allocation
problem, we especially focus on the cases where tasks are
complex. The complex tasks differ from common tasks
in the sense that each complex task consists of a set of
interdependent subtasks that require coordination with one
another. In the context of SNs, the success of complet-
ing a complex task depends not only on how professional
the recruited users are [4], [5] and how many workloads

these recruited users undertake [6], [7], but also on how
effectively they can communicate to perform the interdepen-
dent subtasks [8]�[10].

We can consider the following scenario as a motivating
example. An IT manager in LinkedIn wants to recruit a
team of software engineers that can meet the skill require-
ments of a complex software product P, which includes six
activities {Requirement Analysis (RA), Architecture
Design (AD), Implementation (IM), Testing (TE),
Deployment (DE), Maintenance (MA)}. During software
development, collaboration among the developers is often
required for accomplishing the interdependent activities [11].
The interdependent relationships among these activi-
ties are shown in Fig. 1(a), where an edge between
two activities indicates that the engineers who perform

VOLUME X, NO. X, XXXX 2015

2168-6750
 2015 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 1

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

quickly, making it a desirable option for dynamic large-scale
applications.

The remainder of this paper is organized as follows. In the
next section, we give the de�nition of the social complex
task allocation problem and its objective; in Section 3,
we propose the multiagent-based task allocation models with
non-cooperative and cooperative agents. In Section 4, we
analyze our model’s properties, and Section 5 conducts a set
of experiments to evaluate our model’s effectiveness, scala-
bility and robustness. In Section 6, we provide a brief review
of related work on task allocation among social network
subjects. Finally, we present our paper’s conclusions and
discuss future work in Section 7.

II. PROBLEM DESCRIPTION
A. NOTATIONS
We consider the social complex task allocation problem con-
sisting of a social network SN and a set of complex tasks
0={CT 1,CT2; : : : ;CTn}. The social network SN=<N ,E>
is an undirected graph, where N ={n1,n2; : : : ; nm} is the
set of nodes (hereafter, we use the terms ‘‘node,’’ ‘‘user’’
and ‘‘individual’’ interchangeably) and ∀(ni; nj)∈E indicates
the existence of a connection between nodes ni and nj. The
connections among the nodes represent communication pos-
sibilities. Let there be l types of available capabilities of nodes
C={c1; c2; : : : ; cl} in a SN. Each node ni∈N owns some
capabilities Oni⊆C , which make it eligible to perform the
subtask that requires the capability cj∈Oni.

A complex task is a task that can be divided into sev-
eral subtasks that are dependent on one another [24]. Each
complex task CTi∈0 then can be represented by an undi-
rected graph <TV, TE>, where TV={ti1,ti2; : : : ; tik} is the
set of subtasks of CTi, and ∀(tip; tiq)∈TE indicates that
tip and tiq are interdependent on one another.1 Each subtask
tij∈TV then can be de�ned by a 3-tuple<R(tij),�(tij); n(tij)>,
where R(tij)⊆C is the capability that the subtask tij requires
(for simplicity, we assume that each subtask requires only a
single capability, i.e., |R(tij)|=1). The interdependent subtask
set �(tij)={tik |(tij; tik)∈TE} represents the relevant subtasks
that tij must coordinate with. The node location function
n(tij):TV→N indicates the node on which tij is allocated.
A valid task allocation8 is de�ned as the mapping of subtask
∀tij∈TV to a node nk such that nk has the capability to perform
tij (i.e., R(tij)∈Onk).

B. OBJECTIVES
1) LOAD BALANCING
As discussed earlier, one of the main objectives of social
complex task allocation is load balancing, i.e., assign the
subtasks among the nodes as evenly as possible such that no

1In this paper, we assume that there are no rigorous precedence orders
among the interdependent subtasks, which is reasonable in real-world appli-
cations. For example, during the development of a software product, although
the Implementation activity occurs prior to the Testing activity, the Imple-
mentation engineer must also wait for the Testing engineer’s feedback for
debugging and optimization.

subtask must wait very much time to be executed. There are
many measures to quantify the load balance extent, such as
the maximum load over all of the nodes [7] and the stan-
dard deviation of nodes’ loads [22]. However, to re�ect the
advantage of our muliagent-based task allocation model
(presented in Section 3), we adopt an alternative load balance
measure, which can be called the social waiting cost.

De�nition 1 (Social Waiting Cost): Given a valid
allocation8 of subtask ∀tij∈CTi (CTi∈0) to a node nk∈N, the
social waiting cost of all of the subtasks, SWC(8), is de�ned
as follows:

SWC(8) =
∑

ni∈N
Lni (Lni + 1)=2 (1)

where Lni=|{tjk |n(tjk)=ni}| is the number of subtasks that are
allocated on node ni. For a given node ni, let the number of
subtasks that are allocated on ni be Lni; then, the �rst subtask
must wait one unit of computation time to be completed, the
second subtask must wait two units of computation time, and
inductively, the Lnith subtask must wait Lni units of time.
The total waiting cost of the subtasks allocated on node ni
then is

∑
1≤i≤Lni

i = Lni (Lni + 1)=2. This social waiting cost
de�nition is motivated by [23], which is powerful enough to
quantify the load balance extent.

Property 1: Given a social task allocation prob-
lem, the smaller the social waiting cost of a valid
allocation 8, the more balanceable the allocation 8 is.

2) SOCIAL EFFECTIVENESS
In addition to aiming at a fair allocation of subtasks among
the nodes, these allocated nodes should also communicate
with one another effectively in such a way that they can
complete a complex task successfully [18]. Given any two
nodes ni and nj, however, it is not easy for a task manager
to determine whether they can communicate effectively if
this manager does not know them well. In many SNs, the
connection always represent a positive social relationship
between social individuals such as friendship in acquaintance
networks [16], partnership in collaboration networks [5] or
location proximity in opportunistic mobile networks [17].
Therefore, social distance can be used as a good indicator
of social effectiveness [2], [3], [9], [10]. The social distance
between nodes ni and nj, d(ni; nj) is the sum of the connec-
tions on the shortest path that connects the two nodes, and the
shorter the distance between them, the more effectively they
can communicate (or equivalently, the fewer the communica-
tion cost will be incurred), and vice versa. In the following,
we use a simple but intuitive and reasonable social communi-
cation cost measure to quantify the social effectiveness.

De�nition 2 (Social Communication Cost): Given a valid
allocation 8 of subtask ∀tij∈CTi (CTi∈0) to a node nk∈ N,
the social communication cost of all subtasks, SCC (8), is
de�ned as follows:

SCC(8) =
∑

CTi∈0

∑
tij∈CTi

∑
tik∈�(tij)

d(n(tij); n(tik))=2

(2)

VOLUME X, NO. X, XXXX 2015 3

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

Property 2: Given a social task allocation problem,
the smaller the social communication cost of a valid
allocation 8, the more socially effective the allocation 8 is.

