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Abstract—In recent years, radio frequency (RF) fingerprinting
has attracted more and more attention. Many different types
of RF fingerprints have been proposed, such as carrier fre-
quency offset (CFO), sampling frequency offset and error vector
magnitude. Among them, the CFO fingerprint is recognized
as a promising RF fingerprint. However, for commonly used
smartphones, we find that its CFO fingerprint is unstable,
because the temperature of crystal oscillator varies greatly and
large fluctuations of temperature significantly affect its CFO
fingerprint. Therefore, the solutions of CFO-based fingerprinting
will no longer be effective for smartphones if the temperature
of crystal oscillator is not involved. To this end, we propose
a more reliable and applicable CFO-based fingerprinting ap-
proach called temperature-aware radio frequency fingerprinting
(TeRFF). First, we construct a dataset by extracting crystal
oscillator’s temperature and the corresponding CFO value on
multiple smartphones over a period. In the dataset, the extracted
temperature values constitute a set of temperature values, and
each registered temperature value corresponds to a group of CFO
samples. On this basis, we train multiple Naive Bayes models,
each tagged with a registered temperature value. Moreover,
since there are many temperature values which are not in
the temperature set, we design a CFO estimation method to
estimate the CFO fingerprint at the unregistered temperature.
Finally, the experimental results demonstrate that our proposed
solution TeRFF makes the CFO fingerprinting still effective for
smartphone identification, and its performance is better than
other existing RF fingerprinting schemes.

Index Terms—Smartphones, Radio frequency fingerprinting,
Carrier frequency offset, Crystal oscillator’s temperature

I. INTRODUCTION

As the Wi-Fi technique develops gradually, the number of

Wi-Fi devices is increasing in recent years, and the global

Wi-Fi market size is projected to grow from USD 9.4 billion

in 2020 to USD 25.2 billion by 2026 [1]. In the case of

large-scale Wi-Fi devices, the authentication becomes more

and more significant for the security of Wi-Fi devices. Con-

ventional Wi-Fi device authentication is based on IP ad-

dress, MAC address and pre-shared secret information [2].

But these information are easily forged by malicious people

for attacking the internal network. Motivated by the above,

noncryptographic solutions based on device identification are

proposed recently. For device identification, Radio Frequency

(RF) fingerprinting is a reliable and secure approach because

RF fingerprints have device-related characteristics in Wi-Fi de-

vices. For attackers, it is very difficult to tamper with hardware

imperfections in commercial Wi-Fi devices. Therefore RF

fingerprinting has attracted the attention of many researchers.

RF fingerprinting can be equivalent to a multi-classification

problem. Currently, RF fingerprinting for Wi-Fi devices can

be divided into deep learning-based and handcrafted feature-

based methods separately. Deep learning-based method can

automatically extract effective and underlying features from

raw or simple preprocessed I/Q signal without relying on

the knowledge of wireless communication. In addition, the

modulation mode of transmitted signal can not be known in

advance. CNN [3]–[5] and MLP [6] have been used in Wi-

Fi device identification. However deep learning model may

be degraded largely by wireless channel [4]. Therefore the

deep learning-based method is not applicable in the practical

scenarios. On the other hand, the identification methods based

on handcrafted features depend on expert knowledge and these

handcrafted features can indicate specific imperfections in

wireless devices. These handcrafted features can mainly be

divided into transient [7], [8] and modulation [2], [9], [10] fea-

tures. Transient features can be extracted in the transient stage

of the transmitter, which presents a satisfactory performance.

However, the acquisition of these features needs expensive RF

receivers with high sampling rates in the order of gigabytes.

This makes the method impossible to deploy on a large scale.

By contrast, modulation features like carrier frequency offset

(CFO), sampling frequency offset and error vector magnitude

originate from modulation errors and these can be extracted

by software-defined receiver like USRP N210 in the medium

price range. Among the modulation features, CFO fingerprint

is considered to be very effective in [9], [11].

