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Abstract—Crowdsourcing has become a popular service computing paradigm for requesters to integrate the ubiquitous human-

intelligence services for tasks that are difficult for computers but trivial for humans. This paper focuses on crowdsourcing complex 

tasks by team formation in social networks (SNs) where a requester connects to a large number of workers. A good indicator of 

efficient team collaboration is the social connection among workers. Most previous social team formation approaches, however, 

either assume that the requester can maintain information of all workers and can directly communicate with them to build teams, or 

assume that the workers are cooperative and be willing to join the specific team built by the requester, both of which are 

impractical in many real situations. To this end, this paper first models each worker as a selfish entity, where the requester prefers 

to hire inexpensive workers that require less payment and workers prefer to join the profitable teams where they can gain high 

revenue. Within the non-cooperative SNs, a distributed negotiation-based team formation mechanism is designed for the requester 

to decide which worker to hire and for the worker to decide which team to join and how much should be paid for his skill service 

provision. The proposed social team formation approach can always build collaborative teams by allowing team members to form 

a connected graph such that they can work together efficiently. Finally, we conduct a set of experiments on real dataset of workers 

to evaluate the effectiveness of our approach. The experimental results show that our approach can 1) preserving considerable 

social welfare by comparing the benchmark centralized approaches and 2) form the profitable teams within less negotiation time 

by comparing the traditional distributed approaches, making our approach a more economic option for real-world applications.  

Index Terms—Team formation, social networks, crowdsourcing, multiagent, non-cooperative, negotiation 
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1 INTRODUCTION

riven by the requirement of massive human intelli-
gence service-oriented applications, such as data 
sensing [1], language translation [2] and image clas-

sification [3], crowdsourcing has become a flexible service 
computing paradigm by making the ubiquitous human 
resources available to requesters on demand [4]. By using 
certain crowdsourcing platform (e.g., Upwork), the re-
questers can advertise their tasks (i.e., service requirement) 
to workers and the workers choose whether or not to par-
ticipate in and complete the tasks in change for monetary 
reward [5]. Typical crowdsourcing applications include 
solving simple tasks that each worker can complete each 
task independently and complex interdependent tasks that 
need to be solved in multiple phases [6] (e.g., sentence 
spelling mistakes correction) or teamwork [7][8] (e.g., arti-
cle editing in Wikipedia). In crowdsourcing environment, 
due to the diversity of workers’ skills on performing tasks, 
previous researches mainly focus on whether the hired 
workers are professional enough such that they can satisfy 
a task’s skill requirements [1-8]. 

In this paper, we concentrate on crowdsourcing an im-
portant class of complex tasks, where the success of com-
pleting such a complex task depends not only on the skills 
of the hired workers but also on how efficiently these 
workers can work together as a team [9]. For example, to 
develop a software product successfully, the product man-

ager first needs to hire a group of professional software 
engineers with the necessary skills: �����������ȱ ����¢���, 
������������ȱ ������, ��������������, �������, �����¢����, 
and �����������. During software development, the engi-
neer who performs �������ȱ must communicate with the 
engineer whoȱperformsȱ �������������� again and again to 
debug and optimize the software. Once the communication 
fails between the engineers due to language barriers or 
geographic distance, the product cannot be produced on 
time [10]. Therefore, the hired workers must also be able to 
cooperate with each other efficiently for team task comple-
tion. �� ȱ���ȱ�������Ȃ�ȱ�������ȱ��ȱ�� ȱ��ȱ�����ȱ����ȱ�ȱ������Ȭ
������ȱ���ȱ�������������ȱ����ȱ��ȱ ������ǯ 

With the advent of online social networks (e.g., 
LinkedIn, linkedin.com and Github, github.com), social 
networks (SNs) provide good opportunities for the re-
quester addressing this social team formation problem. On 
one hand, within SNs, the requester connects to a large 
number of social individuals and can collect these individ-
uals’ public information (e.g., skill, salary requirement and 
working experience, etc.) by learning their profiles. This 
advantage will help the requester build professional teams 
[11][12]. On the other hand, social connections among so-
cial individuals might represent collaboration relationships 
[13][14] (e.g., collaborate on common task previously). The 
advantage of using these SNs is that the social individuals 
who have worked together previously are estimated to 
work effectively as a team without much coordination 
overhead [15][16]. Motivated by this advantage, we con-
sider building collaborative teams in SNs where team 
members form a connected graph such that they can work 
together efficiently [17-19].  

Although a number of social team formation approach-
es have been proposed to build professional and collabora-
tive teams in SNs [15][16][20-23], from which we find a 
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couple of restrictive assumptions that we feel that are im-
practical. First, they assume that workers are cooperative, 
i.e., each worker is willing to join a team built by the re-
quester to optimize the requester’s objective. However in 
practice, workers are always rational and their only incen-
tive to join a team and provide skill services is to maximize 
their own benefits [24-26]. A practical social team for-
mation should consider the worker’s selfish nature. Sec-
ond, they assume that the requester can maintain infor-
mation of all workers and can directly communicate with 
them to build professional teams. However, because of 
privacy-preserving in SNs, the requester can only maintain 
limited information of its directly connected social neigh-
bors [27-30]. Therefore, a practical social team formation 
should build teams in a natural distributed manner with 
partial information of socially-close partners. 