C. TRADE-OFF BETWEEN LOAD BALANCING
AND SOCIAL EFFECTIVENESS
We are mainly concerned with allocating the subtasks to
nodes with the aims of both load balancing and social
effectiveness maximization, which is a bi-objective
optimization problem, and the two objectives are often
con�icting. A typical way to solve the bi-objective opti-
mization problem is to transform the problem into a single
objective problem [12], [14]. In this paper, we adopt this idea
by combining the two objective functions (i.e., social waiting
cost and social communication cost) into a single objective
function (i.e., the social execution cost).

De�nition 3 (Social Execution Cost): Given a valid
allocation 8 of subtask ∀tij∈CTi (CTi∈0) to a node nk∈ N,
the social execution cost of all subtasks, SEC(8), is de�ned
as follows: SEC (8) = �SWC(8)+ �SCC(8).

The coef�cients � and �(�; �>0) determine the in�u-
ences of their corresponding terms and are application
dependent. For example, in load-oriented scenarios such
as proposal evaluation, the communication cost might not
be signi�cant compared to the waiting cost [7]. However,
in communication-oriented applications such as developing
software products, engineers must spend a substantial amount
of effort on communication [2].

Finally, the social complex task allocation prob-
lem that is studied in this paper can be de�ned as
follows:

De�nition 4 (Social Complex Task Allocation Problem):
Given a social network SN=<N ;E> and a �nite set of
complex tasks 0 , the social complex task allocation problem
is to determine the optimal valid allocation 8 that has the
minimum social execution cost, i.e.,

min SEC(8)

s:t: R(tij) ∈ On(tij); ∀tij ∈ CTi;CTi ∈ 0

Property 3: Social complex task allocation problem is
NP-hard. The hardness proof follows directly from the
traditional known NP-hard social team formation problem
discussed in [2], which is a specialization of this social
complex task allocation problem when the load balancing
objective is ignored (i.e., �=0).

Because our problem cannot be solved optimally within
polynomial time unless P=NP, in this paper, we propose
an ef�cient distributed social complex task allocation model
by utilizing the multiagent technology, which also provides
a provable performance guarantee. Multiagent technolo-
gies have been employed widely for distributed problem
solving [1], [12]�[15], [19], [21]�[31]. Motivated by the
studies [22]�[24], in our model, we use the mobile and
cooperative agent to carry the subtask to search for the
suitable target node.

III. THE MODEL
We formulate the multiagent-based social complex task
allocation model as follows. First, we dispatch an agent ai+j
for each subtask tij∈CTi (A={a1, a2; : : : ; an} denotes the
collection of agents in the system). Each agent ai∈A then
can be de�ned by a 2-tuple <ST(ai), IA(ai)>, where ST(ai)
indicates the subtask that it carries, and the interdependent
agent set IA(ai)={ap; : : : ; aq} represents those agents whose
subtasks have direct dependencies with the subtask of ai,
i.e., IA(ai) ={aj|ST(aj)∈�(ST(ai))}. Second, we model each
agent with the mobility property. With respect to mobility, we
mean that each agent ai can transport itself to a suitable node
that owns the capability to perform ai. Given the mobility
property of the agents, if there are multiple nodes suitable for
agent ai, which node should ai choose to queue at? To answer
this question, in Section III-A, we �rst investigate the
non-cooperative setting where each agent is tempted to
move to the most suitable node from its own perspective
and elaborate why the agents should be endowed with a
cooperative property. Then, in Section III-B, we develop an
ef�cient multiagent-based task allocation model with coop-
erative agents.

A. THE MODEL WITH NON-COOPERATIVE AGENTS
In the non-cooperative setting, each agent attempts to queue
at the optimal suitable node that produces the minimum exe-
cution cost for itself. The execution cost of an agent consists
of the waiting cost and the communication cost. Denote
by nai the node that agent ai queues at, and the waiting,
communication and execution costs of ai are de�ned as
follows:

De�nition 5 (Waiting Cost of an Agent): The agent ai’s
cost of waiting to be completed by node nai , Wc(ai; nai), is
given by the total number of agents that queue at nai ,i.e.,
Wc(ai; nai)=|{aj|naj=nai}|.

De�nition 6 (Communication Cost of an Agent): The agent
ai’s cost of communicating with all of its interdependent
agents IA(ai) is given by Cc(ai; nai)=

∑
aj∈IA(ai) d(nai ; naj):

From the viewpoint of ai, this agent can be consid-
ered successfully executed if it has waited its turn in the
queue of nai and has communicated with its interdependent
agents IA(ai).

De�nition 7 (Execution Cost of an Agent): Assume that
the waiting and communication costs of agent ai are
Wc(ai; nai) and Cc(ai; nai), respectively. Then, the execution
cost of ai is Ec(ai; nai)=�Wc(ai; nai)+�Cc(ai; nai).

The meanings of the two coef�cients � and � are similar to
those described in De�nition 3. This execution cost de�nition
has many desirable properties that satisfy the objective of the
social complex task allocation problem.

Property 4: An agent prefers to queue at a node that has a
small agent load.

This agent’s preference reduces the social waiting cost.
Property 5: An agent prefers to queue at a node at which

its interdependent agents reside.

4 VOLUME X, NO. X, XXXX 2015

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

FIGURE 2. A simple social complex task allocation instance. (a) The network. (b) The complex task. (c) The equilibrium solution S={n2,n2,n2,n2}.
(d) The optimal solution S∗={n1,n1,n1,n2}.

Given this preference, in the case that all of the interdepen-
dent agents of ai queue at nj, ai is more likely to queue at nj
because of the zero intra-node communication cost, resulting
in a reduced social communication cost.

Formally, in the dynamic muliagent model, each agent ai’s
strategy si is the node that it selects to queue at (i.e., si∈N).
The strategy set S={s1,s2; : : : ; sn} of all agents is called the
strategy pro�le. In the non-cooperative setting, a strategy
pro�le is in equilibrium if and only if no agent has any
incentive to change its strategy (move from its current node
to another suitable node) unilaterally, i.e., ∀ai∈A and s

′

i 6=si,
Ec(ai; s′i, S−i)≥Ec(ai; si; S−i); where (ai; s′i, S−i) is the alter-
native strategy pro�le that is generated only when ai changes
its strategy from si to s′i. If agents search for suitable nodes in
a purely sel�sh manner, the system can always converge to an
equilibrium solution (later in Section 3.2, we will provide a
rigorous proof of the convergence of a multiagent model
with the cooperative agents, which encompasses the case
where the agents are non-cooperative; thus, we omit this
proof here). However, at the equilibrium state, the social
execution cost (SEC) produced by the sel�sh agents is not
necessarily the optimal. To illustrate how bad sel�sh behavior
is, consider a simple social complex task allocation instance
shown in Fig. 2.

