
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022 9683

On Security of TrustZone-M-Based IoT Systems
Lan Luo , Yue Zhang , Clayton White, Brandon Keating , Bryan Pearson, Xinhui Shao,

Zhen Ling , Member, IEEE, Haofei Yu, Cliff Zou , Senior Member, IEEE,
and Xinwen Fu, Senior Member, IEEE

Abstract—Internet of Things (IoT) devices have been increas-
ingly integrated into our daily life. However, such smart devices
suffer a broad attack surface. Particularly, attacks target-
ing the device software at runtime are challenging to defend
against if IoT devices use resource-constrained microcontrollers
(MCUs). TrustZone-M, a TrustZone extension designed specif-
ically for MCUs, is an emerging hardware security technique
fortifying software security of MCU-based IoT devices. This
article introduces a comprehensive security framework for IoT
devices using TrustZone-M-enabled MCUs, in which device secu-
rity is protected in five dimensions, i.e., hardware, boot-time
software, runtime software, network, and over-the-air (OTA)
update. Along developing the framework, we also present the
first security analysis of potential runtime software security
issues in TrustZone-M-enabled MCUs. In particular, we explore
the feasibility of launching stack-based buffer overflow (BOF)
attack for code injection, return-oriented programming (ROP)

Manuscript received April 12, 2021; revised October 15, 2021 and
December 11, 2021; accepted January 3, 2022. Date of publication
January 19, 2022; date of current version June 7, 2022. This work was
supported in part by the National Key Research and Development Program
of China under Grant 2018YFB0803400 and Grant 2018YFB2100300; in
part by the U.S. National Science Foundation (NSF) under Award 1931871,
Award 1915780, and Award 1643835; in part by the U.S. Department
of Energy (DOE) under Award DE-EE0009152; in part by the
National Natural Science Foundation of China under Grant 62022024,
Grant 61972088, Grant 62072103, and Grant 62072098; in part by the
Jiangsu Provincial Natural Science Foundation for Excellent Young Scholars
under Grant BK20190060; in part by the Jiangsu Provincial Key Laboratory
of Network and Information Security under Grant BM2003201; in part
by the Key Laboratory of Computer Network and Information Integration
of Ministry of Education of China under Grant 93K-9; and in part by
the Collaborative Innovation Center of Novel Software Technology and
Industrialization. (Corresponding author: Zhen Ling.)

Lan Luo, Bryan Pearson, and Cliff Zou are with the Department of
Computer Science, University of Central Florida, Orlando, FL 32816
USA (e-mail: lukachan@knights.ucf.edu; bpearson@knights.ucf.edu;
czou@cs.ucf.edu).

Yue Zhang was with the Department of Computer Science, University of
Massachusetts Lowell, Lowell, MA 01854 USA. He is now with the College
of Information Science and Technology, Jinan University, Guangzhou 510632,
China (e-mail: zyueinfosec@gmail.com).

Clayton White was with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL 32816 USA.
He is now with Google, Chicago, IL 60607 USA (e-mail: clayton-
white@knights.ucf.edu).

Brandon Keating was with the Department of Electrical and Computer
Engineering, University of Massachusetts Lowell, Lowell, MA 01854 USA.
He is now with Globus Medical, Audubon, PA 19403 USA (e-mail:
brandon_keating@student.uml.edu).

Xinhui Shao and Zhen Ling are with the School of Computer Science
and Engineering, Southeast University, Nanjing 210096, China (e-mail:
xinhuishao@seu.edu.cn; zhenling@seu.edu.cn).

Haofei Yu is with the Department of Civil, Environmental and Construction
Engineering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
haofei.yu@ucf.edu).

https://orcid.org/0000-0002-5627-3521
https://orcid.org/0000-0002-7786-0231
https://orcid.org/0000-0001-7573-4912
https://orcid.org/0000-0001-9691-8702
https://orcid.org/0000-0003-4229-6957

9684 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

IoT devices, and we present potential software attacks
against TrustZone-M. The SAM L11 MCU from Microchip
uses the ARM Cortex-M23 processor with the TrustZone
technology [12] and is employed as an example in this article
to demonstrate the principles, while our methodologies can be
extended to other similar products. We validate these attacks
on SAM L11 and find that even the official coding demos
of SAM L11 contain security vulnerabilities. We demonstrate
how the code injection attack, code reuse attack (CRA), heap-
based buffer overflow (BOF) attack, format string attack, and
attacks against NSC functions may compromise TrustZone-M,
while some of these attacks are common on other platforms,
such as Linux, Windows, and MacOS.