To address these issues, this paper first models each in-
dividual as a selfish entity, where the requester aims to 
hire a collaborative team of inexpensive workers to mini-
mize expense and the worker aims to join a profitable team 
and provide skill services to earn a considerable payment. 
Within the non-cooperative SNs, we then present a distrib-
uted negotiation-based social team formation approach by 
allowing the requester to negotiate with the team mem-
bers’ neighbor workers only. As the main contribution of 
this paper, we rigorously design the negotiation mecha-
nism for the requester and worker to make agreement on 
skill provision and payment for their own profit maximiza-
tion. This negotiation-based social team formation mecha-
nism mainly consists of the following three phases: �Ǽ �����: 
the requester interacts with the worker and sends an offer 
to the worker on skill provision and payment; ��Ǽȱ�������: 
the worker responds (e.g., accept, reject or propose skill 
payments improvement) to the requester on this offer and 
���Ǽȱ�������: the requester makes the final confirmation on 
the received response and updates the team’s profile.  

Our theoretical analyses show that the requester can 
always find the most beneficial skills from the workers. 
Finally, we also conduct a set of experiments on real da-
taset to evaluate the proposed social team formation ap-
proach. The experimental results show that 1) compared to 
the ideal centralized approach [17][18][22], our approach 
can preserve considerable social welfare and 2) compared 
to traditional distributed contract-net approach [31] and 
the greedy approach [28], our approach forms desirable 
teams by spending less budget and team formation time.  

The remainder of this paper is organized as follows. In 
the next section, we provide a brief review of related work 
on crowdsourcing and team formation in SNs. In section 3, 
we give a formal definition of the social team formation 
problem. In Section 4, we present the framework of negoti-
ation-based social team formation approach. In section 5, 
we discuss the negotiation mechanism employed by the 
requester and worker in detail. In Section 6, we conduct a 
set of experiments to evaluate the proposed approach’s 
effectiveness. Finally, we give a conclusion of our paper 
and discuss the future work in Section 7. 

2  RELATED WORK 

2.1 Crowdsourcing for Task Allocation 

Crowdsourcing is a useful paradigm for requesters to har-
ness the ubiquitous human resources on solving tasks that 
are difficult for computers. To motivate workers to con-
tribute their personal resources, the workers should gain 
certain economic benefit from the task completion. How-
ever, because of the limited budget, the requester should 

decide how much should be paid to 
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sonable since each individual has limited energy and par-
ticipating in multiple teams will degrade the performance 
of each team it joins [17][46].  

Tasks. We consider a set of tasks ̍ƽ{Ύ1,Ύ2ǰǳǰΎn} initiated 
by these agents A independently. Then, each task ΎK can 
be defined by a tuple <IaΎ,RΎ,ItΎ,DlΎ,WtΎ,vΎ(t)>, where IaΎ: 
Ύ→A indicates the agent that initiates task Ύ. In this paper, 
we consider a practical scenario that at each time step, 
tasks are initiated by agents independently with certain 
probability. RΎ is the set of skills required by Ύ and if sjRΎ, 
task Ύ needs the skill service sj. ItΎ is the initialization time 
of Ύ, i.e., at time ItΎ, Ύ is generated by IaΎ. DlΎ is the dead-
line (the latest execution start time) of Ύ and WtΎ indicates 
the working time it will take to execute Ύ (note that Ύ must 
be executed completely before DlΎ+ WtΎ). Finally, vΎ(t) rep-
resents the value associated with the task Ύ, which is a 
function of time t. Here, referring to the related definition 
in [26], we define the value function as: 

( ) ,
( )

0 ,

Dl Wt t
v t Dl Wt

Dl Itv t

t Dl Wt

 
  

 

 

 
 

 
  

                (1) 

vΎ is the value associated with Ύ, set by its initiator IaΎ at 
the initialization time ItΎ; Έȱ(0<Έ≤1) is the parameter model-
ing how task value decreases with the elapse of time t. If 
task Ύ starts execution before its deadline DlΎ, vΎ(t) has the 
maximum value at time ItΎ+WtΎ and the minimum value at 
time DlΎ+ WtΎ. 

Teams. Each team �Ύ is responsible for a task Ύȱand is 
denoted by a 3-tuple <ΩΎ,����(ΩΎǰΎǰ�Ύ),��Ύ>, where ΩΎȱ is 
the set of agents that join �Ύ, i.e., the team members of �Ύ. 
����(ΩΎǰΎǰ�Ύ)={(��ǰ��,�(��,��)),…,(��,��,�(��,��))} is the skill con-
tribution function indicating that which team member con-
tributes which skill service and how much will be paid. In 
other words, the tuple (��,��,�(��,��)) means that team mem-
ber ��ȱcontributes skill ��ȱand in return, team manager ��Ύ 
pays �(��,��) for ��’s skill provision of ��. Finally, ��Ύ is the 
skills that are not satisfied by the team members ΩΎǰȱ i.e., 
��Ύ=�Ύ\{��|(��,��,�(��,��))����(ΩΎǰΎ,�Ύ)}. A team �Ύ is called a 
complete fulfilled team if each skill has been satisfied by 
one team member, i.e., ∀���Ύ, ∃��ΩΎ: (��,��ǰ·)����(ΩΎǰΎǰ∙). 
Otherwise, �Ύ is a partial fulfilled team.  

Social Team Formation Problem. Given a task Ύ and a 
social network ��=<�,�>, the team manager ��Ύ first wish-
esȱtoȱbuild a feasible team �Ύ=<ΩΎ,����(ΩΎǰΎǰ�Ύ), ∅>. A fea-
sible team �Ύ must satisfy the following three constraints.  
 The team �Ύ must be professional. Each skill of Ύ must 

be satisfied by one team member, i.e., ∀���Ύ, ∃��ΩΎ: 
(��,��ǰ·)����(ΩΎǰΎǰ∙).  