Example 1: In Fig. 2(a), there is a network that
consists of two interconnected nodes, n1 and n2. Node n1
holds the capability set {c1,c2,c3}, and n2 holds the
capability set {c1,c2,c3,c4}. Now, assume that a complex
task CT is submitted to the system; this task comprises
four interdependent subtasks t1={c1}, t2={c2}, t3={c3}
and t4={c4} (Fig. 2(b)). The coef�cients � and �,
involved in the calculation of the execution cost, are
set to 3 and 5. According to the multiagent model,
four mobile agents a1=<t1,{a2,a3}>, a2=<t2,{a1,a3}>,
a3=<t3,{a1,a2; a4}>, and a4=<t4,{a3}> are dispatched
to the subtasks {ti|1≤i≤4}, respectively. Next, we con-
sider the strategy pro�le S={n2,n2,n2,n2}, i.e., a1, a2, a3
and a4 all queue at node n2. At pro�le S, from each
agent’s own viewpoint, they are queuing at the opti-
mal suitable node: ∀ai(i=1; 2), Ec(ai; n2, S−i)=�Ln2 +

�d(n2; nIA(ai))=4�=12<Ec(ai; n1; S−i)=�+2�=13; for a3,
Ec(a3,n2,S−i)=4�=12<Ec(a3,n1,S−i)=�+3� = 18, and
for a4, node n2 is the only suitable node that has the
capability c4. Thus, the strategy pro�le S is an equi-
librium solution that has 1

2�
∑

1≤i≤2 Lni (Lni + 1) +
1
2�

∑
1≤i≤4 d(nai ; nIA(ai))=10�=30 unit SECs. However,

the optimal solution of this instance is S∗={n1,n1,n1,n2}
(i.e., a1, a2 and a3 queue at node n1, and a4 queues at n2),
which only produces 7�+ �=26 unit SECs. It is worthwhile
noting that this optimal solution S∗ can be easily achieved
from strategy pro�le S if the agents a1, a2 and a3 cooperate
with each other by moving from node n2 to n1 jointly.

Therefore, it is very bene�cial to model the agents being
cooperative. The cooperation mechanism employed in this
study extends the team formation mechanism [30] by allow-
ing agents to cooperate with each other to form a team and
to move the same node jointly. Furthermore, to avoid the
cooperation mechanism producing large inter-node message
delivering overhead, we constrain each agent ai in such a way
that it can cooperate only with its intra-node agents (i.e., the
agents that queue at the same node with ai’s). The network
traf�c overhead produced by the intra-node negotiation is so
small that it can be neglected [24].

B. THE MODEL WITH COOPERATIVE AGENTS
The main idea of the cooperation mechanism implemented
by the agents can be brie�y described as follows: each agent
negotiates with its intra-node agents and decides to cooperate
with them by forming a team if cooperation results in a
reduced execution cost for the team. The execution cost of
an agent team is de�ned as follows:

De�nition 8 (Execution Cost of a Team): Denote by nG
the suitable node that an agent team G queues at2; then, the
team G‘s execution cost Ec(G, nG) is the following:

Ec(G; nG) = �
∑

1≤i≤lG
(LnG − lG + i)

+�
∑

ai∈G

∑
aj∈IA(ai)

d(nG; naj) (3)

The �rst term represents the total waiting cost of the
team G, where LnG=|{aj|naj=nG}| is the number of agents
that queue at node nG, and lG=|{aj|aj∈G}| is the num-
ber of agents in G. For a given node nG with the agent
load LnG, the �rst agent in G must wait LnG − lG + 1
unit cost, the second agent in G must wait LnG − lG +
2 unit cost, and inductively, the lGth agent in G requires
LnG units of waiting cost. The total waiting cost of the
team G queuing at nG, then, is

∑
1≤i≤lG (LnG − lG + i). The

second term represents the total communication cost of G.
It is worthwhile noting that when there is only one

2A node nG is suitable for an agent team G if and only if it has the
capabilities required by all of the agents in G, i.e., ∀ai∈G, R(ST(ai))∈OnG.

VOLUME X, NO. X, XXXX 2015 5

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

agent ai in G, the execution cost of ai can be recovered
in accordance with that de�ned in De�nition 7.

Next, we will illustrate how the team can be formed and the
advantage of the team formation protocol. Recall Example 1,
at the equilibrium strategy pro�le S={n2,n2, n2,n2}; from
its own viewpoint, agent a1 realizes that it is queuing at
the optimal node (i.e., node n2). However, according to the
team execution cost de�nition, a1 �nds that forming team
G=a1∪{a2; a3} with a2, a3 and moving to node n1 jointly
produces the less team execution cost: before moving, the
team execution cost of G;Ec(G; n2)=�

∑
i=1;2;3 (LnG−lG +

i)+ �
∑

ai∈G
∑

aj∈IA(ai) d(nG; naj)=9�=27, after the team G
moves to n1, the execution cost of Gbecomes Ec(G,n1)=6�+
�=23<27=Ec(G,n2). Then, a1 will negotiate with a2 and a3
for team formation, and because of the cooperative property,
agents a2 and a3 are willing to join this team, whereby the
team is formed.

An agent team (which also encompasses the case in
which there is only one agent in the team, i.e., the non-
cooperative case) prefers to change strategies (i.e., move
from its current node to another suitable node) if the strategy
changing can reduce the execution cost of the team that it
forms. Here, we use the measure of bene�t to quantify how
much an agent team gains by changing its strategy. The
bene�t that a team G gains by moving from the suitable
node nx to another suitable node ny is

B(G; nx ; ny) = Ec(G; nx)− Ec(G; ny) (4)

Given this bene�t de�nition, it can be observed that there
is no incentive for an agent team G to form a new team
G∗=G∪{aj} by merging the agent aj that has no dependen-
cies with the agents in G (i.e., aj ∈ ∪ai∈GIA(ai)) because
forming such a new team G∗ would not decrease any com-
munication cost of the original teamG but only increases the
waiting cost of G.

Property 6: For any agent ai∈ A, it is only bene�cial
for ai to form a team with its interdependent agents and
interdependent agents’ interdependent agents, if necessary.

