
Tor Bridge Discovery: Extensive Analysis and
Large-scale Empirical Evaluation

Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen Fu

Abstract—Tor is a well-known low-latency anonymous communication system that is able to bypass the Internet censorship.
However, publicly announced Tor routers are being blocked by various parties. To counter the censorship blocking, Tor introduced
non-public bridges as the first-hop relay into its core network. In this paper, we investigated the effectiveness of two categories
of bridge-discovery approaches: 1) enumerating bridges from bridge HTTPS and email servers, and 2) inferring bridges by malicious
Tor middle routers. Large-scale real-world experiments were conducted and validated our theoretic findings. We discovered
2365 Tor bridges through the two enumeration approaches and 2369 bridges by only one Tor middle router in 14 days. Our study
shows that the bridge discovery based on malicious middle routers is simple, efficient, and effective to discover bridges with little
overhead. We also discussed issues related to bridge discovery and mechanisms to counter the malicious bridge discovery.

Index Terms—Anonymous communication, Tor, bridge discovery, attack, privacy

Ç

1 INTRODUCTION

TOR is a popular low-latency anonymous communication
system and supports TCP applications over the Inter-

net [1]. It has been commonly used for resisting the Internet
censorship [2]. Because Tor uses source routing to achieve
communication privacy and the information of all Tor
routers is available to clients and publicly listed on the
Internet [3], blocking Tor is as simple as blocking con-
nections to those known Tor routers.

To resist the censorship blocking of public Tor routers,
Tor introduced bridges. Generally speaking, a bridge could
act as the first hop, which relays user traffic into the core
Tor network. The bridge information remains hidden and
is not listed on the Internet. There are a few bridge pools
and some are stored at the bridge HTTPS and email servers.
A user could access the bridge HTTPS server or send a
google/yahoo email to the bridge email server to retrieve
three bridges at one time. Bridges are distributed through
various social networks as well.

Nevertheless, our study, along with other related research
efforts [4], [5] have shown the two categories of bridge-
discovery approaches: 1) the enumeration of bridges through
bulk emails and Tor’s HTTPS server, and 2) the use of
malicious middle routers to discover bridges. Note that bridge
may pick up malicious middle routers as the second hop of Tor
routing path. Tor almost completely fails in some regions and
we believe these regions may have blocked Tor bridges using
these discovery approaches as well as blocking all public Tor

routers. To this end, the censorship wins the battle against the
user’s privacy.

To fully understand the reason why Tor fails in some
regions, we provide the first formal analysis and large-scale
empirical evaluation of the effectiveness of Tor bridges
resisting the censorship in this paper. We conduct an
extensive theoretical analysis on two bridge-discovery
approaches and our experimental results show the effec-
tiveness of large-scale bridge discovery in real-world en-
vironments. To the best of our knowledge, although there
are a few related research efforts on discovering bridges
[4], [5], the discussion in those papers is very limited and
there are no formal analysis and large scale real-world
experiments as we conducted in this paper. The contribu-
tions of this paper are summarized below.

First, we formalize the bridge discovery through email
and HTTPS enumeration as a weighted coupon collector
problem and derive the expected number of bridges in
terms of number of enumerations (samplings). Our real-
world experiments support the theory well. In particular,
we use a master machine to control over 500 PlanetLab
nodes [6], by which emails are sent from 2000 yahoo email
accounts in a round robin fashion. We also use a master
machine to control over 1000 Tor and PlanetLab nodes,
which send HTTPS requests to retrieve bridges from bridge
HTTPS server. Our email and HTTPS enumeration ap-
proaches derived a list of 2365 Tor bridges around one month.
Nevertheless, these two enumeration approaches incur con-
siderable overhead. Yahoo and Google use CAPTCHA to
prevent continuous generation of bulk email accounts. Tor
takes countermeasures against malicious enumeration by
controlling the number of fresh bridges obtained by an IP
address or a subnet in a time duration. Therefore, the two
enumeration approaches are not efficient and effective to
some extent. In addition, we evaluate the impact of the bridge
discovery and show how difficult the Tor bridge users could
obtain the undiscovered bridges after a number of bridges
have been discovered and blocked.

. Z. Ling, J. Luo, and M. Yang are with Southeast University. E-mail:
{zhenling, jluo, yangming2002}@seu.edu.cn.

. W. Yu is with Towson University. E-mail: wyu@towson.edu.

. X. Fu is with University of Massachusetts Lowell. E-mail: xinwenfu@
cs.uml.edu.

Manuscript received 12 Feb. 2013; revised 10 Sept. 2013; accepted 16 Sept.
2013. Date of publication 30 Sept. 2013; date of current version 05 June 2015.
Recommended for acceptance by Y. Xiang.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.249

1045-9219 � 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015 1887

Second, we formally analyze the capability of bridge
discovery through malicious middle Tor routers. If a Tor
router is not configured as an exit and does not meet the
criteria of being an entry guard, it can only be a middle
router. Hence, if a bridge’s next hop is a malicious middle
router, the middle router will find that the bridge’s IP
address that is not within the public Tor router list and
thereby determine the bridge. Based on our real-world
experiments, we could confirm that with three malicious
middle routers that have a bandwidth of 10 MB/s, if 30 circuits
are established through a bridge, the probability of discov-
ering the bridge approaches 100 percent. In other words, if
30 clients use the same bridge to create a circuit, that bridge
will be exposed in a probability of almost 100 percent. Our
real-world experimental data show that the 21th circuit
created by a bridge client traverses one of the 500 PlanetLab
nodes with bandwidth 50 KB/s. Our analytical results show
that the effectiveness of bridge discovery is actually de-
termined by the total bandwidth contributed by those
malicious middle routers, not just the number of malicious
middle routers. Using one malicious middle router with
bandwidth 10 MB/s in our experiments, we actually dis-
covered 2369 Tor bridges over two weeks to validate our
theory well. In summary, the malicious middle router
based approach can discover bridges distributed by any
approach and it is efficient and effective with little over-
head. We also present the practical issues related to our
bridge discovery and discuss the feasibility and effec-
tiveness of potential countermeasures against bridge
discovery.

The rest of the paper is organized as follows. In Section 2,
we introduce the components of Tor and bridges along
with the basic operation of Tor for both normal clients and
bridge clients. In Section 3, we present our approaches for
discovering Tor bridges through email, HTTPS, and Tor
middle routers. In Section 4, we analyze the effectiveness of
those bridge discovery approaches. In Section 5, we show
the real-world experimental results on Tor and validate
our theory. We discuss issues related to bridge discovery
and present a set of guidelines to counteract those bridge
discovery approaches in Section 7. We review related
work in Section 6 and conclude the paper in Section 7,
respectively.

2 BACKGROUND

In this section, we first review the components of Tor and
bridges and then present the basic operation of Tor from
both normal clients’s and bridge clients’ aspects. Note that
Tor algorithms presented in this paper were discovered
from reading the Tor project source code and we show
some details in this section, which are not provided by Tor
documents. Such details make our analysis complete and
match the real-world Tor behavior.