 The team �Ύȱshouldȱnot include any redundant workers. 
Each team member must provide at least one skill ser-
vice, i.e., ∀ȱ��ΩΎȱand ���Ύ, ∃(��,��ǰ·): (��,��ǰ·)����(ΩΎǰΎǰ∙). 

 The team �Ύ must be collaborative. The subgraph in-
duced by the team members ΩΎ must be connected. 
Besides satisfying the feasibility property, the re-

quester’s ultimate objective is to form the optimal feasible 
team with the cheapest workers as soon as possible, i.e., 
maximize �Ύ(�)-∑(��,��,�(��,��))����(ΩΎǰΎ,�Ύ)�ǻ��ǰ��Ǽ. This is because the 
task profit is discounted over time, and the earlier the team 
formed, the earlier the task can be completed, thereby the 
more profit will be produced for the requester. 

4 SKETCH OF THE SOCIAL TEAM FORMATION  

Before describing th
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5.1 Team Manager Makes Offer to the Freelancer 

Before presenting the offer strategy, it is necessary to dis-
cuss the definition of the estimated profit that team man-
ager aims to maximize. Due to the dynamics and uncer-
tainty during social team formation, there are many factors 
correlated with the manager’s estimated profit, such as 
 The estimated value Ev, attached to task Ύ at time Θ, 

which is given by the average value of finishing the task 
between the earliest completion time (Θ+WtΎ) and the 
latest completion time (DlΎ+WtΎ), i.e., 

( )
( , )

Dl Wt

Wt
v t dt

Ev
Dl

 








 









                             (2)  

 The success rate Sr of forming a complete team, which is 
given by the fraction of task ΎȂs skills that have been sat-
isfied by team contracts, i.e., Sr(TΎ)=1-|usΎ|/|RΎ|. The larg-
er fraction of skill requirement has been satisfied, the 
higher possibility a complete team will be formed. 

 Team contractors’ remuneration Re for performing task 
Ύ, which is given by 

( , , ( , )) ( , , )
( ) ( , )

i j i j
i ja s p a s Cont P

Re T p a s
 

  
           (3) 

p(ai,sj) is the payment that ai requires for providing skill 
service sj. In practical applications, the worker’s work-
ing costs for providing skills are often public and from a 
worker's perspective, letting the requesters know its 
true information may help him get a beneficial occupa-
tion [25]. Therefore, in the offer phase, the skill payment 
p(ai,sj) is equal to the public skill working cost c(ai,sj).  
As the manager of task Ύ, IaΎ prefers to employ a free-

lancer ai if ai’s participation increases the success rate of 
forming a complete team and ai asks for low skill service 
provision payment. Then, the estimated profit of team 
manager can be defined as follows. 

Definition 2. Estimated Profit of Team Manager. For a 
partial fulfilled team TΎƽǀ̛Ύ,Cont(̛ΎǰΎ,PΎ),usΎ> at time step Θ, 
the team manager IaΎȂ�ȱestimated profit is: 

Ep(TΎ, Θ)=Sr(TΎ)∙Ev(Ύ, Θ)-Re(TΎ)                      (4) 
���ȱ��������ȱ��ȱ���ȱ�����ȱ��ǰȱ��ȱ���ȱ��ȱ���ȱ�������ȱ�����ǯ 

Given the freelancerȱ�� that team manager ��Ύ is negotiat-
ing with, ��Ύ should consider all of ��’s available skills ��(�
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identify the optimal skill contribution of ai. In the following, 
we propose an efficient polynomial algorithm (i.e., Algo-
rithm 3) to find the optimal skill contribution of ai that 
produces the maximal estimated benefit for IaΎ. 
Algorithm 3. Offer to Redundant Freelancer (IaΎ,TΎ,ai,ns,Θ) 
1. Initialize q=1, H=∅, max=Ep(TΎ, Θ), th=Ev(Ύ, Θ)/|RΎ|. 
2. Rank sjas(ai,RΎ) such that c(ai,s1)≤…≤c(ai,s|as(ai,RΎ)|).  
3. While �≤|��(��,�Ύ)| 
4.      ȱ If ��(�Ύ⊗ {��∪��},ȱΘ)≥��¡ 
5.            ��=��∪��,ȱ��¡=��(�Ύ⊗ ��,ȱΘ). 
6.        Else  
7.            If ��∉��Ύ&&�(��,��)≤���{��,�(�¡,��)}  

ȦȘ�¡ȱ��ȱ���ȱ����ȱ����������ȱ����ȱ��������ȱ�����ȱ��ȘȦ 
8.               Set ��ƽ�Ύ\{�Ύ⊗ {��∪��}} and ��=∪�<�≤|��(��,�Ύ)|sp∩��. 
9.             For ��∈��  
10.                   If �(��,��)≤��,ȱthenȱ
=
∪��; 
11.           End forȱ 
12.           If ��(�Ύ⊗ {��∪��∪
,ȱΘ)≥��¡, then ��=��∪��∪
ǲ 
13.       End Else 
14.      �=�+1; 
15. End while 
16. If ns≠∅, send the Offer O=<IaΎ,TΎ,ai,ns> to ai.  