Therefore, each agent ai’s cooperation domain (ai)
can be further limited within its intra-node interdependent
agents and interdependent agents’ interdependent agents,
if necessary, which can be denoted by (ai)={aj|naj=

nai∧ST(aj)·CT=ST(ai)·CT} (ST(ai)·CT means the com-
plex task that subtask ST(ai) belongs to). Nevertheless,
for each agent, even �nding the optimal team that yields the
largest bene�t within its cooperation domain agents is not
easy. Assume that agent ai is queuing at a certain node; iden-
tifying the optimal team from its cooperation domain (ai)
must consider the exponential number O(2| (ai)|) of possi-
ble combinations. To deal with this computationally costly
optimization problem, we propose an ef�cient Breadth-First
negotiation mechanism, where each agent forms a bene�cial
team by negotiating from its intra-node direct interdepen-
dent agents to far-away interdependent agents’ interdepen-
dent agents gradually. To illustrate the negotiation protocol,
consider Example 1 again (see Fig. 3).

FIGURE 3. (a) The dependency relationships of the agents that
queue at node n2. (b) The negotiation process of agent a1.

Example 1 (Continue): Suppose that the four
interdependent agents {ai|1≤i≤4} are now queuing at
node n2 (the dependencies of these agents are shown
in Fig. 3(a)). Without loss of generality, assume that
agent a1 wants to change strategy. The negotiation pro-
cess employed by a1 to form a bene�cial team then can
be described as in Fig. 3(b): �rst, a1 negotiates with its
direct interdependent agents a2 and a3, i.e., the agents in
gradation 1. If a1 �nds that it is bene�cial to form a team
with a2 by moving to a certain node (e.g., n1) jointly,
a1 will negotiate with a2 to join this team and proceeds
to negotiate with the other agents in gradation 1 (i.e., a3).
Otherwise, if the formation of a team with agent a2 does
not yield any bene�t, then a2 will be removed from the
current team. After a1 has negotiated with all of the agents
in gradation 1 and �nds that forming a team with a2 and a3
(denote a2 and a3 as the new joining agents) is bene�cial,
a1

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

Algorithm 1: Multiagent-Based Social Complex Task
Allocation Model
Repeat the following procedure until no agent team can1.

bene�t by changing its strategy.
Pick an agent ai ∈ A randomly.2.

Initialize the �ag fj of agent aj queuing at nai to 0.3.

Initialize G = Ø, max=0 and target=Null.4.

Create Queue(Q).5.

Insert Queue(Q; ai), and set fi=1.6.

While (Q6=Ø) do7.

Set ax = Out Queue(Q) and tag=false.8.

For ∀nj ∈ N do9.

If B(G ∪ {ax}, nai; nj) > max &&10.

∀ay ∈ G ∪ {ax}, R(ST (ay)) ∈ Onj then
tag=true, max= B(G∪{ax},nai; nj), target = nj.11.

End if12.

End for13.

If tag == true, then14.

G = G ∪ {ax}.15.

For ∀ay ∈ IA(ax) && nay==nai && fy 6= 1, do16.

Insert Queue(Q, ay) and set fy = 1.17.

End if18.

End while19.

If G 6= Ø, move G to the target node target.20.

IV. ANALYSES OF THE MODEL
A. CONVERGENCE ANALYSIS
In addition to evaluating the performance of the dynamic
multiagent model on social execution cost, its convergence
should also be judged. Motivated by the potential function
concept that is often used to identify potential games [32],
we have the following result.

Theorem 1: In Algorithm 1, each time that an agent team G
moves from the current node to a preferable suitable node that
achieves the bene�t B, the social execution cost will reduce
the value of B correspondingly.

Proof: Denote by S={s1,s2; : : : ; sn} the agents’ strategy
pro�le and SEC(S)=�SWC(S)=2+�SCC(S)/2 the social exe-
cution cost function on S, where SWC(S)=

∑
ni∈N Lni (Lni + 1),

Lni is the agent load on node ni and SCC(S)=
∑

ai;aj∈A d(si; sj).
Now, consider an agent team G that changes its strategy by
moving from node sG to node s′G. From the perspective of the
�rst term SWC(S) of SEC(S), we have

SWC(sG; S−G)− SWC(s
′

G; S−G)

= [LsG (LsG+1)+ Ls
′

G
(Ls
′

G
+1)+

∑
nj 6=sG;s

′

G
Lnj (Lnj+1)]

−[(LsG − lG)(Ls
′

G
+ 1− lG)+ (Ls

′

G
+ lG)(Ls

′

G
+ 1+ lG)

+

∑
nj 6=sG;s

′

G
Lnj (Lnj + 1)]

= 2lG(LsG − Ls
′

G
− lG)

where lG is the number of agents in G, and LsG; Ls′G are the
agent load on sG and s′G at the strategy pro�le S.

On the second term SCC(S) of SEC(S), we have:

SCC(sG; S−G)− SCC(s
′

G; S−G)

= [2
∑

ai∈G

∑
aj∈IA(ai)

d(sG; sj)

+

∑
aj∈A\G

∑
ak∈IA(aj)\G

d(sj; sk)]

−[2
∑

ai∈G

∑
aj∈IA(ai)

d(s
′

G; sj)

+

∑
aj∈IA\G

∑
ak∈IA(aj)\G

d(sj; sk)]

= 2
∑

ai∈G

∑
aj∈IA(ai)

(d(sG; sj)− d(s
′

G; sj))

On the other hand, from the perspective of the team G, we
have

Ec(G; sG; S−G)− Ec(G; s
′

G; S−G)

= [�
∑

1≤i≤lG
(LsG − lG + i)

+ �
∑

ai∈G

∑
aj∈IA(ai)

d(sG; sj)]

−[�
∑

1≤i≤lG
(Ls
′

G
+ lG − lG + i)

+ �
∑

ai∈G

∑
aj∈IA(ai)

d(s
′

G; sj)]

= �lG(LsG − Ls
′

G
− lG)

+�
∑

ai∈G

∑
aj∈IA(ai)

(d(sG; sj)− d(s
′

G; sj))

Until this point, we can conclude that for every sG, s
′

G∈N :

SEC(sG; S−G)− SEC(s′G; S
′

−G) = Ec(G; sG; S−G)

−Ec(G; s
′

G; S‘−G)

Therefore, we have Theorem 1. �
Based on Theorem 1, next we will show the convergence

of the muliagent model and how fast it will converge to an
equilibrium solution.

Theorem 2: Given a complex task allocation problem in
social a network, where the number of network nodes is m; the
diameter of the network is d; the number of subtasks is n; each
subtask has k interdependent subtasks on average and the
in�uence coef�cients � and � are integers. Algorithm 1 takes
at most O(�n2

+�nkd) steps to reach a stable equilibrium
solution.