We are the first to design and implement an image-based
address space layout randomization (ASLR) scheme for IoT
devices, denoted as image-based ASLR (iASLR). iASLR is
unique since it relocates an image every time the device boots
while the image layout is randomized only one time in the
related work [13]. We design the static code patching and
control flow correction schemes to tackle the addressing issues
caused by image relocation.

We implement a secure and trustworthy air quality monitor-
ing device, called STAIR, with a TrustZone-M-enabled MCU
to demonstrate the proposed security framework. In particular,
we demonstrate the use of nonexecutable RAM and data flash,
secure NSC functions, and control flow integrity (CFI) for the
overall system security of TrustZone-M-enabled IoT devices.

We evaluate the attacks using real-world examples and show
even the example software projects provided by Microchip
have vulnerabilities. We also present the performance of
STAIR such as the cryptographic operation overhead.

A conference version published previously [14] mainly
focuses on analyzing the runtime software security issues and
potential attacks of TrustZone-M-based MCUs. Compared to
the conference version, we discuss the overall security of
TrustZone-M-based IoT devices in this article. To address the
security issues, we propose a comprehensive security frame-
work and implement an air quality monitoring device for
demonstration.

The remainder of this article is organized as follows. We
introduce the background knowledge on ARM TrustZone-M
technique, TrustZone-M enabled MCUs, and runtime secu-
rity issues of IoT devices in Section II. In Section III, a
security framework for TrustZone-M-based IoT devices with
five dimensions is presented. We then illustrate five types
of practical attacks against runtime software of TrustZone-M
in Section IV. An implementation of STAIR device using
the security framework is described in Section V and we
introduce our iASLR scheme—iASLR—in Section VI. The
evaluation of the runtime software attacks and implemented
STAIR device is presented in Section VII. We present related
work in Section VIII and conclude this article in Section IX.

II. BACKGROUND

A. TrustZone for Armv8-M

TrustZone for ARM Cortex-A processors (TrustZone-A) is
a hardware-based security technology that isolates security-
critical resources (e.g., secure memory and related peripherals)

from rich OS and applications. An ARM system on a chip with
the TrustZone extension is split into two execution environ-
ments referred to as the SW and the NSW. Software in the
SW has a higher privilege and can access resources in both the
SW and the NSW, while the nonsecure software is restricted
to the nonsecure resources. Switching between the two
worlds is implemented with the secure monitor mode of the
processor.

Recently, the TrustZone technology has been extended to
the ARMv8-M architecture as TrustZone-M for some ARM
Cortex-M processors, which are specifically optimized for
resource-constrained MCUs. TrustZone-M has the SW and
NSW, but differs from TrustZone-A in terms of implementa-
tion. One prominent difference is that TrustZone-M introduces
a special memory region in the SW named NSC region to pro-
vide services from the SW to the NSW. Transitions between
the two worlds through the NSC region are achieved by NSC
function calls and returns.

To distinguish from general secure and nonsecure objects,
in the rest of this article, we use terms secure and nonsecure
to specifically describe resources in the SW and NSW.

B. SAM L11

In July 2018, Microchip announced the first TrustZone
enabled MCU with the name of SAM L11. Equipped with
Cortex-M23 core and TrustZone-M security extension, this
chip is described as the lowest power 32-bit MCU in the indus-
try that ensures robust hardware-based security at the same
time.

Security Features: Besides TrustZone-M, SAM L11 offers
multiple optional security features, including secure boot,
hardware cryptoaccelerator, true random number generator,
secure pin multiplexing, secure data flash, and TrustRAM.

Non Volatile Memory (NVM) Rows: NVM rows are secure
memory regions containing critical system configuration fuses,
which are used by the system at boot time. Security-related
NVM rows include boot configuration row (BOCOR) for
boot security configurations and user row (UROW) for other
security related configurations. The NVM rows can only be
updated by secure access and will not take effect until a
reboot.