In Algorithm 3, Step 1, before negotiating with the re-
dundant freelancer ai, the manager IaΎ first initializes some 
useful variables, such as max, denoting the current team 
TΎ’s estimated profit and the threshold th, denoting how 
much will be improved on current team’s estimated value 
by contributing each fresh skill. This variable th is used to 
evaluate whether ai’s skill is profitable. In Step 2, IaΎ first 
sorts ai's available skills as(ai, RΎ) in increasing order of 
working cost and then evaluates these skills in the order of 
their rank (Steps 3~15). In step 4, we use Ep(TΎ⊗ {ns∪sq}, Θ) 
to represent IaΎ’s estimated profit after the redundant free-
lancer ai contributes skills {ns∪sq}. In this case that ai is a 
redundant freelancer, Ep(TΎ⊗ {ns∪sq}, Θ) can be computed 
by Algorithm 4, where IaΎ first adds ai’s each contributed 
skill sy{ns∪sq} to the current skill contribution function 
Cont(ΩΎǰΎǰȉ) (Step 1 of Algorithm 4). And then IaΎ updates 
team configuration TΎ⊗ {ns∪sq} by removing existing team 
contractors’ overlapping skill contribution (Step 2 of Algo-
rithm 4), removing the team contractors that do not con-
tribute any skill after removing their overlapping skill con-
tribution (Step 3 of Algorithm 4), and finally removing the 
team contractors that are isolate from the team TΎ (Step 4 of 
Algorithm 4). If the estimated profit produced by the up-
dated team TΎ⊗ {ns∪sq} in not less than that of the previous 
team TΎ⊗ ns with the estimated profit max (Step 4), add sq to 
ns (Step 5). Otherwise, if ai’s working cost for sq, c(ai,sq) is 
not greater than the minimum between the value th and 
the skill payment p(ax,sq) of the team contractor ax (Step 7), 
then the only reason for the updated team TΎ⊗ {ns∪sq} 
produces a lower estimated profit than that of the previous 
team TΎ⊗ ns is that ai’s skill contribution of sq will make the 
contractor ax and other contractors (if any) depart. These 
team contractors’ departure will make their contributed 
skills removed in TΎ, thereby decreasing the estimated 
profit of team TΎ⊗ {ns∪sq}. Therefore, in the following steps 
(Steps 8~11), we try to compensate for these removed skills 
by using the remaining available skills ∪q<p≤|as(ai,RΎ)|sp of ai. 
First, in step 8, denoted by rs=TΎ\{TΎ⊗ {ns∪sq}} as the re-
moved skills because of ai’s skill contribution of sq and by 
cs=∪q<p≤|as(ai,RΎ)|sp∩rs as the remaining available skills of ai 
that can be used to compensate for the removed skills rs. 
Here, we can derive that cs is exactly what the current 
team TΎ⊗ {ns∪sq} lacks. Then be similar to the scenario of 
negotiating with a fresh freelancer, we can utilize the idea 

of Algorithm 2 to identify the optimal compensation skills 
(i.e., H) from the available compensation skill set cs (Steps 
9-11). If the value of Ep(TΎ⊗ {ns∪sq∪H, Θ) by contributing 
the compensation skills H to team TΎ⊗ {ns∪sq} is not less 
than max, IaΎ will consider hiring ai’s skill sq together with 
the compensation skills H (Step 12). Finally, if IaΎ finds it is 
beneficial to hire ai by using its skills ns (i.e., ns≠∅), IaΎ then 
sends an offer to ai for skill acquirement (Step 16).  

Algorithm 4. Function (TΎ⊗ cs)  
/*cs: the set of skills that the team TΎ hires and this function re-
turns the team configuration after team TΎ hires skill set cs*/ 
1. Manager IaΎȱadds ai’s each contributed skill sycs to the 

current skill contribution function Cont(̛ΎǰΎ,PΎ). 
2. Remove the team contractor ax’s overlapped skill contri-

bution (ax,sy), where sycs. 
3. Remove the team contractor �¡ that does not contribute 

any skill after removing its skill contribution of �¢.  
4. Remove the team contractors (as well as their contribut-

ed skills) that are isolate in the team TΎ after removing 
certain team contractors removed in Step 3. 

Before presenting the optimization of Algorithm 3 
(which is given in Theorem 2), we first give the following 
two lemmas that are useful to prove Theorem 2.  

Lemma 1. Given a team TΎ and a redundant freelancer ai with 
the available skills Z=X∪Y (X, Yƾ∅ and X∩Y=∅), then 
Ep(TΎ⊗ Z)=Ep(TΎ⊗ X)+Ep(TΎ⊗ Y)-Ep(TΎ), where TΎ⊗ X is the 
updated team of TΎ by contributing the skills X to TΎ (defined in 
Algorithm 4). 