Proof: Recall the social execution cost de�nition that
is de�ned in De�nition 3: SEC(·)=�SWC(·) + �SCC(·).
Note that at the initial state (i.e., the system agents are dis-
tributed on nodes randomly), we have SWC(·) ≤ n(n + 1)/2
(the worst case with the maximum SWC value is that all
of the agents queue at the same node and SCC(·)≤nkd/2
(the worst case with the maximum SCC value is that each
pair of interdependent agents takes d hop distances to com-
municate. Note also that at the optimal state, SEC(·) ≥
�n(n/m + 1)/2 (the optimal case with the minimum SEC
value is that agents are distributed on nodes evenly and
interdependent agents queue at the same node without any
communication cost). From Theorem 1, we know that each
time a team changes its strategy, SEC(·) reduces at least

VOLUME X, NO. X, XXXX 2015 7

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

one unit value because � and � are integers. Thus, we can
determine that SEC(·) will reach its minimum in at most
O(�(n2

+ n) + �nkd − �(n2/m + n))=O(�n2
+ �nkd) time

steps. �

B. PERFORMANCE GUARANTEE ANALYSIS
Although the dynamic multiagent model can always converge
to an equilibrium solution in polynomial time steps, its equi-
librium solution is not necessarily the optimal solution that
has the minimum social execution cost, even the agents are
cooperative. Therefore, it is interesting and very much needed
to analyze the multiagent model’s degradation on system
performance. The price of anarchy (PoA) measure (which is
often used in game theory [33]) provides a good indicator
to quantify the gap between the worst equilibrium solution
and the optimal solution. In this paper, we use this notion to
evaluate the multiagent model′s performance. Let ES be the
set of equilibrium solutions of the multiagent model; then,
the price of anarchy of this model, PoA, can be de�ned by the
worst case ratio among all of the equilibrium solutions over
the optimal solution (Opt) in terms of the social execution
cost, i.e.,

PoA = max
S∈ES

SEC(S)
/

SEC(Opt) (5)

Next, we will provide an upper bound of PoA of the
multiagent model with the non-cooperative agents. As we
discussed above, the cooperative setting might have a better
solution than the non-cooperative setting, which will lead to a
lower PoA. Thus, the multiagent model is likely to have a tight
lower bound.

Theorem 3: Given a complex task allocation problem in a
social network, where the number of network nodes is m; the
diameter of the network is d; the number of subtasks is n; each
subtask has k interdependent subtasks on average. The PoA of
the multiagent model then is O(1+3m(�+2kd�)/�(m+ n)).

Proof: Let S={s1; s2; : : : ; sn} and P={p1,p2; : : : ; pn}
be the equilibrium solution and the optimal solution,
respectively. At strategy pro�le S, the execution cost of the
agent ai is Ec(si; S−i)=�Lsi (S)+�

∑
aj∈IA(ai) d(si; sj), where

Lsi(S) is the agent load on node si at strategy pro�le S. The
sum execution cost of all of the agents at S is:

Sum(S) =
∑

ai∈A
Ec(si; S−i)

= �
∑

ni∈N
L2

ni
(S)+�

∑
ai∈A

∑
aj∈IA(ai)

d(si; sj)

= 2SEC(S)− n�

As is known, at the equilibrium solution S, the execution cost
of agent ai should not decrease when ai changes its strategy
from si to pi, i.e.,

Ec(ai; si; S−i)

≤ Ec(ai; pi; S−i)

= �(Lpi (S)+ 1)+ �
∑

aj∈IA(ai)
d(pi; sj)

≤ �(Lpi (S)+ 1)+ �
∑

aj∈IA(ai)
(d(si; sj)+ d(si; pi)) (6)

The inequality (6) follows from the triangle inequality for
the social distance, i.e., ∀ni,nj; nk∈N , d(ni; nj)≤d(ni; nk) +
d(nk ; nj). If we sum the execution cost of all agents, we then
have the bound of the social execution cost of the equilibrium
solution S; as follows:

Sum(S) =
∑

ai∈A
Ec(ai; si; S−i) ≤

∑
ai∈A

Ec(ai; pi; S−i)

≤ �
∑

ni∈N
Lni (P)(Lni (S)+ 1)

+�(
∑

ai∈A

∑
aj∈IA(ai)

d(si; sj)+ 2nkd)

= �
∑

ni∈N
Lni (P) · Lni (S)

+�
∑

ai∈A

∑
aj∈IA(ai)

d(si; sj)+ n� + 2nkd�

≤ �
∑

ni∈N

1
2

(L2
ni

(P)+ L2
ni

(S))

+�
∑

ai∈A

∑
aj∈IA(ai)

d(si; sj)+ n� + 2nkd�

(7)

The inequality (7) follows from the fact ∀x, y∈R,
x2
+y2
≥2xy. Derive from (7), we can conclude that

Sum(S) ≤
1
2

(�
∑

ni∈N
L2

ni
(S)

+ �
∑

ai∈A

∑
aj∈IA(ai)

d(si; sj))

+
1
2
�

∑
ai∈A

∑
aj∈IA(ai)

d(si; sj)

+
�

2

∑
ni∈N

L2
ni

(P)+ n� + 2nkd�

=
1
2

Sum(S)+
�

2

∑
ni∈N

L2
ni

(P)+n� + 3nkd�

⇒ Sum(S) ≤ �
∑

ni∈N
L2

ni
(P)+2n� + 6nkd�

By replacing Sum (S) with 2SEC(S)-n�, we can derive

2SEC(S)− n�

≤ �
∑

ni∈N
L2

ni
(P)+ 2n� + 6nkd�

⇒ SEC(S) ≤ �
∑

ni∈N
L2

ni
(P)+

3
2

n� + 3nkd�

⇒
SEC(S)
SEC(P)

≤
�

∑
ni∈N L2

ni
(P)+ 3

2n� + 3nkd�

�
∑

ni∈N L2
ni

(P)

⇒
SEC(S)
SEC(P)

≤ 1+
3m(� + 2kd�)
�(m+ n)

(8)

The inequality (8) follows from

SEC(P) ≥ �
∑

ni∈N
L2

ni
(P) ≥

�n(n+ m)
2m

(9)

The inequality (9) has been proven in Theorem 2. Therefore,
we have proven Theorem 3. �

V. EXPERIMENTAL VALIDATION AND ANALYSES
A. EFFECTIVENESS
We test the effectiveness of the mulitagent-based social com-
plex task allocation model in small-scale settings. In these

8 VOLUME X, NO. X, XXXX 2015

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

FIGURE 4. The performance of various task allocation models on different (α, β) values and different complex task sizes. (a) #Subtask=4.
(b) #Subtask=8. (c) #Subtask=12. (d) #Subtask=16.

settings, each network consists of 30 nodes interconnected
by a small-world structure in which the rewiring probability
is p=0.2 [34]. The number of capabilities owned by each
node ni∈N is given by U (1,4) (U (a; b) returns a value that is
distributed at the interval [a; b] uniformly), and each owned
capability cj∈Oni is chosen from the range [1, 16] randomly.
There is only one complex task ct to be executed, and its
subtask size is set to 4, 8, 12 or 16. Each subtask ti∈ct is
randomly assigned a single required capability R(ti)∈ [1, 16].
The underlying interdependent relationships of these sub-
tasks are randomly generated: each subtask has a dependency
with another subtask with a probability of p=0.4. Moreover,
we select �ve cases that have various coef�cient values
(i.e., � and �) for the calculation of the social execution cost,
i.e., case I: (�, �)=(1; 5), case II: (�, �)=(1; 2) case III:
(�, �)=(1; 1) case IV: (�, �)=(2; 1) and case V:
(�, �)=(5; 1).