Memory Layout: Taking ATSAML11E16A, the top model
of SAM L11, as an example, it has a 64-kb code flash for soft-
ware images, a 16-kb SRAM for volatile data, and a 2-kb data
flash for nonvolatile user data. Fig. 1 illustrates the memory
mapping of SAM L11. Due to the existence of TrustZone-M,
memory in SAM L11 can be divided into the SW and NSW at
hardware level. While the starts and ends of code flash, SRAM,
and data flash are fixed addresses, starts of NSC flash, non-
secure code flash/SRAM/data flash are modifiable and can be
defined in UROW.

C. Runtime Software Security in IoT Devices

MCU-based IoT devices are often programmed with lan-
guages, such as C and C++, because they are compact,
highly efficient, and have the ability of direct memory con-
trol [15]. Such languages provide programmers a flexible
platform to interact with the low-level hardware directly.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9686 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

software. Using a security key to secure the communica-
tion through the interfaces is a common way to filter out
unauthorized access. In practice, different groups may be
granted different privileges of accessing memory contents.
For instance, an original equipment manufacturer (OEM) is
able to access both the SW and NSW through the hardware
interfaces, while a third party may only be allowed to access
the Nonsecure applications for security concerns. Therefore,
it is necessary to use at least two keys to distinguish the dif-
ferent access privileges. That is, users with higher privilege
can access both the SW and NSW, while users with lower
privilege can only access the NSW.

In addition to programming interfaces, hardware ports, such
as UART, I2C, and SPI, that receive data from other peripher-
als might be attacked if data are maliciously manipulated by
adversaries and specific vulnerabilities exist in the software.
Since such attacks highly depend on bugs in the software and
how the software can be exploited, we will discuss them later
in Sections III-C and IV.

B. Boot-Time Software Security

Software should be validated before being loaded and exe-
cuted at device’s boot time so that any alteration of the
software can be detected. Usually secure boot works as the root
of trust for IoT devices, making sure that the software is from
the OEM and starts the execution in the normal state. The work
flow of secure boot begins with a trusted piece of code (which
is usually write protected, e.g., Boot ROM and efuse) as the
root of trust, which will validate other programs to be exe-
cuted. Devices enabled by TrustZone-M require such trusted
code to verify the integrity and authenticity of all nonvolatile
memory in both the SW and NSW.

C. Runtime Software Security

Runtime software security is a critical issue for IoT devices,
for which C or C++ is a preferable programming lan-
guage. Coarsely programmed C or C++ software may contain
memory corruption errors and is naturally fragile to soft-
ware attacks, such as program crash, data leakage, control
flow hijack, and firmware altering. Though TrustZone-M is
designed to protect runtime execution inside the SW, soft-
ware attacks may occur in the NSW, or even in the SW if the
secure applications are not programmed in a correct way. In
Section IV, we demonstrate in detail how such attacks could
occur in TrustZone-M-enabled devices, and how they could
compromise system security.

D. Network Security

In the context of IoT, devices are connected to the cloud
or other devices via the Internet. Data transmitted through the
network must be carefully protected in case of cyber attacks,
such as man-in-the-middle attack, eavesdropping attack, replay
attack, etc. To overcome the network security issues, secure
communication protocols, such as hypertext transfer protocol
secure (HTTPS) and message queuing telemetry transport over
TLS (MQTTS), should be used so that servers and clients are
authenticated before the connection is established, the integrity

of messages is checked upon being received, and network
traffic is encrypted during transmission.

E. O9.5(u).3(sed)-
3(dle)-AirSecurityU313p6(o).1 Tf
1 -1.515 TD
0 Tc
[(Runtime)O.1(M)-T

9688 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

address in the payload leads to program crash and restart (if
automatic restart is enabled), and the malicious code would not
be executed until the correct entry address is hit. This entry
scanning process can be more efficient by inserting a sequence
of no-operation (NOP) instructions, called a NOP sled, before
the injected malicious code in the payload, since any hit of a
NOP instruction will lead to the execution of malicious code
eventually.

A challenge of implementing BOF with respect to ARMv8-
M comes from the null bytes (0x00) in the payload, which also
function as the C string terminator. If the exploitable function
treats the payload as a string [e.g., strcpy() and strcat()] and
some null bytes exist in the crafted payload, the function will
cease to copy the payload right after hitting a null byte and
the attack will fail. We discuss two scenarios of null bytes as
follows.