Proof: Based on the definitions of team manager’s estimat-
ed profit (i.e., Ep) and team updating function TΎ⊗ Z (i.e., 
Algorithm 4), we can derive the estimated profit by con-
tributing the skill set X 

( , ) ( , ) (| | | |) ( ( , ) ( , ))
j j X

X i j js X s rs
Ep T X Ep T X rs th c a s p s  

 
          (6) 

where th=Ev(Ύ, Θ)/|RΎ| is the estimated profit improvement 
per skill contribution, and rsx indicates the skills removed 
from team TΎ because of the contribution of skills X’s. Since 
X∩Y=∅, then we have 

( , ) ( , )

2 ( , ) (| | | | | | | |)

( ( , ) ( , ))

( , ) ( , )

j j Y X

X Y

i j js X Y s rs rs

Ep T X Ep T Y

Ep T X Y rs rs th

c a s p s

Ep T Ep T Z

 



 

 



 

 

  

     

  

  

 

    (7) 

Therefore, we can conclude ��(�Ύ⊗ �)ƽ��(�Ύ⊗ �)+��(�Ύ⊗ 

�)-��(�Ύ). Here for simplicity, we omit the symbol Θ.      □ 
Lemma 2. 	����ȱ�ȱ����ȱ�� ��� �ȱ��������� ����������ȱ��  ���ȱ

���ȱ���������ȱ������ȱ�ƽ∪ŗǂ�ǂ���ȱ(∀��ǰȱ��: ��ǰȱ��ƾ∅ ��� ��∩��=∅), 

����ȱ ��(�Ύ⊗ �)ƽƩŗǂ�ǂ���(�Ύ⊗ ��)-(�-1)��(�Ύ),  ����ȱ �Ύ⊗ ��ȱ ��ȱ

���ȱ�������ȱ����ȱ��ȱ�Ύȱ�¢ȱ������������ȱ���ȱ�����ȱ���ȱ��ȱ��ȱ�Ύǯ 
Proof: According to Lemma 1, we can derive  

1 1

1 1 1 2 1

1 2 1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( { }) ( ) ( ) ( )

i n i n

i n i i n i n

Ep T Z Ep T X Ep T X Ep T

Ep T X Ep T X Ep T X Ep T

Ep T X X Ep T X Ep T X Ep T

   

   

   

  

      

     


     


      

   (8) 

Summing all of the above n-1 equations in (8), we have 

Ep(TΎ⊗ Z)=Ʃ1ǂiǂnEp(TΎ⊗ Xi)-(n-1)Ep(TΎ).             □ 
Now we are ready to give the optimization of Algorithm 3. 

Theorem 2. Given a redundant freelancer ai that IaΎ is negotiat-
ing with, Algorithm 3 returns the optimal skill contribution of ai 

that produces the maximal estimated profit for IaΎ. 
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Proof. Suppose that the skill set returned by Algorithm 3 is 
Alg, and the skill set returned by the optimum is Opt. In 
the following, we will prove that Opt=Alg. Denoted by Θ as 
the common contributed skills between Alg and Opt, i.e., 
Θ=Alg∩Opt, by Ό as the skills contributed by Alg only, i.e., 
Ό=Alg\Θ and by Μ as the skills contributed by Opt only, i.e., 
Μ=Opt\Θ. To prove Opt=Alg, we only need to prove Ό=Μ=∅.  

Conclusion 1) Μ=∅. We achieve this conclusion by prov-
ing that if the skills contributed only by Opt (i.e., Μ) in-
crease the estimated profit of the team of TΎ⊗ Θ, the team 
manager IaΎ can always find the skills Μ that increases the 
estimated profit of the team TΎ⊗ Alg. As described in Algo-
rithm 3, the skills Μ are first sorted in increasing order of 
their working cost such that c(ai,s1)≤…≤c(ai,s|Μ|) and then 
are evaluated one by one in their order. For the first skill 
s1Μ, if Algorithm 3 does not select s1, we have Ep(TΎ⊗ 
{Alg∪s1})<Ep(TΎ⊗ Alg) (Assumption 1), otherwise, Algo-
rithm 3 will identify this beneficial skill. According to Al-
gorithm 3, we can derive that there are three possible cases 
to support Assumption 1. Case 1) s1usΎ&&c(ai,s1)>th. This 
is impossible, because it is profitable for Opt to select the 
unsatisfied skill s1, where c(ai,s1)≤th. Case 2) 
s1∉usΎ&&c(ai,s1)>min{th,c(ax,s1)} (ax is the team contractor 
that has agreed to contribute s1). This is also impossible, 
because contributing s1 will also decreases the estimated 
profit of team TΎ⊗ {Opt\s1}, which contradicts the fact that 
Opt is the optimal skill contribution. And case 3) 
s1∉usΎ&&c(ai,s1)<min{th,c(ax,s1)}, in this case, the reason that 
contributing s1 does not improve the team profit Ep(TΎ⊗ Alg) 
is that the skill contribution of s1 makes other satisfied 
skills rs⊆Alg\s1 removed, thereby decreasing the estimated 
profit of team TΎ⊗ Alg. Next, we will prove that case 3) 
never happens. If the skill contribution of s1 to team TΎ⊗ Alg 
makes other satisfied skills rs removed, then by Steps 9-12, 
Algorithm 3 can always find the optimal compensation 
skills cs⊆{Μ\s1} for team TΎ⊗ {Alg∪s1} (which has been 
proved in Theorem 1). By Assumption 1, this contributions 
of skill s1 associated with the compensation skills cs does 
not increase the estimated profit of team TΎ⊗ Alg, i.e.,  
��(�Ύ⊗ {���∪�ŗ∪��})<��(�Ύ⊗ ���) 
⇒ȱ��(�Ύ⊗ ���)+��(�Ύ⊗ {�1∪��})-��(�Ύ)<��(�Ύ⊗ ���)          (9) 
⇒ȱ��(�Ύ⊗ {�1∪��})-��(�Ύ)<0                                                   