2.1 Basic Components of Tor and Bridge
Fig. 1 illustrates basic components of Tor with bridges. The
client runs a local software denoted as onion proxy (OP) to
anonymize the client data into Tor. We differentiate two
types of clients: 1) normal clients use the Tor core network
directly, and 2) bridge clients use bridges to access the Tor
core network. The server runs applications such as web
service and anonymously communicates with the client
over Tor. Onion routers (OR) (or Tor routers) relay the ap-
plication data between clients and servers. Directory servers
hold the onion router information such as IP address. All users
have a copy of onion router list locally. This is the main reason
why it is easy to block the Tor core network.

Functions of onion proxy, onion router, directory
servers, and bridge are integrated into the Tor software
package. A user may edit the configuration file to configure
a computer to have different combinations of those func-
tions. Bridges are special Tor routers. Bridges publish their
information to a bridge directory server and this server
holds the information of all bridges. A client can retrieve
the bridge information by accessing the bridge HTTPS or
email server or obtain it from social networks directly.

2.2 Normal Clients Using Tor
To anonymously communicate with a web server, a normal
client uses source routing and chooses a series of onion
routers from the locally cached directory [7]. We denote the
series of onion routers as a path through Tor [8], along which
a circuit will be setup incrementally. The number of routers
is denoted as the path length. The detail of path selection
process can be found in Algorithm 1 listed in Appendix A
of supplemental file which is available in the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.249. Note that Tor does not choose
the same router twice for the same path [8]. From Algorithm 1,
we can see that to create a circuit, Tor selects an exit node,
an entry node and then a middle node in order. There are four
types of Tor routers:

1. pure entry router (entry guard),
2. pure exit router,
3. both entry and exit router (denoted as EE router),

and

class C IP address space. An EE router is one marked as
both entry guard and exit router by directory servers, and
N-EE router is marked as neither of them.

To ensure the performance, Tor adopts the weighted
bandwidth routing algorithms. In the following, we use the
default path length of 3 in Fig. 1 to illustrate how a path is
selected for the normal clients.

First, the client chooses an appropriate exit onion router
OR3 from the set of exit routers, including the pure exit
routers and EE routers. The node exclusion process for
selecting exit nodes can be found in Algorithm 2 listed in
Appendix A of supplemental file available online. Note
that this algorithm excludes nodes that are not running or
remarked as bad exits, not meeting capacity or uptime
requirements, remarked as invalid, or have policies that
reject all traffic. The bandwidth of exit routers is weighted
and described below. Assume that the total bandwidth is
B, the total exit bandwidth is BE , and the total entry
bandwidth is BG. If BE G B

3 (i.e., the bandwidth of exit
routers is scarce), the exit routers will not be considered for
non-exit use. The bandwidth of EE routers are weighted by

WG ¼ 1� B

3BG
; (1)

where WG is the bandwidth weight of entry routers and
BG 9 B

3 . If BG G B
3 , we have WG ¼ 0. The probability of

selecting the ith exit router from the exit set is BiE
BexitþBEE �WG

,
where BEE is the total bandwidth of EE routers, Bexit is the
total bandwidth of pure exit routers, and BiE indicates the
bandwidth of ith exit router. Note that BE ¼ Bexit þBEE .
Algorithm 3 in Appendix A of supplemental file available
online depicts the detailed bandwidth weighted node
selection procedure, which is used to select the exit node
from the corresponding candidates.

Second, the client chooses an appropriate entry onion
router OR1 from the set of entry routers, including the pure
entry routers and EE routers. Denote the total bandwidth of
pure entry routers as Bentry, where BG ¼ Bentry þBEE . To
ensure sufficient entry bandwidth, if BG G B

3 , the entry
routers will not be considered for non-entry use. Then, the
probability of selecting the ith entry router from the entry

set is BiG
BentryþBEE �WE

, where WE ¼ 1� B
3BE

. Here WE is the exit

bandwidth weight and BiG is ith bandwidth in the entry
set. If BE G B

3 , we have WE ¼ 0. Algorithm 3 is also used to
choose the entry node from the corresponding candidates.

Third, any router can be selected as the middle onion
router OR2 except the already selected routers OR3 and
OR1. Algorithm 4 in Appendix A of supplemental file
available online describes the selection of middle nodes
for a circuit.1 In Algorithm 3, bandwidth is required for
creating a circuit by default. Hence, the bandwidth weighted
router selection algorithm is used to select a middle router.
The probability of selecting ith router from the remaining set
of Tor routers is Bi

Bexit�WEþBentry �WEþBEE �WE �WGþBN�EE
, where Bi is

ith bandwidth in the remaining set and BN�EE is the total
bandwidth of N-EE routers.

The bandwidth weighted node selection algorithm, i.e.,
Algorithm 3, not only improves the load balance of the
entire Tor network, but also improves the end-to-end per-
formance for Tor clients. If the available total bandwidth of
exit routers is scarce in the Tor network, e.g., BE G B

3 , the
probability that exit Tor nodes are selected for entry and
middle positions is smaller by using such bandwidth
weighted algorithm. In addition, all of the EE nodes will be
chosen as exit routers to increase the total bandwidth of exit
routers. In this way, the bandwidth weighted node selec-
tion algorithm can balance the bandwidth over the entire
Tor network. In addition, this algorithm can increase the
probability that the high-bandwidth Tor routers will be
selected in the path. Thus, from the client’s point of view, it
can improve the performance of anonymous communica-
tion path in the Tor network.

Once the path is chosen, the client creates a circuit over
the path incrementally, one hop at a time. A circuit is a
communication tunnel encrypted in an onion-like way over
the path. Once the circuit is established, the client can
connect to a web server through the circuit.

2.3 Bridge Clients Using Tor
In a censored region, all public Tor routers can be blocked.
To access the core Tor network, Tor clients may utilize non-
public Tor routers, called as bridges. A bridge client needs
to obtain at least one bridge. As we can see from Fig. 1, the
bridge client can obtain the information of bridges through
email and HTTPS. We will further discuss these ap-
proaches in Section 3. The bridge client uses a bridge as a
hidden first-hop relay into the Tor network to avoid
censorship. The bridge client then follows the similar
procedures discussed earlier, i.e., downloading the infor-
mation of Tor nodes and choosing the appropriate exit
onion router OR3 and middle onion router (e.g., malicious
middle router in Fig. 1), respectively. Finally, the bridge
client creates a circuit and anonymously surfs the Internet.

We would like to note that malicious middle routers
cannot directly help an adversary to identify a user’s
current IP address. Tor introduces non-public bridges as
the first-hop relay, replacing the entry node. Along a
circuit, the bridge knows IP addresses of incoming cells
and those connecting clients, the exit router knows the
destination IP address of a cell, and the middle router only
knows IP address of a bridge and the exit router. Therefore,
even if one of these three routers is compromised, the
adversary can not compromise the communication privacy
of bridge clients. In this paper, we investigate how the
adversary controls middle routers to discover Tor bridges.

3 THREE APPROACHES FOR LARGE-SCALE TOR
BRIDGE DISCOVERY

In this section, we first introduce the basic ideas of discovering
Tor bridges and then present our experimental strategies.