First, null bytes can exist in the malicious code and NOP
sled since null bytes are naturally contained in many ARM
instructions. To eliminate these null bytes, one can replace the
problematic instructions by alternative instructions with the
same functionalities but without null bytes. For an instance, a
NOP instruction (0xBF00) can be replaced by the instruction
MOV R2, R2 (0x121C).

The second scenario refers to the null bytes in the entry
address of the malicious code. In SAM L11, the malicious
code has to be injected onto the stack, which is on the
SRAM with a fixed range of addresses from 0x20000000
to 0x20004000, within which the higher halfword of any
addresses is 0x2000, containing a null byte all the time. Taking
Payload1 in Fig. 2 as an instance, since the NOP sled and
malicious code are positioned after the entry address, the copy
process of Payload1 will terminate when the null byte in the
entry address is hit. Copying either the NOP sled or the mali-
cious code to the stack would fail in this case. A potential
solution is to construct the payload like Payload 2 in Fig. 2,
where the entry of malicious code is placed at the bottom.
Because of the little-endian ordering in ARMv8-M, the 0x2000
is located at the last two bytes of Payload 2 and shall be the
only two bytes missing when copied to the stack. The original
return address already contains 0x2000 in its upper halfword
if the caller function is executed from the SRAM, in which
case the BOF will still be applicable.

Payload2 shows an example that the malicious code is
copied to address 0x2000236D. In this case, the NOP sled and
malicious code are copied first. The copy operation will not
stop until it reaches the null byte in the entry address if both
NOP sled and malicious code do not contain any null bytes.
For the return address on the stack, the lower halfword will be
overwritten by the last two bytes (0x236D) of the entry address
in the payload and its higher halfword is kept unchanged. So
the updated return address would be 0x2000236D, which is
the entry of the malicious code.

2) Return-Oriented Programming Attack: BOF-based code
injection can be mitigated by security mechanisms such as

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9689

Listing 2. Example of a vulnerable format string function.

via overflowing an adjacent activated data chunk. By manip-
ulating the pointers in the metadata, an adversary is able to
corrupt arbitrary memory with arbitrary values [21].

4) Format String Attack: A format function such as printf()
usually requires several arguments. The first argument is a for-
mat string, which may contain some format specifiers (e.g., %s
and %x). When the format function is executed, those format
specifiers will be replaced by the subsequent arguments with
the specified formats. Therefore, the number of specifiers in
the format string is supposed to match the number of additional
arguments. The format string exploits occur when a format
function receives a format string input that contains more for-
mat specifiers than additional arguments supplied. By sending
a well-crafted format string with specific format specifiers to a
vulnerable format function, an adversary may eventually cause
program crash, memory leakage, and memory alteration at a
specific memory location of the stack, or even in an arbitrary
readable/writable memory location specified by an address.

In SAM L11, an adversary is able to exploit format string
vulnerabilities for memory crash and reading/writing some val-
ues at a specific stack location by sending a malicious string
input containing more format specifiers than expected. For
example, by sending the string “%x %x %x” to the vulnera-
ble function illustrated in Listing 2, in which no arguments are
provided to the three specifiers in the input format string, three
bytes of data following the return address on the stack will be
printed in hexadecimal. However, reading or writing at an arbi-
trary memory location specified by an address is unachievable
in SAM L11 due to the particular memory addressing as shown
in Fig. 1. Such attacks require the target address to present in
the input format string, e.g., “\x34\x12\x00\x20%x %x %x %x
%s.” Adversaries who aim at the memory of SAM L11 will
find that any address of the memory would contain at least
one null byte. During the compilation, the process of parsing
the input format string will terminate when the null byte in the
target address is reached. The rest of the input format string
cannot be parsed correctly; hence, the attack would fail.

5) Attacks Against NSC Functions: The nonsecure soft-
ware in the NSW may desire to use the secure services in
the SW. For the sake of such requirements, TrustZone-M pro-
vides the NSC memory region within the SW. Developers are
able to define NSC functions in the NSC as the gateway to
the SW. NSC functions are characterized with two features:
1) they can be called from the NSW and 2) they have the priv-
ilege of accessing Secure resources since the NSC is a region
within the SW. With such abilities, nonsecure software can
call specific secure services by first calling the corresponding
NSC functions. The NSC functions then help to call the target
Secure functions and pass the required arguments assigned by
the nonsecure callers.