The inequality (9) is derived from Lemma 2. On the oth-
er hand, from the view of Opt, we have  
��(�Ύ⊗ ���) 
=��(�Ύ⊗ {Θ∪{�ŗ∪��}∪{Μȧ{�1∪��}}) 
ƽ��(�Ύ⊗ Θ)+��(�Ύ⊗ {Μȧ{�1∪��}})+��(�Ύ⊗ {�1∪��})-2��(�Ύ) 
<��(�Ύ⊗ Θ)Ƹ��(�Ύ⊗ {Μȧ{�1∪��}})-��(�Ύ)                             (10) 

However, as Opt is the optimal skill provision, we have 
��(�Ύ⊗ ���)≥��(�Ύ⊗ {Θ∪{Μȧ{�1∪��}}}) 
⇒ȱ��(�Ύ⊗ ���)≥��(�Ύ⊗ Θ)Ƹ��(�Ύ⊗ {Μȧ{�1∪��}})-��(�Ύ)   (11) 
The inequality (11) holds because Θ∪{Μȧ{�1∪��}}⊆���ȱand 
Θ∩{Μȧ{�1∪��}}=∅, which contradicts inequality (11). There-
fore, we can conclude that Μƽ∅ǯ 

Conclusion 2): Ό=∅. The proof of this conclusion is simi-
lar to that for Conclusion 1) and due to the limitations of 
space, we omit the proof.               □ 

5.2 Freelancer Makes Response to the Team 
Manager 

Once the freelancer ai receives the offer O=<IaΎ,TΎ,ai,ns> 
from team manager IaΎ, ai assesses this offer and make a 
response to Iak. Before describing ai’s response strategy, we 
first define the states (i.e., Fully-contracted, Partial-contracted 
and Free) of ai during social team formation.  

Definition 4. States of Agents. During social team formation, 

the agent who initiates a task or has been a member of a fulfilled 
team is in state Fully-contracted; the agent who has been a 
member of a partial team is in state Partial-contracted; and the 
agent who neither initiates a task nor has joined a team is in 
state Free. 

Agents in different states might have different response 
strategies. In the following we will present ai’s optimal re-
sponse strategies within different states. 

Case 1) ai is Free. In this case, ai will accept team TΎȂs of-
fer. This is because joining a team to work on team task can 
obtain some financial remuneration, which is a rather eco-
nomical option compared to state in Free where there is no 
payment. Moreover, in the Free state, the payment p(ai,sj) 
required for providing ai’s skill service sj is just his public 
working cost c(ai,sj), i.e., p(ai,sj)=c(ai,sj). 

Case 2) ai is Partial-contracted. Assume that ai has been 
a member of a partial team TΎ* and now at time step Θ, ai 
receives a new offer O=<IaΎ,TΎ,ai,ns> from a new team TΎ. A 
dilemma is faced by ai: breaking the contract with the orig-
inal team TΎ* by joining this new team TΎ or staying with 
the original team TΎ* by rejecting the new offer O(∙,TΎ,∙). 
Here, to quantify how much ai gains by accepting or reject-
ing, the measure of estimated remuneration (per unit time) 
is utilized. On one hand, staying in the original team TΎ*, ai 
will obtain the estimated remuneration: 

**
* *

*

*

( , , ( , )) ( , , )
( , ) ( , )

( , , )
i j i j

i ja s p a s Cont P

i
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    (12) 

The formula (12) indicates that ai’s  estimated remunera-

tion (per unit time) Er(ai, TΎ*, Θ) is 1) directly proportional 

to the success rate, Sr(TΎ*,Θ) of forming a complete team TΎ*, 

which is further positively related to the skills that have 

been satisfied and the remaining time for building team, 

i.e., Sr(TΎ*,Θ)=(1-|usΎ*|/|RΎ*|)(DlΎ*-Θ); 2) directly proportional 

to the revenue achieved by providing his skill service, i.e.,

*
* *( , , ( , )) ( , , )

( , )
i j i j k k

i ja s p a s Cont P
p a s

  ; and 3) inversely proportional 

to the working time, WtΎ*, that is required to accomplish 

the task Ύ*.  
On the other hand, joining the new team TΎ that sends 

the new offer O=<IaΎ,TΎ,ai,ns>, ai will obtain the estimated 
remuneration (per unit time):  
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profit of TΎ*. Therefore, when considering to terminate 
the contract with his joined team TΎ*, ai should attempt 
to propose whether the team manager IaΎ* is willing to 
improve the payments of the contributed skills to per-
suade him to stay with the team. 
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formation, we observe that there are 20 kinds of skills 
available by these workers, the skill number of each work-
er distributes in the range [1, 13] and the cost of providing 
each skill service distributes in [0.5, 90] randomly. These 
collected workers are interconnected by three typical social 
network structures such as Random network (Random), 
Small-World network (SMW) and Scale-Free network (SF).  

B. Parameter setting. By referring to the related defini-
tion on parameter setting in [26], we range other parame-
ters involved in the social team formation process as fol-
lows. At each time step, a task arrives at the system with a 
probability Ώƽ0.1~0.9. The period required to accomplish a 
task (i.e.,WtΎ) is drawn from U(20,40) (U(a,b) returns the 
value in the range [a,b] randomly) and the deadline of each 
task (i.e., DlΎ) is distributed in [ItΎ, ItΎ+50], which must be 
greater than the task’s initiation time ItΎ. The value associ-
ated with each task (i.e., vΎ) is distributed in U(200, 400) 
and the discount rate on time decay (i.e., Έ) is distributed 
in [0.2, 1.6]. For clarity, we give a detail description of the 
used variables in Table 2.  