3.1 Basic Ideas
In this paper, we focus on the following two categories of
approaches to discover bridges:

1. Email and https enumeration. An adversary can use a
Yahoo email or gmail account to send an email to the

1. Note that another constraint is that each router on a path must be
selected from a distinct/16 subnet.

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1889

bridge email server (bridges@torproject.org) with the
line ‘‘get bridges’’ in the body of the mail. The bridge
email server promptly replies with three distinct
bridges. To avoid malicious enumeration, the bridge
email server only replies one email to an email ac-
count each day. Alternatively, the user can access the
bridge website (https://bridges.torproject.org/) to
obtain three bridges. To avoid malicious enumera-
tion, the https server distributes three bridges to each
24-bit IP prefix each day as well.

2. Bridges inference by malicious Tor middle routers. A
circuit created by a bridge client traverses both the
bridge and the malicious middle router. By deploying
middle routers in home, PlanetLab or Amazon EC2,
we may discover bridges from any bridge pool, includ-
ing those privately distributed in social networks.

3.2 Discovering Bridges via Email
We can enumerate Tor bridges through a massive number
of email accounts. The Tor bridge email server only replies
to Yahoo email and gmail. To obtain the 2000 yahoo email
accounts, we use iMacros [9] to automate the email account
application. iMacros can record email application proce-
dures into a script and repeat most of the work automat-
ically. During each automation cycle, humans still need to
change the email account, fill out the CAPTCHA, and
submit the application. Yahoo limits the number of email
account applications from a single IP address. To address
this issue, we deploy more than 500 PlanetLab nodes to
carry out the email application tasks each day. We may also
use the Tor network to apply for email accounts. More than
500 Tor exit routers were used as the proxies [10]. Con-
sequently, those exit routers provide enough distinct IP
addresses for acquiring a large number of email accounts.
PlanetLab nodes can also be used as proxies for email
account application.

We adopt a command-and-control architecture to send
bulk emails soliciting bridges. Yahoo does not allow a large
number of emails from a single IP address via SMTP
(Simple Mail Transfer Protocol). We use a master computer
to control the PlanetLab agents, which are deployed to the
PlanetLab nodes through a parallel SSH execution tool
Pssh [11]. Agents receive the email accounts and passwords
from the master server and send emails to the bridge email
server. A tiny SMTP client [12] is used by a PlanetLab agent.
Because Yahoo does not provide free POP3 (Post Office
Protocol 3) service, we use a tiny POP3 client Mpop [13] to
retrieve Yahoo emails through an emulated POP3 server
FreePOPs [14], which is able to access Yahoo webmail service.
A script can then be used to analyze the downloaded emails
and retrieve the IP addresses of bridges embedded in emails.

To the best of our knowledge, this is the first time that
bulk emails are used for enumerating Tor bridges.

3.3 Discovering Bridges via HTTPS
Because Tor limits bridge retrieval from each class C IP
address, we have to control a large number of hosts with
different IP address prefixes to obtain a large number of
bridges within a short time. To this end, we introduce the
following two schemes:

1. https via PlanetLab nodes. A master computer can
control a large number of PlanetLab nodes for re-
trieving the bridges. We select around 500 PlanetLab
nodes and upload the agent software to each node.
An agent receives the command from the master to
download the bridge webpage via wget. To avoid
congesting the Tor https server, the master manages
the PlanetLab agents in a round robin fashion for
bridge retrieval. We use the parallel SSH execution
tool Pslurp to download the webpages from the
PlanetLab agents and a script is used to analyze the
webpages for embedded bridges.

2. https via Tor exit nodes. Tor has around 500 exit
nodes. Most of them have IP addresses with dif-
ferent 24-bit IP prefixes. We use a Tor client to create
the circuits through different exit nodes and retrieve
bridges via https. We implemented this approach by
exploring the Tor control protocol [15], which is an
interface between the customer programs and the
Tor network. The control protocol allows a client to
control its usage of Tor and acquire Tor status, in-
cluding circuit status and others. Therefore, a mali-
cious Tor client can utilize this control protocol to

it is trivial to distinguish bridges from entry nodes. We
modified the Tor source code to embed the aforementioned
functions, record the incoming connection information,
differentiate bridges from other Tor nodes, and send an
email with the IP addresses of bridges to us. This approach
allows us to automatically retrieve bridges through the
controlled Tor middle routers on PlanetLab. Of course,
such malicious middle routers can be deployed at any
place, including the researchers’ home and Amazon
EC2 [17]. PlanetLab nodes have very limited bandwidth
while home and Amazon EC2 nodes may provide large
bandwidth.

Note that we need to prevent malicious routers from
becoming entry or exit routers automatically because of the
rule of Tor. When onion routers advertise an uptime and
bandwidth at or above the median among all routers, these
routers will be marked as entry guards by directory servers
[7]. To prevent malicious routers from being entry routers,
we need to reduce their bandwidth or control their uptime.
By configuring the exit policy, we also prevent those
malicious routers from being exit routers.

4 ANALYSIS
In this section, we first analyze the effectiveness of the
bridge discovery through emails and HTTPS. To this end,
we formalize the bridge discovery problem as a weighted
coupon collector problem and derive the expected number
of samplings for obtaining all bridges. We then analyze the
effectiveness of the bridge discovery approach through
malicious Tor middle routers.

4.1 Bridge Discovery through Emails and HTTPS
The effectiveness of Tor bridge discovery approaches
through email and HTTPS presented in Section 3 can be
measured by the number of derived bridges over time. We
can formalize the process of Tor bridge discovery through
emails and HTTPS as a weighted coupon collector problem.
In the typical coupon collector problem [18], all m coupons
are obtained with an equal probability with replacement
and one of these coupons is drawn in each sampling. The
expected time for a collector to derive the m distinct
coupons is

Pm
i¼1

m
m�iþ1¼m

Pm
i¼1

1
i � Qðm lnmÞ. Neverthe-

less, in our case, bridges are not distributed with equal
probability, but weighted based on bandwidth as we
discussed in Section 2, which is also validated by our
real-world experiments in Section 5.

We now derive the weight for our weighted coupon
collector problem. To enhance performance, Tor adopts the
weighted bandwidth routing algorithm for the path
(circuit) selection. The higher a router’s advertised band-
width, the higher the chance that the router will be selected
for a circuit. Note that a bridge can act as a Tor entry router.
With such a weighted bandwidth routing algorithm, we
assume that the bandwidth of the bridges comprises a set
fB1; B2; . . . ; Bng, where n is the number of Tor bridges in
the Tor network. The probability pi that the ith router with
bandwidth Bi can be selected is

pi ¼
BiPn
i¼1 Bi

: (2)

Based on the Tor bridge discovery described in Section 3,
we now give the problem definition of our weighted
coupon collection problem for discovering bridges. Given n
bridges, the ith bridge can be derived in each sampling with the
probability pi, where 0 G pi G 1. What is the expected number
of samplings to derive n distinct bridges?

According to the weighted coupon collector’s problem,
we can derive the expected samplings to derive the n
distinct bridges through email and HTTPS. We denote Ii as
a random variable and define

Ii¼
1; if the ith bridge is collected during h samplings
0; otherwise.