As the gateway to the SW, the implementation of the
NSC software should be particularly cautious. According to

(a) (b)

Fig. 4. Secure and trustworthy air quality monitoring device (STAIR).
(a) STAIR in the field. (b) Internals of STAIR.

Listing 3. Example of a vulnerable NSC function.

the guidance from ARM [22], hardware, toolchain, and soft-
ware developers share a common responsibility to implement
the NSC software securely. Though some requirements are
offered in the guidelines, since the hardware and toolchain
vary from vendors to vendors, there is no off-the-shelf solution
to implementing trusted NSC software.

Securing the NSC functions is related to the research on
interface security, such as [23] and [24], which analyze the
potential vulnerabilities existing in TEE when interfacing the
untrusted program execution to the trusted enclave. According
to [23], the interface vulnerabilities are concentrated on invalid
sanitization of the low-level application binary interface (ABI)
and the high-level application programming interface (API).
As for ABI, the adversary may control the low-level machine
state such as register values transferred to the TEE. TrustZone
is considered to be relatively resistant given its hardware
design. A developer may pay more attention to developing the
secure API, which takes potentially compromised parameters
from the NSW.

We identify two potential pitfalls that software developers
may meet while programming the NSC functions. The first
pitfall is caused by the data arguments sent from the NSW.
The toolchain of SAM L11 only helps to generate the secure
gateway veneer for NSC functions but leaves the function pro-
gramming to the developers. Security-related coding mistakes
may be present in the NSC functions as well and can be
exploited by crafting Nonsecure data inputs. Software exploits
in the NSC region would lead to a compromised SW. This is
because the NSC region belongs to the SW and a compro-
mised NSC program under the control of an adversary can
access any resources inside the SW.

The second pitfall comes from the untrusted pointer inputs.
When nonsecure software passes pointer arguments to the SW
through NSC functions, NSC functions should ensure that

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9690 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9692 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

to record the correct return address for a certain function call.
Here, the stored return addresses must be fully protected from
being altered. The SW, which can be seen as a trust anchor
for the NSW, provides the required secure storage, namely,
shadow stack, for the correct return addresses and a TEE for
any operations on the shadow stack.

The CFI for protecting the control flow of the NSW is not
sufficient for the overall system security. It can be observed
from Table II that all software attacks may occur in both the
SW (including NSC and SWX) and NSW. Recall that the CFI
mechanism in [4] requires a TEE and a secure storage. In the
case of TrustZone-M, the SW is supposed to play the role of
such a trust anchor. If the SW itself is insecure and vulnerable
to potential software attacks at runtime, it cannot provide the

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9693

solution is to compile the code with relative addressing flags.
We use the GCC compiler with two specific compilation flags,
including -fpic and -mno-pic-data-is-text-relative, so that all
data accesses and most branches become PC-relative and can
function after the image is relocated.

However, we still face two challenges after compilation with
relative addressing flags: 1) NSC calls that call NSC func-
tions in the SW and 2) function pointers that still use absolute
addresses. We address the issue of NSC calls with static code
patching at boot time and address the issue of function pointers
with control flow correction at runtime.

Flashing Apps: We then flash the NS app to the start of
the nonsecure flash, denoted as base app or base NS app,
and secure app, including iASLR runtime program and the
metadata, into the device.

Booting Device: When the system boots, as part of the
secure bootloader, a relocation engine copies the base app
image to a randomized address within the free nonsecure flash.
The relocation engine sets the base app image to be nonexe-
cutable through MPU so as to prevent the base app from being
exploited since the base app image has a fixed base address
and the attacker can know its layout. Therefore, there are two
nonsecure app images in our system: 1) the base app image
that is always located at the start of the nonsecure flash and
2) the relocated app image somewhere in the rest of the non-
secure flash. The relocation engine also performs static code
patching to patch NSC calls in the relocated app as detailed
in Section VI-B.

Running Relocated App and Control Flow Correction
Engine: Now, system booting is finished and the boot code
jumps to run the app in the relocated app image. At run-
time, a control flow correction engine is used to handle
absolute branches involving function pointers as detailed in
Section VI-C.