We conduct the multiagent model as follows: we �rst allo-
cate each subtask to the suitable node randomly and denote
this solution as the initial solution. Then, we utilize our model
to reallocate the subtasks by allowing the agents (who carry
the subtasks) to change their node location. We compare our
model (Our model) with the following four conventional task
allocation models:

• Centralized optimal model (Optimal), which utilizes
an exponential brute-force search method to consider all
of the possible allocations of subtasks to nodes.

• Centralized iterative replace model (IReplace) [2]
where a central controller �rst allocates each subtask
to the most suitable node with the minimum task load
and then replaces the allocated node of each subtask
iteratively to reduce the social execution cost.

• Centralized greedy model (Greedy) [8], where the
central controller identi�es the best node for each com-
plex task and allocates this complex task to that node.
The best node means that it can allocate unsatis�ed
subtasks to its contextual nodes with the minimum social
execution cost.

• Distributed agent-based probability model
(Probability) [23], where each agent carries a task
wanders from its current node to another node proba-
bilistically. If an agent encounters a node that produces
a smaller execution cost than the system’s average value,
it queues at that node; otherwise, it continues wandering.

Fig. 4 shows the �nal social execution costs (SEC) pro-
duced by these models, which are achieved by averaging over
20 instances. From the experimental results, we conclude the
following:

1) In all cases, our model performs very close to the
Optimal and IReplace models on SEC, which is better than
the Greedy and Probability models. This level of performance
occurs because each agent team in our model strives to search
for the optimal suitable node to queue at, which is bene�cial
to reduce the system’s social execution cost.

2) In the latter two cases (i.e., cases IV and V, where the
in�uence of the waiting cost is larger than that of the commu-
nication cost), our model produces the less social execution
cost compared to the �rst two cases (i.e., cases I and II). The
potential reason is that when waiting cost can overlap the
communication cost, our model will take advantage of reduc-
ing the waiting cost over its generated inter-node communica-
tion cost. While in the �rst two cases (where the in�uence of
the communication cost is larger than that of the waiting cost),
the system expends much effort for communication, which
implies that interdependent agents are more likely to queue at
the same node because of the zero intra-node communication
cost. As de�ned in De�nition 3, SEC linearly depends on
agents’ communication costs, while SEC is proportion to the
square of each node’s agent load (i.e., SEC(·) ∼ O(L2

ni). Thus,
the larger the communication cost coef�cients are, the larger
the value of SEC

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

FIGURE 5. The social execution costs of different models in the large-scale applications. (a) Small-World. (b) Scale-Free. (c) Scale-Free with TC.
(d) Random.

FIGURE 6. The running times of different models in the large-scale applications. (a) Small-World. (b) Scale-Free. (c) Scale-Free with TC. (d) Random.

we add a new node and connect this new node to m1
nodes that already existing in the network. The proba-
bility that a new node v connects an existing vertex u is
proportional to the degree of u [35].

• Scale-Free Network With Triad Formation (Scale-Free
With TF): This network is built based on the scale-free
network by adding an additional triad formation step: if a
connection is added between nodes v and u, then another
connection is added from v to a randomly selected
neighbor of u [36]. This additional triad formation step
constructs a network with power-law degree distribution
and a high clustering coef�cient.

• Random Network: By referring to [37], the random
network is generated by randomly adding connections
between agents with a probability of p=0.003, which
results in the network average degree being equal to 6.

We assume that there are hundreds of complex tasks, whose
numbers range from 100 to 1000, submitted to the system.
The number of subtasks of each complex task is given by
U (4, 16). Due to space limitations, here we consider only the
coef�cient case (�, �)=(1; 1) (we also evaluate the system
performance on other coef�cient cases with different (�,�)
values, and we obtain similar observations; thus, we omit the
discussion of these cases). The other settings are similar to
those described in Section 5.1.

Because Optimal is intractable in the large-scale settings,
in this experiment, we compare only our model with the
other three models, i.e., Greedy, IReplace and Probability.
Fig. 5 shows the results of the SECs of these models, from
which we can conclude that: 1) In all of the experiments, our
model performs slightly worse than Greedy but is much better

than Probability and IReplace on SEC, which is especially
notable when compared to the Probability. 2) In contrast to
what we have observed in Section 5.1 that IReplace per-
forms better than Greedy in small-scale applications, in large-
scale applications, IReplace performs worse than Greedy.
The potential reason is that, in the large-scale applications,
there are thousands of subtasks, and at each iterative round,
IReplace considers only the current chosen subtask, ignor-
ing the status of its direct (or indirect) relevant subtasks
(the numbers of these subtasks are considerable in the large-
scale applications), while Greedy can alleviate this problem
in these scenarios.

Fig. 6 shows the running times of these models, from which
we can observe that: 1) compared to our model, the tradi-
tional Greedy, IReplace and Probability models spend much
more time on task allocation. For example, in the case that
#complex task=1000 in a small-world structure
(i.e., Fig. 6(a)), Greedy must spend one hour and a half
(approximately 5×103(s)) to return the allocation result,
while our model requires only several minutes. We explain
this phenomenon by analyzing these models’ theoretical
computational complexity. Given a social task allocation
problem that has m nodes,n complex tasks and each com-
plex task consists of k subtasks on average, the compu-
tation complexity of Greedy and IReplace is O(nk2m2)
(The details of the complexity description of the IReplace and
Greedy models can be found in [2] and [8]). As discussed
in Section 5.1, our model takes at most O(k2n2) time steps
to converge to a stable equilibrium, and at each time step,
an agent needs to take only O(k) operations to compute
the most bene�cial team. Thus, the time complexity ratio

10 VOLUME X, NO. X, XXXX 2015

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

between Greedy (or IReplace) and our model then equals
to O(nk2m2)/O(k3n2)=m2/(kn), which is consistent with the
experimental results to some extent.