�
(3)

Denote Xh as the number of distinct bridges after hð� 1Þ
times of bridge retrieval through email or HTTPS. The
probability that the ith bridge is not collected after h
samplings is P ðIi ¼ 0Þ ¼ ð1� piÞh. Then, the number of

distinct bridges after h samplings becomes Xh ¼
Pn
i¼1

Ii.
Because we have

EðIiÞ ¼ 0� P ðIi ¼ 0Þ þ 1� P ðIi ¼ 1Þ;
¼P ðIi ¼ 1Þ ¼ 1� P ðIi ¼ 0Þ ¼ 1� ð1� piÞh; (4)

the expected number of different bridges discovered after h
samplings can be derived by

EðXhÞ ¼E
Xn
i¼1

Ii

 !
;

¼EðI1Þ þ EðI2Þ þ � � � þ EðInÞ;
¼ 1� ð1� p1Þh þ � � � þ 1� ð1� pnÞh;

¼n�
Xn
i¼1

ð1� piÞh: (5)

It can be observed from Equation (5) that when we
conduct more samples (i.e., h increases), we can obtain
more bridges. Note that to avoid malicious enumeration,
the bridge authority divides the available bridges into
pools. Each pool is available in a time window [19]. How-
ever, in one time window, the enumeration can still be
formalized as a weighted coupon collector problem. This is
confirmed by our experimental results shown in Fig. 4.

4.2 Bridge Discovery through Middle Routers
Recall that if a TCP stream from a bridge traverses
malicious Tor middle routers, the bridge will be exposed.
To understand the effectiveness of this bridge discovery
approach, we analyze the catch probability that a TCP
stream from a bridge traverses malicious middle routers.

We assume that k computers are injected into the Tor
network and there are malicious Tor middle routers.
The bandwidth of all onion routers comprises a set
fB1; B2; . . . ; Bk; Bkþ1; . . . ; BkþNg, where fB1; . . . ; Bkg is the
bandwidth of the malicious middle routers. All malicious
middle routers advertise the same bandwidth2,B1 ¼
B2 ¼ � � � ¼ Bk ¼ b. Denote B as the aggregated bandwidth

2. The Tor project released a new version that changes the upper-
bound of high bandwidth to 10 MB/s on August 30, 2007.

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1891

of all original onion routers, B ¼
PkþN

i¼kþ1 Bi. Then the total

bandwidth becomes B þ k � b.
Recall that there are four types of routers in the Tor

network:

1. pure entry router (entry guard),
2. pure exit router,
3. both entry and exit router (denoted as EE router), and
4. neither entry nor exit router (denoted as N-EE router).

Denote the bandwidth of all original pure entry routers,
pure exit routers, EE routers and N-EE routers as Bentry,
Bexit, BEE and BN�EE , respectively. Note that we have
B ¼ Bentry þBN�EE þBEE þBexit. Based on the weighted
bandwidth routing algorithm discussed in Section 2.2, the
bandwidth weight can be derived by,

WE ¼
1� Bþk�b

3�ðBexitþBEEÞ : WE 9 0,

0 : WE r 0.

�
(6)

WG ¼
1� Bþk�b

3�ðBentryþBEEÞ : WG 9 0,

0 : WG r 0.

(
(7)

The weighted bandwidth Bexit0 , BEE0 , Bentry0 , and BN�EE0

can be derived as follows, Bexit0 ¼ Bexit �WE , BEE0 ¼ BEE �
WE �WG, Bentry0 ¼ Bentry �WG, and BN�EE0 ¼ BN�EE þ k � b.

With the total weighted bandwidth Bexit0þ BEE0 þ
Bentry0 þBN�EE0 derived above and the total bandwidth of
malicious Tor middle routers k � b, according to the weighted
bandwidth route selection algorithm in Section 2.2 (i.e.,
the total bandwidth of malicious Tor middle routers di-
vided by the total weighted bandwidth is the probability
that malicious middle nodes are chosen for serving cir-
cuit), we have the following theorem to calculate the catch
probability.

Theorem 1. The catch probability can be derived by

P ðk; bÞ ¼ k � b
Bexit0 þBEE0 þBentry0 þBN�EE0

; (8)

where k ¼ 1; 2; 3 . . . and 0 G b G 10 MB=s.

Theorem 1 is intuitive based on the bandwidth weighted
path selection algorithm. From Theorem 1, we derive the
following corollaries.

Corollary 1. The catch probability increases with the number of
malicious Tor middle routers.

P ðr; bÞ 9 P ðk; bÞ; where r 9 k: (9)

Corollary 2. The catch probability increases with the bandwidth
of malicious Tor middle routers, i.e., P ðk; bÞ is a monotonous
increasing function in terms of b. That is, P ðk; lÞ 9 P ðk; bÞ,
where l 9 b.

The proof of Corollary 1 and Corollary 2 is given in
Appendix B and Appendix C of supplemental file avail-
able online respectively. These two corollaries indicate
that the catch probability increases with both the number
of malicious Tor middle routers and the bandwidth of

findings well. Our theoretical findings and experimental
data show that the bridge discovery approach through Tor
middle routers is feasible and effective even if we can only
control a small number of Tor middle routers.

5 EVALUATION

We have implemented the proposed Tor bridge discovery
approaches in Section 3. In this section, we present the
results of the large-scale empirical evaluation on these
approaches. Our experimental results match the theoretical
analysis presented in Section 4 well.

5.1 Bridge Enumeration through Email and HTTPS
To evaluate the bridge-discovery approaches through
emails and HTTPS, we conducted large-scale experiments
on PlanetLab from May to June 2010. Fig. 2 shows the
number of newly collected distinct bridges, the number of
totally collected distinct bridges, and the number of
collected emails over the time. Because the Yahoo SMTP
server may not successfully deliver emails sent from
PlanetLab, we could not receive all replies all the time.
From Fig. 2, we can see that more emails produce more
distinct bridges. On May 5, 2010, we received 2000 emails
and collected more bridges than other dates.

Fig. 2 also shows that the number of totally collected
bridges increases over time. Actually, we are told that Tor
has more than 10,000 bridges! This is the reason why the
number of bridges keeps increasing steadily. However,
this set of experiments show that the discovery approach
works effectively because it could continually discover the
new bridges. To enumerate all bridges, we only need to
continue experiments. Fig. 3 shows the data obtained
through HTTPS. Note that the number of discovered
bridges through HTTPS has a similar trend to the one
in Fig. 2.

We now verify Equation (5) in Section 4 using the real-
world data. Recall that Tor distributes different pools of
bridges (there is crossover among pools) through email and
HTTPS servers over time. However, experiments on one day
can be formulated as a weighted coupon collector problem
because the pool has not been shifted. One retrieved bridge
can be treated as one sampling. Fig. 4 shows the relationship

between the number of samplings and the number of
distinct bridges. It can be observed that the curve of the
non-weighted classical coupon collector problem is much
steeper than the curve for the real-world data at the
beginning. This indicates that the bridges are not uni-
formly distributed.

To verify that the bridge distribution can be formalized
as a weighted coupon collector problem, we assume that
the bridge bandwidth distribution is similar to the public
Tor router bandwidth distribution. We randomly pick up a
set of public Tor routers and use their bandwidth to
simulate the bridge bandwidth (note that we do not know
the bridge bandwidth). We then obtain the curve of the
weighted coupon collector problem based on Equation (5).
Fig. 4 shows that the theoretical curve is only slightly lower
than the curve from the real-world data. Hence, it is highly
possible that bridges are distributed with their bandwidth
as the weight. Such a weighted distribution is also consist-
ent with the Tor’s weighted routing algorithm for perfor-
mance enhancement. Actually, Tor developers later
confirmed this fact to us.