Hence, CFO fingerprint is an effective feature in RF fin-

gerprinting. However, it is found that most existing works

assume that the temperature of crystal oscillator in the Wi-

Fi device is relatively stable. In reality, the smartphone is also

a type of Wi-Fi device, but crystal oscillator’s temperature

in the smartphone has a large variance because it is easily

affected by its power consumption. Besides, temperature is one

of the most important factors which affect the crystal oscillator

in a RF front-end [12]. The following mistakes possibly

occur, which are shown in Fig. 1: the same smartphone has

different fingerprints, and different smartphones have similar

fingerprints. We use the symbol f to represent a function from

the crystal oscillator set O to CFO set C. However, inverse

function f−1 doesn’t exist. To be specific, CFO y has two

corresponding values in the crystal oscillator set O: crystal

oscillator O1 and O2. As a result, it will lead to the mistake
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frequency is strongly related to the crystal oscillator, which is

an essential component of the smartphone. It generates an elec-

trical signal with a constant frequency. According to different

usages such as time tracking, up-conversion, down-conversion

and so on, the frequency multiplier leverages the oscillator as

a basic frequency source to generate various frequencies at

different levels. However, many external factors will affect

the stability of the crystal oscillator. The temperature is a

significant factor which can affect the internal frequency of

the crystal oscillator considerably [12]. In detail, the internal

crystal in the crystal oscillator has a frequency-temperature

characteristic represented by the following equation:

Δf

f0
= A1 (T − T0) +A2 (T − T0)

2
+A3 (T − T0)

3
(4)

where f0 is a reference frequency of the crystal when it is at

temperature T0. Δf
f0

refers to relative frequency changes with

the variation of temperature. Besides, the coefficients A1, A2

and A3 are constants which have a very close relationship with

physical properties of the crystal.

B. CFO Extraction in Smartphones
The common smartphones support 802.11a/g/n/ac protocols.

These protocols leverage OFDM technology to enhance data

rate [13]. A Wi-Fi OFDM frame has a common structure

among several 802.11 protocols above. As shown in Fig. 3,

the OFDM frame includes four fields which are Short Training

Field (STF), Long Training Field (LTF), Signal Field (SIG)

and Data Field respectively.

Fig. 3. Wi-Fi OFDM Frame Structure

1) Packet Detection: When a smartphone receives RF sig-

nal, it converts high radio frequency signal to baseband digital

signal by a RF front end. Furthermore, it is necessary to

determine whether OFDM frames occur in the received signal

samples. To be specific, STF is represented by 12 subcarriers

in the frequency domain. From the perspective of time do-

main, STF is a periodical signal which contains 10 repeated

short training symbols. As a result, signal autocorrelation

can indicate whether it is periodical. If the autocorrelation

is periodical, an OFDM frame is detected. By the way, the

coarse CFO αi can be estimated quickly by the short training

symbols i and i + 1 for the next processing step. It can be

calculated as the following equation:

αi =
1

16
arg(

Ns−1+(i−1)∗16∑
n=(i−1)∗16

x[n]× x∗[n+ 16]) (5)

where arg indicates the phase of signal, Ns is the length of

window in STF and x∗[n] represents complex conjugate of

x[n].

2) Symbol Alignment: After the packet detection and coarse

CFO correction, symbol alignment needs to be carried out

using LTF. LTF is represented by 53 subcarriers in frequency

domain. From the view of time domain, LTF consists of 2 re-

peated training long symbols and a guard interval. At a sample

rate of 20 MHz, LTF can be sampled as 160 discrete sampling

points. The peak of cross-correlation between unknown signal

and LTF reference signal corresponds to the accurate start

point of data field in an OFDM frame.

3) Average CFO Estimation: Although coarse CFO is esti-

mated in the period of packet detection, it has a large random

error. To correct the random error, all short training symbols

can be used to calculate a more precise value ᾱ:

ᾱ =
1

9

8∑
n=0

(
1

16
arg(

Ns−1∑
k=0

x[16× n+ k]×

x∗[16× (n+ 1) + k]))

(6)

In order to simplify the description, the CFO in the fol-

lowing sections indicates the average CFO ᾱ calculated by

Equation 6.

III. SMARTPHONE IDENTIFICATION

We first introduce the scenario of RF fingerprinting for de-

vice authentication, then the general process of model training

and smartphone identification is presented. In addition, we fo-

cus on the CFO-based classification at registered temperatures

and CFO estimation at unregistered temperatures.