C. Comparison models and performance metrics. We 
compare the designed social team formation model (Our 
model) with other two distributed models, i.e., the greedy 
model (Greedy) and contract net model (CN). 
 Greedy Model (Greedy) [28]. In this model, the task 

manager evaluates the skills of the negotiated worker ai 
one by one and once he finds ai has lower working cost 
of providing sj than that of certain team member ax∈ΩΎ, 
i.e., c(ai,sj)<c(ax,sj), the manager replaces the skill contri-
bution (ax,sj,c(ax,sj)) by using ai’s skill service sj. On the 
other hand, the workers only join the team where they 
can achieve high payment. Compared to this model, our 
model’s advantage of considering the combinational 
skill contribution could be revealed. 

 Contract Net Model (CN) [31]. In this model, the task 
manager only selects the workers that have the skills the 
team lacks and the workers only join the team where 
they can achieve high payment. Since the negotiated 
workers always contribute the team’s lacked skills, there 
is no conflict between the negotiated worker and team 
contractors, therefore the formed team is always con-
nected. Compared to this model, our model’s advantage 
of negotiating the working cost could be revealed. 

 We evaluate the performance of these models through 
social welfare (SW) and the time used for team for-

mation. SW is defined as the sum of all managers’ prof-
its, i.e., 

        
1

( ) ( ( ) ( ))
i

n

i CT
SW profit Ia v ct Re T

   
           (15) 

where CT denotes the set of tasks that are completed suc-
cessfully and ctΎ is the completion time of task Ύ and Re(TΎ) 
indicates the total remuneration paid to team workers. 
We perform a series of experiments to validate our model: 
we first test the effect of network degree and task discount 
rate on the distributed social team formation models’ social 
welfare and team formation time in Section 6.1.2A and 
6.1.2B respectively. In Section 6.2, we test the social welfare 
of our model by comparing our model with the benchmark 
centralized model. Moreover, in Appendix A3 an A4, we 
also test the robustness and scalability of our model. All 
the results plotted in the figure are recorded by averaging 
over 50 instances.   

������([SHULPHQWDO�5HVXOWV 

$��7KH�(IIHFW�RI�1HWZRUN�'HJUHH�RQ�6RFLDO�:HOIDUH�DQG�
7HDP�)RUPDWLRQ�7LPH 

Fig. 1 shows the social welfare (Fig. 1a~Fig. 1c) and the 
team formation time (Fig. 1d~Fig. 1f) achieved by our 
model, CN and Greedy on network degree, where task 
discount rate is set to 0.8. The network degree is computed 
as the average degree of all workers. From Fig. 1, we have 
the following observations. 

1) Within all network structures from Fig. 1a~Fig. 1c, 
our model produces larger social welfare than the other 
two distributed Greedy and CN models. This can be ex-
plained from two perspectives: �) As shown in Fig. 1d~Fig. 
1f, our model uses less time on team formation. Because 
the task value is discounted over time, the less time used 
for team formation, the earlier the task will be completed, 
and then the larger task profit will be produced. ��) Com-
pared to CN model, the team manager in our model nego-
tiates with the workers on working cost, which can help 
the manager build team of inexpensive workers. Although 
the team manager in Greedy also evaluates the worker’s 
working cost, its large team formation time prevents 
Greedy producing high task profit. 

2) The social welfare produced by Greedy performs 
much worse in the networks of Scale-Free (SF) compared 
to the social welfares in Random and Small-Word (SMW). 
This can be explained from the perspective of team for-
mation time. Compared Fig. 1d and Fig. 1e with Fig. 1f, we 

 
                         (a) Random                                                   (b) Small-World                                                     (c) Scale-Free     

 
(d) Random                                                     (e) Small-World                                                    (f) Scale-Free  

Fig. 1. The effect of network degree on different social team formation models’ social welfare (a~c) and team formation time (d~f). 
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can observe that the team formation time of Greedy in SF is 
larger than the team formation time of Random (or SMW). 
However, why does Greedy generate larger team for-
mation time in SF than that in Random (or SMW)? We can 
explain this phenomenon by the network property. Table 3 
shows the three typical network properties, such as net-
work diameter (���), average shortest path length (����) 
and clustering coefficient (���) ([50] gives a detail illustra-
tion of these properties). From Table 3, we can find that the 
SF network have shorter ��� and ���� than those of Ran-
dom (or SMW). The shorter ��� and ���� indicate that the 
workers can interact with others more easily. Now we will 
explain why Greedy generates the larger team formation 
time in SF than that in Random (or SMW). On one hand, in 
Greedy, as long as a worker has the skills the team re-
quires, the team manager would negotiate with the worker 
for skill provision, leading to the manager consume much 
time on making a contract with a freelancer and breaking a 
contract with certain existing contractor. And because of 
the shorter ��� and ����, this repetitive action of making 
and breaking contracts will happen more frequently, 
which will consume much more team formation time. 
While our model negotiates with the worker if and only if 
he can provide the available skills with cheaper working 
cost and CN only negotiates the worker that can provide 
the skills the team current lacks. Therefore, ��� and ���� 
have not much effect on our model and CN model. 

3) Within all the networks, as the network degree in-
creases, our model, Greedy and CN will consume much 
more time on team formation (Fig. 1d~Fig. 1f). However, 
the social welfares of our model, Greedy and CN increase 
gradually. The potential reason is that on one hand, the 
larger the network degree, the managers will have more 
social neighbors, and then they will have higher probabil-
ity to negotiate with the cheap workers, leading to an in-
crease of their profit. On the other hand, the more social 
neighbors can make these managers access different kinds 

of skills, thereby increasing the success rate in task comple-
tion, which will also increase system social welfare.  