5.2 Bridge Discovery via Tor Middle Routers
Fig. 5 shows the public Tor router bandwidth cumulative
distribution function on July 10, 2010. Based on the data

Fig. 2. Discovered bridges through emails.

Fig. 3. Discovered bridges through HTTPS.

Fig. 4. Number of samplings vs. number of distinct bridges.

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1893

from Tor Metric Portal [20], there were 1604 active Tor
routers, including 326 pure entry onion routers, 525 pure
exit onion routers, and 132 EE routers. Using real-world
data, Fig. 6 shows the relationship between the theoretical
catch probability and the number of controlled Tor middle
routers based on Theorem 1. As we can see, the catch
probability is 14.7 percent when 512 Tor middle routers
with bandwidth 50 KB/s are used, i.e., P ð512; 50Þ ¼ 14:7%.
Based on Theorem 3, Fig. 7 illustrates the catch probability
when the bridge clients create q circuits, that is P ð512; 50; qÞ.
From Fig. 7, we can see that in theory, the catch probability
approaches 99 percent, after the bridge clients created
30 circuits, i.e., P ð512; 50; 30Þ � 99%. In addition, from
Equation (13), we know that by only configuring three
nodes as malicious Tor middle routers, we can obtain the
catch probability P ð3 � 10000; 30Þ 9 P ð512 � 50; 30Þ � 99%.

To demonstrate the correctness of our theory, we used
512 PlanetLab nodes as malicious Tor middle routers and
set their bandwidth as 50 KB/s (because of the limited
bandwidth on PlanetLab nodes). To avoid affecting the Tor
network, we only conducted a short experiment for two
days. We set up a Tor client to create 430 circuits via our
own Tor bridge in an apartment. We found that the 21th

circuit passed through our Tor middle routers on PlanetLab.
The experimental results match the theoretical results
above well.

We now show data supporting the fact that high
bandwidth routers have a higher chance to be selected as
middle routers. Fig. 8 shows the empirical cumulative
distribution function (ECDF) of the bandwidth of onion
routers, which are selected as middle routers for these
430 circuits. Recall that we are able to record routers selected
for a circuit at the client. We can see that 60 percent of those
routers have a bandwidth more than 1 MB/s. However, as
shown in Fig. 5, only 10 percent of Tor routers have a
bandwidth of larger than 1 MB/s. This indicates that the
higher bandwidth the routers have, the higher chance these
routers are selected as middle routers for serving circuits.

Fig. 9 illustrates the theoretical catch probability that a
circuit passes malicious Tor middle routers in terms of
router bandwidth advertisement and the number of
malicious middle routers, based on Theorem 1. We can
see that the theoretical probability is monotonically
increased with both the number of controlled middle
routers and their bandwidth advertisement. These obser-
vations match our analytical results in Theorems 1 and 2

Fig. 6. Probability that a circuit chooses the middle routers in PlanetLab
vs. number of Tor middle routers in PlanetLab.

Fig. 7. Probability that at least a circuit traverses through the controlled
middle routers after bridge clients create q circuits.

Fig. 8. Empirical CDF of bandwidth of selected middle routers.

Fig. 5. Empirical CDF of bandwidth of all routers in the tor network.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 20151894

well. As expected, the catch probability approaches
90 percent when there are 20 malicious middle routers
with 10 MB/s bandwidth, i.e., P ð20; 10000Þ � 90%.

To validate Theorem 2 that the bridge discovery is
determined by the aggregated bandwidth of the malicious
Tor nodes, we configured a high bandwidth middle router
with bandwidth 10 MB/s. We recorded the bridges that
pass through this middle router from July 10 to 23, 2010.
Fig. 10 shows the number of newly discovered distinct
bridges and the number of totally collected distinct bridges.
As we can see, the number of totally collected bridges
increases over time. Eventually, we obtained 2369 bridges,
indicating that discovering bridges through middle routers
can be very effective and efficient and the catch probability
is mainly determined by total bandwidth contributed by
malicious middle routers. Note that to prevent the middle
router from becoming an entry router in 7 days, we
restarted the router on the 6th day.

5.3 Impact of Bridge Discovery through Email
and HTTPS

We evaluated the impact of the large-scale bridge discov-
ery and show how difficult the Tor bridge users obtain the
undiscovered bridges after a number of bridges have been
discovered and blocked. According to our experimental
results in Fig. 4, we consider that the bridge distribution
through email and HTTPS is based on bandwidth. Thus,
the adversary will first discover the high bandwidth
bridges through email and HTTPS and block them. Assume
that the top p percentage bridges are discovered and
blocked. We denote the bandwidth of the top p percentage
bridges and the total bandwidth of the Tor routers as B0p
and B0, respectively. Hence, the probability that Tor bridge
users derive the top p percentage bridges is

B0p
B0. Then, we

know that the probability Pp that the Tor bridge users
derive at least one undiscovered bridge each time is

1� B0p
B0

� �3
. Recall that the bridge authority will distribute

three bridges each time. We use the published bandwidth
information of existing public Tor routers to simulate

bridge bandwidth and sort the bandwidth of the Tor
routers by descent. Fig. 11 depicts the probability that the
Tor bridge users derive at least one undiscovered bridge
each time after top p percentage bridges have been dis-
covered and blocked. As we can see from this figure, if top
90 percent bridges are discovered, Pp is 22.8 percent. If
90 percent bridges are discovered and blocked, the probability
P90ð‘Þ that the Tor bridge users try ‘ times to derive at least

one unblocked bridge is P90ð‘Þ ¼ 1� B0p
B0

� �3‘
. Fig. 12 illus-

trates the relationship between P90ð‘Þ and the number of
samplings. As we can see that the users need to try around
20 times to obtain at least one unblocked bridge. Note that
Tor has changed the bridge distribution strategy to distrib-
ute three bridges each week instead of each day. Hence, it
will take around 20 weeks to get at least one unblocked
bridge via email or HTTPS. We believe it will be a fairly
uncomfortable experience for the Tor bridge users.

5.4 Effectiveness of Bridge Discovery through
Controlled Middle Routers

We also evaluated the effectiveness of the bridge discovery
through controlled middle routers and show how effective

Fig. 10. Discovery of bridges through a Tor middle router.

Fig. 11. Probability that Tor bridge users derive at least one
undiscovered bridge each time after top p percentage bridges have
been discovered and blocked.

Fig. 9. Probability that a circuit chooses the Tor middle routers in
PlanetLab vs. Number of Tor middle routers & bandwidth advertisement
of Tor middle routers in PlanetLab.

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1895

the Tor bridges could be discovered by using controlled
middle routers. Based on the real-world data from Tor
Metric Portal [20], there are around 25,000 Tor bridge users
daily. Denote Nc as the average number of circuits created
by each user. According to our experimental results in
Fig. 4, the selection of a bridge is actually based on its
bandwidth. Bridges with higher bandwidths will be used
by more users and traverse more circuits from bridge users.

Assume that the bandwidth of a bridge i and the total
bandwidth of all bridges areB0i andB0, respectively. Then, the
number of circuits that traverse the bridge i is 25000 � B

0
i

B0 �Nc.
If each Tor client establishes Nc circuits, the probability that at
least one circuit that traverses both the bridge i and our
controlled middle router with the total bandwidth M 0 can

be obtained by P ðM 0; B0i; NcÞ ¼ 1� ð1� P ðM 0ÞÞ25000�
B0
i

B0�Nc .