Table 1 shows the properties (e.g., network diameter, char-
acteristic path length (CPL) and clustering coef�cient) of
these networks used in this experiment. Fig. 7 shows the SEC
produced by our model in these networks. From the results
shown in Fig. 7, it can be found that our model is more
relevant to network diameter and CPL: if the network has a
shorter diameter and a smaller CPL, our model will produce
the less SEC. For example, our model produces the least
SEC in the Scale-Free with TF network that has the short-
est diameter and smallest CPL compared to other networks
(i.e., Small-World, Scale-Free and Random). On the other
hand, the clustering coef�cient feature does not show direct
correlation with the performance of our model. For example,
although Small-World has the higher clustering coef�cient
than that in the scale-free with TC, our model produces the
lessSEC in Scale-Free with TC than the SEC in Small-world.

TABLE 1. The properties of networks.

FIGURE 7. The effect of the network properties on social
execution cost.

To summarize, our model is a desirable option for the large-
scale applications where quality performance and real-time
response are highly required.

C. ROBUSTNESS
Social networks are inherently open and dynamic with
user turnover and connection changes [38], [41]. An ef�-
cient social task allocation model should also be robust to
be capable of addressing the network dynamics. We test
the robustness of our model on the networks’ topology
dynamics: initially, we utilize our model to allocate two
complex tasks (each consists of 16 subtasks) on a small-
world network (which is composed of 30 nodes that are
interconnected by a small-world structure). During the task

allocation process, four disturbance events occur
sequentially, which are described as follows:

• Event 1 (Connection Break): Because of the interest con-
�ict, a set of connected individuals break their connec-
tions (here we set each pair of pairwise connected nodes
with the probability p=0.2 of breaking their connection).

• Event 2 (Connection Enhance): Because of the occa-
sional cooperation experience, some strange individu-
als become friends (here, we set each pair of pairwise
unconnected nodes with the probability p=0.2 of being
interconnected).

• Event 3 (Individuals Entrance): Because of the recom-
mendation of the existing users, some new individuals
register and enter into this network (here, we assume that
there are 5 new nodes that arrive to the system).

• Event 4 (Individuals Exit): Because it is time consuming
to sustain the memberships with their connections, some
individuals can log out and leave this network (here, we
assume that there are 5 nodes that exit the system).

The �rst two events change the connections of the network,
and they are designed to test our model’s ability to adjust the
social communication cost. The remaining two events change
the number of nodes, and they are designed to test our model’s
ability to adjust the social waiting cost. The resulting social
execution cost plot with the above four disturbance events
is shown in Fig. 8, from which we observe that once the
disturbance occurs, the SEC changes immediately. However,
our model can adapt to the disturbance within several seconds
and can converge quickly to another stable desirable solution.
It should also be noted that in Fig. 8, as our model proceeds,
the SEC decreases as well, making our model an anytime
model: the task allocation process can be terminated at any
time, where it can provide the system with a solution that
is better than any of the preceding states. Moreover, our
model can always converge to stable equilibrium in �nite time
steps.

FIGURE 8. The social execution cost plot with four disturbance
events.

VI. RELATED WORK
In this section, we �rst review the traditional task allocation
researches in social networks and then provide a brief discus-
sion of the multiagent-based task allocation technology that
has been applied to other networked systems.

VOLUME X, NO. X, XXXX 2015 11

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

A. TASK ALLOCATION IN SOCIAL NETWORKS
Given a task T and social network SN consisting of vari-
ous individuals, one of the main objectives of social task
allocation is to allocate T to a set of professional indi-
viduals I⊆SN in such a way that I can collaborate
effectively [2], [3], [8]�[10]. Lappas et al. [2] refer to social
task allocation as social team formation and attempt to build
an ef�cient team such that the team not only satis�es the capa-
bility requirements of a task but also has the smallest team
cost. This letter of Lappas et al. [2] was further investigated
by several team formation variants with additional goals and
constraints [3], [8]�[10]. For example, Kargar and An [8]
assume the existence of a team leader, and the team
cost is measured by the summed distance between the
team leader and the team members. Datta et al. [3] and
Anagnostopoulos et al. [9] believe that team formation in
social networks should not only optimize the social effec-
tiveness but also address the load balancing (i.e., the work-
loads allocated to each expert should be proportional to his
capacity). Rangapuram et al. [10] investigate a more real-
istic social team formation problem by introducing more
generalized constraints, such as i) including a predetermined
team leader; ii) the team members should be socially close
and iii) the bounded team budget. Note that all of these
problems are NP-hard and the previous researchers mainly
focus on developing centralized approximations that have a
high performance guarantee. However, the low robustness
and high computational complexity prevent the centralization
from scaling well to large-scale systems in which there are
millions of social individuals to consider and thousands of
tasks to be executed [19], [20].

B. TASK ALLOCATION IN NETWORKED
MULTIAGENT SYSTEMS
In this type of study, each individual is modeled as a sel�sh
agent whose aim is to maximize its own pro�t. Market-
based mechanisms can be well exploited by the agents to
perform tasks [13], [19], [26], [27]. For example, in an
agent network, to optimize an agent’s own bene�t, the agent
can make a contract with its neighbors about which task to
undertake [13], [19]. When the agents have incomplete
information on other agents’ resource prices, they can uti-
lize a bilateral bargaining protocol to negotiate with others
round-by-round until they have made an agreement on
the resource price [26], [27]. On the other hand, the net-
work structure itself can affect system performance on task
completion [25], [28], [29]. Gaston and desJardins [28] and
Kota et al. [25] thus develop a structural adaptation method to
increase social welfare, where agents can adjust the network
structure by deleting their costly connections and rewiring
them to those agents that have better connections.

Besides system monetary revenue, the task resource access
time in the networked system is also a crucial factor of
the system performance [6], [12], [14], [15]. To reduce the
system resource access time, Jiang and Jiang [6] present

a contextual resource negotiation mechanism by allowing
agents to negotiate with others from nearby to faraway
gradually. To achieve dependable resources with the least
resource access time for undependable social networks,
Jiang et al. [12] propose a reputation-based negotiation mech-
anism. Recently, a network-layer oriented task allocation
model is presented for minimizing the task execution time
in multiplex networks [14]. By being aware of the commu-
nity structure in networks, Wang and Jiang [15] propose a
community-aware task allocation model (where agents can
cooperate with other agents in the same community) to
improve social welfare while incurring a few of negotia-
tion overhead. In the distributed network computing systems
(e.g., grids), the nodes (e.g., computers, machines or work-
stations) have to take time to execute the tasks, and thus, the
primary goal in this kind of system is to maximize throughput.
To complete the tasks as soon as possible, Liu et al. [23]
propose an agent-based probability load balancing method to
distribute the tasks on nodes evenly.