%��7KH�(IIHFW�RI�7DVN�'LVFRXQW�5DWH�RQ�6RFLDO�:HOIDUH�
DQG�7HDP�)RUPDWLRQ�7LPH 

Fig. 2 shows the social welfare (Fig. 2a- Fig. 2c) and team 
formation time (Fig. 2d- Fig. 2f) of these models on differ-
ent task discount rates, where network degree is 8. From 
Fig. 2, we have the following two findings. 1) Within all 
the networks, the team formation time of Greedy and CN 
stay nearly invariable, while surprisingly, our model de-
creases with the increase of task discount rates (Fig. 2d~Fig. 
2f). This can be explained as follows: on one hand, in our 
model, the manager’s decision on hiring workers depends 
on the remaining time for team formation. This means that 
when the task discount rate becomes larger, the threshold 
th=Ev(Ύ, Θ)/|RΎ|, which is used to evaluate whether a skill is 
worth hiring, decreases as well. And this lower threshold 
will increase the probability of workers to be hired, there-
by resulting in a fast team formation. While in CN and 
Greedy, the team manager’s decision on hiring a skill is 
time independent and when the task discount becomes 
larger, the team formation time stays invariable. 2) Within 
all the networks, the social welfare of our model, CN and 
Greedy is negatively proportional to task discount rate (Fig. 
2a~Fig. 2c). This finding is intuitive because the larger the 
task discount rate, the less task profit will be produced. 

6.2 Comparison with the Benchmark Centralized 
Optimal Approach 

To test the efficiency of our model, we compare our model 
with the benchmark centralized model [17], where there 
exists a central controller maintaining information on all of 
the agents’ social connections and working costs. When a 
task submitted by a requester, the controller can build a 
team of connected workers that have the least working 

 
                       (a) Random                                                      (b) Small-World                                                   (c) Scale-Free 

 
(d) Random                                                    (e) Small-World                                                     (f) Scale-Free  

Fig. 2. The effect of task discount rate on different social team formation models’ social welfare (a~c) and team formation time (d~f). 

Table 3 The properties of networks 

 Network Degree 

=6 =10 =14 =18 

'LD $VSO &OX 'LD $VSO &OX 'LD $VSO &OX 'LD $VSO &OX 

Random 7.0 4.0 0.007 5.1 3.3 0.011 4.9 3.0 0.015 4.0 2.7 0.019 

Small-World 7.5 4.5 0.22 5.2 3.5 0.24 5. 0 3.1 0.25 4.0 2.8 0.26 

Scale-Free 6.0 3.5 0.03 5.0 2.9 0.035 4.0 2.7 0.045 4.0 2.5 0.053 

 

Property 

Network 
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costs. This is an ideal model, which is impractical, but it 
can be used as an upper bound of system performance.  

Experiment setting. This experiment setting (including 
the workers and social network) is similar to the setting in 
Section 6.1, a notable exception is that because the bench-
mark centralized model does not consume any team for-
mation time, here we set the task discount rate δ=0 for the 
correct comparison. Moreover, in this kind of experiment, 
we only consider the effect of network degree on our mod-
el and this centralized model’s social welfare performance. 

Experiment results. The comparison results are shown 
in Fig. 3, from which we can observe that 1) both of the 
centralized model and our model’s social welfares increase 
with the network degree (Fig. 3a) and 2) In all of the exper-
iments, although the benchmark centralized optimal mod-
el produces more social welfare than our model’s, our 
model preserves at least 70 percent of social welfare of the 
benchmark centralized optimal model (Fig. 3b), which can 
validate the efficiency of our model’s efficiency on produc-
ing social welfare to some extent. 

7 CONCLUSIONS AND FUTURE WORK 

In real-world social team crowdsourcing markets, the re-
quester aims to build a professional and collaborative team 
for task completion, and the worker aims to join the desir-
able team for its own profit maximization. Being aware of 
the dynamics, uncertainty, heterogeneous working cost, 
team competition and time factor during social team 
crowdsourcing, we first develop a set of heuristics connect-
ing these inter-dependent factors indirectly to approximate 
the requester’s and worker’s objective functions. Then to 
satisfy the requester and worker’s conflict objectives, we 
propose a decentralized team formation model for the re-
quester to negotiate with the workers on skill provision 
and skill provision cost. These negotiation strategies are 
useful for real-world requesters, since this mechanism 
closely models real-world crowdsourcing markets (i.e., 
worker’s selfish nature). Theoretic analyses ensure that the 
requester can always recruit the worker’s optimal skill 
provision that can yield the maximal profit for the re-
quester. Moreover, we also conduct a series of experiment 
to highlight the efficiency, robustness and scalability of the 
proposed social team formation model. The experimental 
results determine that compared to the optimal centralized 
model, our model can preserve desirable percentage of 
social welfare. Moreover, compared to the traditional de-
centralized approaches, the proposed team formation ap-
proach not only builds a feasible (i.e., professional and col-
laborative) team of inexpensive workers, but also reduces 
social team formation time.  

In the current study, the requesters and workers are as-
sumed to break the partial contract without suffering any 
penalty. However, in real-life scenarios, breaking a con-
tract unilaterally will always suffer certain penalty such as 
monetary compensation or reputation loss [26].1.86 48.144 Tm
[(-)] TJ737.68 Tm
[409600920097008E>27<009D6-[ 2
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