Then, based on this, we can derive the probability that,
after d days, the bridge i can be discovered by our con-
trolled middle router with a total bandwidth of M 0. The
probability is determined by, P ðd;M 0; B0i; NcÞ ¼ 1�
ð1� P ðM 0; B0i; NcÞÞd.

6 RELATED WORK

In recent years, various anonymous communications
systems, including Tor [1], Anonymizer [21], I2P [22], Salsa
[23], and Torsk [24] have been designed and deployed to
provide online privacy and censorship resistance. There
are lots of research efforts on traffic analysis against these
systems. For example, Wang et al. [25] investigated the
feasibility of a timing-based watermarking scheme in iden-
tifying the encrypted peer-to-peer VoIP calls. Peng et al. [26]
analyzed the secrecy of timing-based watermarking trace-
back proposed in [27], based on the distribution of traffic
timing. Yu et al. [28] proposed a flow marking scheme
based on the direct sequence spread spectrum (DSSS)
technique. This approach could be used by the adversary
to secretly confirm the communication relationship via mix
networks. Ling et al. [29] proposed the cell counter based
attack against Tor that the adversary embeds a signal into
the variation of cell counter of the target traffic by varying
the counter of cells in the target traffic at the malicious exit
onion router. Houmansadr and Borisov [30] investigated a
scalable watermark technique to encode the watermarks by
changing the locations of packets within selected time slots.

McLachlan et al. [5] investigated the weakness of current
bridge architecture, leading to a few advanced attacks on
the anonymity of bridge operators. Their results indicate
that the existing attacks may expose clients to additional
privacy risks and Tor exit routers should be considered as
sharing a single IP prefix that is mentioned in the bridge
design [19]. Vasserman et al. [4] presented the attacks
against Tor bridges and discussed countermeasures using
DHT-based overlay networks. Bauer et al. [31] showed that
an adversary who controls only six malicious Tor routers
could compromise over 46 percent of all clients’ circuits
in an experimental Tor network with 66 total routers.
Edman et al. [32] identified the risk associated with a single
autonomous system (AS), which observes both ends of an
anonymous Tor connection is greater than previously
thought. Their results showed that the growth of the Tor
network had only a small impact on the network’s ro-
bustness against an AS-level adversary. Fu et al. [33] in-
vestigated a cloud computing based approach that deploys
high-bandwidth Amazon EC2 sentinels into the Tor net-
work. Their study showed that with the high bandwidth
and appropriate number of sentinels, one can achieve a
high probability that a Tor circuit passes through an entry
sentinel and an exit sentinel.

Wilde [34] and Winter [35] studied the blocking
mechanism used by Great Firewall of China. They found
that the Great Firewall of China adopts the deep packet
inspect (DPI) to detect the Tor protocol feature and then
pretend to be a Tor client to establish a Tor connection to
the remote machine. Once the connection is successfully
established, the bridge is confirmed and then blocked. To
defeat this attack, Tor developed a tool ‘‘obfsproxy’’, referred
to as pluggable transports [36], for circumvention, to obfus-
cate the Tor protocol. From the Tor client’s point of view, the
tool acts as a SOCKS proxy and relays the traffic from Tor
clients into the pluggable transport to hide the Tor traffic into
other type of traffic. Moghaddam et al. [37] obfuscated the
Tor traffic between the Tor client and bridge as Skype traffic.

Bridge discovery can facilitate the law enforcement to
determine whether a suspicious user is using a bridge to
communicate with others through the Tor network. As
mentioned in Section 2, a bridge is deployed as a hidden
entry onion route in a circuit. Consequently, by observing
the outgoing traffic of a user, it is non-trivial to determine
whether the user exploits a bridge to connect to the Tor
network. In addition, a hidden server can use a bridge to
further hide the real location of the hidden server. Based on
existing research, Tor hidden servers have been wildly
abused for various criminal purposes, including the de-
ployment of Botnet command and control (C&C) server
[38], [39] and hosting the black market [40] to sell por-
nography, narcotics, weapons, and others.

A number of research efforts have been conducted to
discover Tor hidden servers [41], [42], [43], [44]. For
example, Øverlier and Syverson [41] proposed the packet
counting based traffic analysis to identify a hidden server
at entry onion routers. Biryukov et al. [44] studied how to
deploy the hidden service directory to harvest hidden
service information and investigated the packet counting
based traffic analysis to locate hidden servers. Ling et al.
[43] investigated a Tor protocol-based approach to discover
a hidden server from network forensics aspect. Neverthe-
less, if the hidden server uses several bridges as entry
routers, only the bridges, not the hidden server, can be
discovered. The bridge discovery approaches investigated
in this paper can facilitate the law enforcement to confirm
whether the discovered router is a bridge or not. Then, the
law enforcement can apply for a search warranty to request
this bridge to collaborate and locate the hidden server.

7 CONCLUSION

In this paper, we conducted extensive analysis and large-
scale empirical evaluation on Tor bridge discovery through
email, https and malicious Tor middle routers. To discover
bridges automatically, we developed a command-and-
control architecture on PlanetLab to send emails through
Yahoo SMTP to the bridge email server and download
bridge webpages from the bridge web server, respectively.
We formalized the email and https bridge discovery pro-
cess as a weighted coupon collector problem and analyzed
the expected number of retrieved bridges with a number of
samplings. We also exploited the weighted bandwidth
routing algorithms on Tor and studied the bridge discovery
through malicious Tor middle onion routers deployed on
PlanetLab and in an apartment. We formally analyzed the
catch probability of discovering bridges through middle
onion routers. Since the number of Tor bridges is not
publicly available, we cannot derive the exact total
number of Tor bridges during the experimental period.
However, our real-world implementation and large-scale
experiments demonstrated the effectiveness and feasi-
bility of the three bridge discovery approaches that we
investigated in this paper. In particular, we have discov-
ered 2365 Tor bridges through email and https and
2369 bridges by only one controlled Tor middle router in
14 days. Our study shows that the bridge discovery
approach based on malicious middle routers is simple,
efficient and effective to discover bridges with little

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1897

overhead. The discussion of other issues related to bridge
discovery and potential mechanisms to counter bridge
discovery can be found in Appendix E of supplemental file
available online.

ACKNOWLEDGMENT

This work was supported in part by National Key Basic
Research program of China under grant 2010CB328104,
National Natural Science Foundation of China under
Grants 61272054, 61202449, and 61003257, by U.S. NSF Grants
1116644, 0942113, 0958477, 0943479, and 1117175, by China
Specialized Research Fund for the Doctoral Program of
Higher Education under grant 20110092130002, China
National Key Technology R&D Program under Grants No.
2010BAI88B03 and No. 2011BAK21B02, China Specialized
Research Fund for the Doctoral Program of Higher
Education under Grant No. 20110092130002, Science Re-
search Foundation of Graduate School of Southeast Uni-
versity, Jiangsu Provincial Key Laboratory of Network and
Information Security under grants BM2003201, and Key
Laboratory of Computer Network and Information Integra-
tion of Ministry of Education of China under grants 93K-9.
Any opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies. Z. Ling is the
corresponding author.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, ‘‘Tor: The
Second-Generation Onion Router,’’ in Proc. 13th USENIX Secur.
Symp., Aug. 2004, p. 21.