B. Static Code Patching

Static code patching is applied to all NSC calls in the relo-
cated image. An NSC call is a PC-relative branch, addressing
the NSC function with the offset from the current PC value
to the NSC function entry. Since the NSC functions are in the
NSC region and are not relocated, the offset in each NSC call
has to be patched. Recall we store the offsets of all the NSC
calls in the metadata. The relocation engine can locate those
NSC calls in the relocated image. For each NSC call, the off-
set of the relocated image relative to the base app image is
added to its offset in the NSC call.

C. Control Flow Correction

At runtime, we use a control flow correction engine to patch
all absolute branches introduced by function pointers. The
correction engine is implemented in the Armv8-M HardFault
handler. When an absolute branch in the relocated app image
executes, the destination address of the absolute branch is an
absolute address and points to the base app image. Since the
base app image has been labeled as nonexecutable, any attempt
of executing instructions within the base app image leads to a

HardFault exception, which is handled by the HardFault han-
dler. In this way, our correction engine is able to trap the
control flow. The HardFault handler knows the address of
the instruction that incurs the HardFault exception since the
instruction’s address is pushed onto the stack as the return
address of the HardFault handler.

The correction engine then verifies whether the absolute
address of interest is actually a destination address of an abso-
lute branch by searching it in the metadata. Recall we store
all the destination addresses of absolute branches in the meta-
data. The verification makes sure that the correction engine
only handles the exceptions caused by absolute branches since
there are other types of HardFault exceptions. After successful
verification, the correction engine adds the offset of the relo-
cated image to the absolute address of interest and derives the
address of the target instruction in the relocated image. The
HardFault handler changes its return address on the stack to
the address of the target instruction so that the handler can
return to run the target instruction.

D. Limitations

The ASLR scheme has its limitations. First, if an adversary
knows the destination addresses of the absolute branches in
the base app image, they may deploy a ROP attack, and divert
the control flow to those addresses. Since the control flow
correction mechanism cannot differentiate raised exceptions
by such operations, the corresponding code in the relocated
image then executes. However, in this case, the adversary has
to use a whole function as a gadget to assemble a ROP chain.
Such large gadgets are considered to be of very low quality
to achieve certain operations [27]. An adversary can hardly
launch a successful ROP attack. Second, our iASLR scheme
has the storage overhead since there are two app images in
the system: 1) the base app image and 2) relocated app image.
Third, the boot time of an iASLR powered system will increase
because of the relocating operations.

VII. EVALUATION

We evaluate the five software attacks presented in
Section IV. We are able to successfully perform these attacks
against a TrustZone-M-enabled MCU, SAM L11. We also
evaluate the effectiveness and performance of security mech-
anisms implemented in the STAIR air quality monitoring
device.

A. Software Attacks

Experiment Setup: We use a laptop as the attacker to con-
tinually send inputs to a SAM L11 Xplained Pro Evaluation
Kit as the victim device. The laptop is connected with SAM
L11 through a USB-to-UART adapter while an attacker may
also inject malicious strings into an Internet connection of a
SAM L11-based IoT device. In SAM L11, two UARTs are
configured accordingly as a nonsecure peripheral and a secure
peripheral to receive inputs sent from the laptop to the NSW
and SW, respectively. For the first four attacks, we construct
specific vulnerable functions in both nonsecure and secure
applications of SAM L11 and malicious payloads will be sent

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9695

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

9696 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

TABLE IV
ENTROPY BOUND OF ARM CORTEX-M23/M33-ENABLED BOARDS

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.12783/dtcse/cisnrc2019/33312

9698 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

[17] “Side-Channel Attack.” [Online]. Available: https://en.wikipedia.org/
wiki/Side-channel_attack (accessed Dec. 9, 2021).

[18] “Return Oriented Programming (ARM32).” Azeria Labs. [Online].
Available: https://azeria-labs.com/return-oriented-programming-arm32/
(accessed May 1, 2021).

[19] “NX Bits—Microsoft Wiki—Fandom.” Microsoft. [Online]. Available:
https://microsoft.fandom.com/wiki/NX bit (accessed May 1, 2021).

[20] “Arm Heap Exploitation.” Azeria Labs. [Online]. Available: https://
azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-
implementation/ (accessed May 1, 2021).