All of these above research approaches are ef�cient for
the independent task allocation problems in which there are
no dependencies among the tasks. While this paper focuses
on addressing the interdependent task allocation in social
networks, where the success of a task also depends on how
effectively the involved individuals communicate. In reality,
in case two experts have negative relationships, they are
unlikely to complete the interdependent tasks successfully
even if they are professional in these activities [18].

More broadly, this social task allocation problem can also
be viewed as a speci�c variant of the constraint satisfac-
tion problem (CSP), and hence, some related distributed
CSP optimizations such as ADOPT [39] and cooperative
mediation-based systems [40]. However, because of the
multi-stage inter-node negotiations, these methods will pro-
duce prohibitive network traf�c overhead, which is unaccept-
able for practical online applications [24]. Compared to these
studies, we restrict agents to cooperate only with their intra-
node agents that queue at the same node.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we address the complex task allocation in social
networks, where a set of individuals should work together to
satisfy a complex task’s skill requirements. Moreover, this
social task allocation should not only meet the traditional
objective of load balancing, but also the new objective of
maximizing social effectiveness. To meet both of the two
objectives, we propose a distributed multiagent-based task
allocation model by dispatching a mobile and cooperative
agent to each subtask to search for the suitable individual
that has the necessary skills, small workloads and lower
coordination costs with others. Our experimental results show
that our model produces as less task execution cost as the
benchmark centralized models but reduces the computa-
tion time signi�cantly compared to the traditional models.
Moreover, our model adapts to network dynamics quickly,
making it scale well in dynamic large-scale applications.

12 VOLUME X, NO. X, XXXX 2015

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

There are two interesting issues that can be investigated
further. In this study, each agent (or agent team) searches in all
the network nodes and chooses the one with the lowest execu-
tion cost as the target node. This global view of the environ-
ment might be unpractical in some real-world applications.
In the future, we would like to devise more ef�cient cooper-
ation mechanisms (e.g., agents exchange their node location)
to improve the performance of the system with local view
constraint. Another limitation of this study is that the tradeoff
coef�cients between the waiting cost and communication
cost are set to be �xed. In reality, due to system dynamics such
as frequent users and tasks turnover, �xed coef�cients cannot
always optimize system performance (even might have a
negative impact). Therefore, in the future, we would like to
devise automatic adaption mechanism to dynamically adjust
the coef�cients to the change of environments rather than set
them to �xed values.

REFERENCES
[1] Y. Jiang and J. C. Jiang, ‘‘Understanding social networks from a multi-

agent perspective,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 10,
pp. 2743�2759, Oct. 2014.

[2] T. Lappas, K. Liu, and E. Terzi, ‘‘Finding a team of experts in social
networks,’’ in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), Paris, France, Jun./Jul. 2009, pp. 467�475.

[3] S. Datta, A. Majumder, and K. V. M. Naidu, ‘‘Capacitated team for-
mation problem on social networks,’’ in Proc. 18th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), Beijing, China, Aug. 2012,
pp. 1005�1013.

[4] L. Tran-Thanh, S. Stein, A. Rogers, and N. R. Jennings, ‘‘Ef�cient
crowdsourcing of unknown experts using multi-armed bandits,’’ in Proc.
20th Eur. Conf. Artif. Intell. (ECAI), Montpellier, France, Aug. 2012,
pp. 768�773.

[5] L. Sless, N. Hazon, S. Kraus, and M. Wooldridge, ‘‘Forming coalitions and
facilitating relationships for completing tasks in social networks,’’ in Proc.
13th Int. Conf. Auto. Agents Multiagent Syst. (AAMAS), Paris, France,
May 2014, pp. 261�268.

[6] Y. Jiang and J. Jiang, ‘‘Contextual resource negotiation-based task allo-

IE
EE

Pr
oo

f

Wang and Jiang: Multiagent-Based Allocation of Complex Tasks in SNs

[39] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, ‘‘Adopt: Asynchronous
distributed constraint optimization with quality guarantees,’’ Artif. Intell.,
vol. 161, nos. 1�2, pp. 149�180, Jan. 2005.

[40] R. Mailler and V. Lesser, ‘‘A cooperative mediation-based protocol
for dynamic distributed resource allocation,’’ IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 36, no. 1, pp. 80�91, Jan. 2006.

[41] Y. Jiang and J. C. Jiang, ‘‘Diffusion in social networks: A multiagent
perspective,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 45, no. 2,
pp. 198�213, Feb. 2015.

WANYUAN WANG (S’13) received the
B.S. degree in information and computing sci-
ence from the Nanjing University of Aeronautics
and Astronautics, Nanjing, China, 2011. He is
currently pursuing the Ph.D. degree with the
Distributed Intelligence and Social Computing
Laboratory, School of Computer Science and
Engineering, Southeast University. His main
research interests include social networks and
multiagent systems. He received the Best Student

Paper Award from the IEEE International Conference on Tools with Arti�cial
Intelligence (ICTAI) in 2014. He has authored several articles in refereed
journals and conference proceedings, such as the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON CYBERNETICS,
and ICTAI.

YICHUAN JIANG (SM’13) received the
Ph.D. degree in computer science from Fudan
University, Shanghai, China, in 2005. He is
currently a Full Professor and the Director of
the Distributed Intelligence and Social Computing
Laboratory with the School of Computer Science
and Engineering, Southeast University, Nanjing,
China. His main research interests include multi-
agent systems, social networks, social computing,
and complex distributed systems. He is a Senior

Member of the China Computer Federation and the Chinese Institute
of Electronics. He received the best paper award and the Best Student
Paper Award from PRIMA and ICTAI, respectively. He has authored over
80 scienti�c articles in refereed journals and conference proceedings,
such as the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the
IEEE TRANSACTIONS ON CYBERNETICS, the IEEE TRANSACTIONS ON SYSTEMS,

MAN, AND CYBERNETICS: SYSTEMS, the IEEE TRANSACTIONS ON SYSTEMS, MAN,

AND CYBERNETICS�PART C: APPLICATIONS AND REVIEWS, the ACM Transac-
tions on Autonomous and Adaptive Systems, the Journal of Parallel and
Distributed Computing, the International Joint Conference on Arti�cial
Intelligence, and the International Conference on Autonomous Agents
and Multiagent Systems. He is also a member of the Editorial Board of
Advances in Internet of Things and the Chinese Journal of Computers, and an
Editor of the International Journal of Networked Computing and Advanced
Information Management and Operations Research and Fuzziology.

14 VOLUME X, NO. X, XXXX 2015