[2] Tor and Censorship: Lessons Learned, 2010. [Online]. Available:
https://blog.torproject.org/blog/tor-and-censorship-lessons-
learned

[3] J.B. Kowalski and K. Gabert, Tor Network Status, 2010. [Online].
Available: http://torstatus.blutmagie.de/

[4] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim,
‘‘Membership-Concealing Overlay Networks,’’ in Proc. 16th
ACM Conf. CCS, Nov. 2009, pp. 390-399.

[5] J. McLachlan and N. Hopper, ‘‘On the Risks of Serving Whenever
You Surf: Vulnerabilities in Tor’s Blocking Resistance Design,’’
in Proc. WPES, Nov. 2009, pp. 31-40.

[6] The Trustees of Princeton University, ‘‘PlanetLabVAn Open
Platform for Developing, Deploying, Accessing Planetary-Scale
Services,’’ 2010. [Online]. Available: http://www.planet-lab.org/

[7] R. Dingledine and N. Mathewson, Tor Directory Protocol, Version 3,
2010. [Online]. Available: https://gitweb.torproject.org/torspec.
git/blob_plain/HEAD:/dir-spec.txt

[8] R. Dingledine and N. Mathewson, Tor Path Specification 2008.
[Online]. Available: https://gitweb.torproject.org/torspec.
git?a=blob_plain;hb=HEAD;f=path-spec.txt

[9] Imacros 2010. [Online]. Available: http://www.iopus.com/imacros/
[10] Relays in the Tor Network 2010. [Online]. Available: http://

metrics.torproject.org/consensus-graphs.html
[11] B.N. Chun, Pssh, 2010. [Online]. Available: http://www.theether.

org/pssh/
[12] M.A. Muquit, MailsendVSend Mail via SMTP Protocol, 2008.

[Online]. Available: http://www.muquit.com/muquit/software/
mailsend/mailsend.html

[13] M. Lambers, Mpop: A POP3 Client, 2010. [Online]. Available:
http://mpop.sourceforge.net/

[14] Freepops, 2010. [Online]. Available: http://www.freepops.org/en/
[15] R. Dingledine and N. Mathewson, TC: A Tor Control Protocol

(Version 1), 2010. [Online]. Available: https://gitweb.torproject.
org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt

[16] Vidalia, 2010. [Online]. Available: http://www.torproject.org/vidalia/
[17] Amazon.com: Amazon Elastic Compute Cloud (Amazon EC2),

2010. [Online]. Available: http://aws.amazon.com/ec2/

[18] P. Berenbrink and T. Sauerwald, ‘‘The Weighted Coupon
Collector’s Problem and Applications,’’ in Proc. 15th Annu. Int’l
Conf. Comput. Combinatorics, 2009, pp. 449-458.

[19] R. Dingledine and N. Mathewson, Design of a Blocking-Resistant
Anonymity System, 2008. [Online]. Available: https://svn.torproject.
org/svn/projects/design-paper/blocking.html

[20] The Tor Project, Inc.Tor Metrics Portal 2013. [Online]. Available:
https://metrics.torproject.org/

[21] Anonymizer, Inc., 2010. [Online]. Available: http://www.anonymi-
zer.com/

[22] I2P Anonymous Network, 2012. [Online]. Available: http://www.
i2p2.de/

[23] A. Nambiar and M. Wright, ‘‘Salsa: A Structured Approach to
Large-Scale Anonymity,’’ in Proc. 13th ACM Conf. CCS, Oct. 2006,
pp. 17-26.

[24] J. McLachlan, A. Tran, N. Hopper, and Y. Kim, ‘‘Scalable Onion
Routing with Torsk,’’ in Proc. 16th ACM Conf. CCS, Nov. 2009,
pp. 590-599.

[25] X. Wang, S. Chen, and S. Jajodia, ‘‘Tracking Anonymous Peer-to-
Peer VoIP Calls on the Internet,’’ in Proc. 12th ACM Conf. CCS,
Nov. 2005, pp. 81-91.

[26] P. Peng, P. Ning, and D.S. Reeves, ‘‘On the Secrecy of Timing-
Based Active Watermarking Trace-Back Techniques,’’ in Proc.
IEEE SP Symp., May 2006, pp. 334-349.

[27] X. Wang and D.S. Reeves, ‘‘Robust Correlation of Encrypted
Attack Traffic through Stepping Stones by Manipulation of Inter-
Packet Delays,’’ in Proc. ACM Conf. CCS, Nov. 2003, pp. 20-29.

[28] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, ‘‘DSSS-Based
Flow Marking Technique for Invisible Traceback,’’ in Proc. IEEE
Symp. S&P, May 2007, pp. 18-32.

[29] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, ‘‘A New Cell
Counter Based Attack against Tor,’’ in Proc. 16th ACM Conf. CCS,
Nov. 2009, pp. 578-589.

[30] A. Houmansadr and N. Borisov, ‘‘SWIRL: A Scalable Watermark
to Detect Correlated Network Flows 18th Annu. Network Dis-
tributed System Security Symp. (NDSS), San Diego, CA, USA, 2011.

[31] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker,
‘‘Low-Resource Routing Attacks against Tor,’’ in Proc. WPES,
Washington, DC, USA, Oct. 2007, pp. 11-20.

[32] M. Edman and P.F. Syverson, ‘‘AS-Awareness in Tor Path
Selection,’’ in Proc. ACM Conf. CCS, Nov. 2009, pp. 380-389.

[33] X. Fu, Z. Ling, W. Yu, and J. Luo, ‘‘Cyber Crime SceneðC2SIÞ
through Cloud Computing,’’ in Proc. 1st Workshop SPCC,
June 2010, pp. 26-31.

[34] T. Wilde, Great Firewall Tor Probing Circa 09 DEC 2011, 2011.
[Online]. Available: https://gist.github.com/da3c7a9af01d74cd7de7

[35] P. Winter and S. Lindskog, ‘‘How the Great Firewall of China is
Blocking Tor,’’ in Proc. 2nd USENIX Workshop FOCI, 2012, pp. 1-7.

[36] J. Appelbaum and N. Mathewson, Pluggable Transports for Circum-
vention,2r10. [Online]. Available: https://gitweb.torproject.org/

torspec.git/blob/HEAD:/proposals/180-pluggable- transport.txt
[37] H.M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,

‘‘SkypeMorph: Protocol Obfuscation for Tor Bridges,’’ in Proc.
19th ACM Conf. CCS, 2012, pp. 97-108.

[38] D. Brown, Resilient Botnet Command and Control with Tor 2010.
[Online]. Available: https://www.defcon.org/images/defcon-18/
dc-18-presentations/D.Brown/DEFCON-18-Brown-TorCnC.pdf

[39] Anonymous, ‘‘IAmA a Malware Coder and Botnet Operator,‘‘
AMA 2012. [Online]. Available: http://www.reddit.com/r/
IAmA/comments/sq7cy/

[40] N. Christin, ‘‘Traveling the Silk Road: A Measurement Analysis
of a Large Anonymous Online Marketplace,’’ in Proc. 22nd Int’l
WWW Conf., 2013, pp. 213-224.