[21] J. Xu, Z. Kalbarczyk, and R. K. Iyer, “Transparent runtime randomiza-
tion for security,” in Proc. 22nd Int. Symp. Rel. Distrib. Syst., Oct. 2003,
pp. 260–269.

[22] “ARMv8-m Secure Software Guidelines 2.0.” Arm. [Online]. Available:
https://developer.arm.com/docs/100720/0200/secure-software-guidelines
(accessed May 1, 2021).

[23] J. Van Bulck, D. Oswald, E. Marin, A. Aldoseri, F. D. Garcia, and
F. Piessens, “A tale of two worlds: Assessing the vulnerability of enclave
shielding runtimes,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2019, pp. 1741–1758.

[24] M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “COIN attacks: On
insecurity of enclave untrusted interfaces in SGX,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst., 2020, pp. 971–985.

[25] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans. Inf.
Syst. Security, vol. 13, no. 1, pp. 1–40, Nov. 2009.

[26] “Address Space Layout Randomization.” Wikiwand. [Online]. Available:
https://www.wikiwand.com/en/Address_space_layout_randomization
(accessed May 1, 2021).

LUO et al.: ON SECURITY OF TrustZone-M-BASED IoT SYSTEMS 9699

Xinhui Shao received the B.S. degree in com-
munication engineering from Shanghai University,
Shanghai, China, in 2019. He is currently pursuing
the master’s degree in cyber science and engineering
with Southeast University, Nanjing, China.

His current research interests include Internet of
Things, privacy, and security.

Zhen Ling (Member, IEEE) received the B.S.
degree in computer science from Nanjing Institute
of Technology, Nanjing, China, in 2005, and the
Ph.D. degree in computer science from Southeast
University, Nanjing, in 2014.

He is a Professor with the School of Computer
Science and Engineering, Southeast University. His
research interests include network security, privacy,
and Internet of Things.

Prof. Ling won the ACM China Doctoral
Dissertation Award and the China Computer

Federation Doctoral Dissertation Award, in 2014 and 2015, respectively.

Haofei Yu received the B.S. degree in environmen-
tal engineering from Hangzhou Dianzi University,
Hangzhou, China, in 2005, the M.S. degree in
environmental engineering from the University of
Shanghai for Science and Technology, Shanghai,
China, in 2008, and the Ph.D. degree in environ-
mental health from the University of South Florida,
Tampa, FL, USA, in 2013.

He was a Postdoctoral Fellow with Georgia
Institute of Technology, Atlanta, GA, USA, and
Pacific Northwest National Laboratory, Richland,

WA, USA. He is currently an Assistant Professor of Environmental
Engineering with the University of Central Florida, Orlando, FL, USA. His
research interests mainly focus on air quality modeling, emission estimation,
exposure assessment, and low-cost air quality sensors.

Cliff Zou (Senior Member, IEEE) received the B.S.
and M.S. degrees from the University of Science
and Technology of China, Hefei, China, in 1999 and
1996, respectively, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
University of Massachusetts at Amherst, Amherst,
MA, USA, in 2005.

He is an Associate Professor with the Department
of Computer Science, the Program Coordinator of
both Digital Forensics Master program and Cyber
Security and Privacy Master Program, University

of Central Florida, Orlando, FL, USA. He has published more than 100
peer-reviewed research papers, and has obtained more than 7300 Google
Scholar Citations. His research interests focus on cybersecurity and computer
networking.

Xinwen Fu (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1995, the M.S.
degree in electrical engineering from the University
of Science and Technology of China, Hefei, China,
in 1998, and the Ph.D. degree in computer engineer-
ing from Texas A&M University, College Station,
TX, USA, in 2005.

He is a Professor with the Department of
Computer Science, University of Massachusetts
Lowell, Lowell, MA, USA. He was a Tenured

Associate Professor with the Department of Computer Science, University
of Central Florida, Orlando, FL, USA. He has published at prestigious con-
ferences, including the four top computer security conferences (Oakland,
CCS, USENIX Security, and NDSS), and journals, such as ACM/IEEE
TRANSACTIONS ON NETWORKING (ToN) and IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING (TDSC). He spoke at various tech-
nical security conferences, including Black Hat. His current research interests
are in computer and network security and privacy.

Authorized licensed use limited to: Southeast University. Downloaded on July 02,2022 at 02:39:31 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