[41] L. Øverlier and P. Syverson, ‘‘Locating Hidden Servers,’’ in Proc.
IEEE S&P Symp., 2006, p. 114.

[42] S.J. Murdoch, ‘‘Hot or Not: Revealing Hidden Services by Their
Clock Skew,’’ in Proc. 13th ACM Conf. CCS, Nov. 2006, pp. 27-36.

[43] Z. Ling, J. Luo, K. Wu, and X. Fu, ‘‘Protocol-Level Hidden Server
Discovery,’’ in Proc. 32th IEEE Int’l Conf. INFOCOM, 2013, pp. 1043-1051.

[44] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, ‘‘Trawling for
Tor Hidden Services: Detection, Measurement, Deanonymization,’’
in Proc. 34th IEEE Symp. S&P, 2013, pp. 80-94.

[45] S.M. Bellovin, ‘‘A Technique for Counting NATted Hosts,’’ in
Proc. 2nd IMW, 2002, pp. 267-272.

[46] S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous, ‘‘I
Know Where You Are and What You Are Sharing: Exploiting
P2P Communications to Invade Users Privacy,’’ in Proc. 11th
IMC, 2011, pp. 45-60.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 20151898

[47] A. Castiglione, A.D. Santis, U. Fiore, and F. Palmieri, ‘‘Device
Tracking in Private Networks via NAPT Log Analysis,’’ in Proc.
6th Int’l Conf. IMIS, 2012, pp. 603-608.

[48] T. Kohno, A. Broido, and K.C. Claffy, ‘‘Remote Physical Device
Fingerprinting,’’ in Proc. 26th IEEE Symp. S&P, 2005, pp. 211-225.

[49] M. Naor, Verification of a Human in the Loop or Identification via the
Turing Test, 1997. [Online]. Available: http://www.wisdom.weizmann.
ac.il/~naor/PAPERS/human.ps

[50] CAPTCHA King, 2010. [Online]. Available: http://www.captchaking.
com/

[51] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G.M. Voelker,
and S. Savage, ‘‘Re: CAPTCHAs-Understanding CAPTCHA-
Solving Services in an Economic Context,’’ in Proc. 19th USENIX
Security Symp., 2010, p. 28.

[52] E. Bursztein, M. Martin, and J. Mitchell, ‘‘Text-Based CAPTCHA
Strengths and Weaknesses,’’ in Proc. 18th ACM Conf. CCS, 2011,
pp. 125-138.

[53] J. Isacenkova and D. Balzarotti, ‘‘Measurement and Evaluation of
a Real World Deployment of a Challenge-Response Spam Filter,’’
in Proc. 11th IMC, 2011, pp. 413-426.

[54] Spamhelp, 2012. [Online]. Available: http://www.spamhelp.
org/services/listings/challenge-response/

[55] R. Pries, W. Yu, S. Graham, and X. Fu, ‘‘On Performance
Bottleneck of Anonymous Communication Networks,’’ in Proc.
22nd IEEE IPDPS, Apr. 14/28, 2008, pp. 1-11.

[56] Research Problems: Ten Ways to Discover Tor Bridges, 2011.
[Online]. Available: https://blog.torproject.org/blog/research-
problems-ten-ways-discover-tor-bridges

[57] Freenet, 2012. [Online]. Available: https://freenetproject.org/
[58] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, ‘‘Denial of

Service or Denial of Security? How Attacks on Reliability
can Compromise Anonymity,’’ in Proc. 14th ACM Conf. CCS,
Oct. 2007, pp. 92-102.

[59] P. Mittal and N. Borisov, ‘‘Information Leaks in Structured Peer-
to-Peer Anonymous Communication Systems,’’ in Proc. 15th
ACM Conf. CCS, Oct. 2008, pp. 267-278.

[60] A. Tran, N. Hopper, and Y. Kim, ‘‘Hashing it Out in Public:
Common Failure Modes of DHT-Based Anonymity Schemes,’’ in
Proc. WPES, Nov. 2009, pp. 71-80.

[61] A. Johnson, P. Syverson, R. Dingledine, and N. Mathewson,
‘‘Trust-Based Anonymous Communication: Adversary Models
and Routing Algorithms,’’ in Proc. 18th ACM Conf. CCS, 2011,
pp. 175-186.

[62] P. Mittal, M. Wright, and N. Borisov, ‘‘Pisces: Anonymous
Communication Using Social Networks,’’ in Proc. 20th Annu.
NDSS Symp., 2013, pp. 1-18.

Zhen Ling is a lecturer at the School of Computer
Science and Engineering at the Southeast
University, Nanjing, China. He received the BS
degree (2005) and PhD degree (2014) in com-
puter science from Nanjing Institute of Technol-
ogy, China and Southeast University, China,
respectively. He joined Department of Computer
Science at the City University of Hong Kong from
2008 to 2009 as a research associate and then
joined Department of Computer Science at the
University of Victoria in 2011 as a visiting scholar.

His research interests include network security, privacy, and forensics.

Junzhou Luo received the BS degree in applied
mathematics and the MS and PhD degrees in
computer network both from Southeast University,
Nanjing, China, in 1982, 1992, and 2000, respec-
tively. He is a Full Professor in the School of
Computer Science and Engineering, Southeast
University, Nanjing, China. His research interests
are next generation network, protocol engineering,
network security and management, grid and cloud
computing, and wireless LAN. He is a member of
the IEEE Computer Society and co-chair of IEEE

SMC Technical Committee on Computer Supported Cooperative Work in
Design.

Wei Yu received the BS degree in electrical
engineering from Nanjing University of Technol-
ogy, China, in 1992, the MS degree in electrical
engineering from Tongji University, Shanghai,
China, in 1995, and the PhD degree in computer
engineering from Texas A&M University, College
Station, in 2008. He is currently an associate
professor with the Department of Computer
and Information Sciences, Towson University,
Maryland. He was with Cisco Systems Inc. for
nine years. His research interests include

cyberspace security, computer networks, and cyber-physical systems.
He is a recipient of a 2014 NSF CAREER Award and a 2015 University
System of Maryland (USM) Regents Faculty Award for Excellence in
Scholarship, Research, or Creative Activity.

Ming Yang received the MSc and PhD degrees
in computer science and engineering, in 2002
and 2007, respectively, from Southeast Univer-
sity, Nanjing, China. He is currently an Associate
Professor in the School of Computer Science
and Engineering, Southeast University, Nanjing,
China. His research interests include network
security and privacy.

Xinwen Fu received the BS and MS degrees in
electrical engineering from Xi’an Jiaotong Uni-
versity, China, in 1995 and University of Science
and Technology of China, China, in 1998. He re-
ceived the PhD degree in computer engineering
from Texas A&M University, in 2005. He is an
Associate Professor in the Department of Com-
puter Science, University of Massachusetts Lowell.
From 2005 to 2008, he was an Assistant Profes-
sor with the College of Business and Information
Systems at Dakota State University. In summer

2008, he joined University of Massachusetts Lowell as a faculty member.
His current research interests are in network security and privacy.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LING ET AL.: TOR BRIDGE DISCOVERY: EXTENSIVE ANALYSIS AND LARGE-SCALE EMPIRICAL EVALUATION 1899

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