A. System Model

Authentication Server

Rogue Device

0 1 0 1 0 1 0 1

MAC frame (Packet level)

PHY signal (PHY level)

RFF of Device 1

Acceptance

RFF of Rogue Device

Rejection

1t

Legal Device
1t

0 1 0 1 0 1 0 1

PHY signal (PHY level)

MAC frame (Packet level)

USRP

AP

Fig. 4. Scenario of RF fingerprinting for smartphone in device authentication

RF fingerprinting for smartphone is used in device authenti-

cation. In the device authentication, we assume that attackers

have an ability to masquerade as a legal user at the packet

level but they do not forge RF signal at the PHY level. As

illustrated in Fig. 4, the malicious attackers attempt to forge

strong identifiers like MAC address and encryption/decryption
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2) The temperature of the crystal oscillator is much lower

than that of the CPU when the smartphone runs a

compute-intensive application.

According to the rules above, we can choose an alternative

temperature sensor in the smartphone to represent the temper-

ature of the crystal oscillator approximately. To be specific,

the resolution of the temperature sensor achieves single digits

so that the temperature in our paper is a discrete integer. To

collect RF samples at high temperature within 40 to 60◦C, we

make the smartphone actively run computationally intensive

programs and send packets to AP at the same time. By

contrast, the state of crystal oscillator at low temperature is not

stable which will decrease the number of RF samples at low

temperature. To speed up the collection of RF samples at low

temperature within 20 to 40◦C, we leverage the PID algorithm

[15] which controls the packet sending rate to automatically

keep the temperature of crystal oscillator constant. For the

purpose of making training samples balanced, a fast collection

of the smartphone’s RF fingerprints at high and low temper-

ature can be accomplished. In addition, the temperatures in

training period are added to temperature set Stemp. We call

the temperature in Stemp as registered temperature and other

temperature as unregistered temperature.

D. Temperature-aware Classification Based on CFO

The CFO of every frame is calculated from STS. It is found

that the CFO is in Gaussian distribution. A simple proof is

given as follows:

Property 1. The distribution of ᾱ is Gaussian Distribution.

Proof. It is assumed that every coarse CFO random variable

in STS is independent and identically distributed. In addition,

αcn represents the coarse CFO calculated by two short OFDM

symbols n and n+1. According to central limit theorem (CLT)

[16], the variable αcn is Gaussian distributed separately and

ᾱ is calculated as follows:

ᾱ =

∑8
n=0 αcn

9
, αcn ∼ N(μn, σn

2) (7)

Depending on the Lévy-Cramér theorem [17], it is proved

that CFO ᾱ is also Gaussian distributed.

ᾱ ∼ N(

∑8
n=0 μn

9
,

∑8
n=0 σn

2

81
) (8)

To reduce computational cost of training models, Naive

Bayes classifier is used to make a classification of Wi-Fi

devices.

Since CFO is a continuous variable, it is reasonable that

probability density function of CFO is leveraged to represent

the probability of CFO’s occurrence approximately. In the

training period, the mean μj
i and variance (σj

i )
2 can be esti-

mated from a amount of CFO sampling points of smartphone

di with temperature tj . In addition, the temperature in the

smartphone is a concrete variable. Hence, when the device is

at temperature tj , the prior probability of CFO α is shown as

below:

P j(C = α|D = di) =
1√
2πσj

i

e−(α−μj
i )

2
/2(σj

i )
2

(9)

When a CFO αc is extracted by the steps above in Section II,

it is used to calculate a posterior probability of the smartphone

di with temperature tj :

P j(D = di | C = αc) =
P j(C = αc | D = di)P

j(D = di)

P j(C = αc)
(10)

Then, an estimated device d̂ with the largest posterior

probability is searched in the device set Sd. It is assumed that

P j(D) is in uniform distribution, and P j(C) is not related to

a device itself. In other words, a comparison between posterior

probabilities is equivalent to a comparison between prior

probabilities. As a result, the identified device is determined

as below:

d̂ = argmax
d∈Sd

P j(D = d | C = αc)

=
P j(D = d)

P j(C = αc)
argmax

d∈Sd

P j(C = αc | D = d)

= argmax
d∈Sd

P j(C = αc | D = d)

(11)

E. Estimation of CFO at Unregistered Temperatures

In the stage of fingerprint collection, an ideal case is that

CFOs at any temperature reached by the smartphone are

all captured. However, the temperature of the smartphone is

affected by a working condition of the smartphone and the

ambient temperature. It is obvious that the working condition

can be adjusted but ambient temperature can not be controlled

manually. Therefore it is very difficult for smartphones to

traverse all possible temperatures in the stage of sample

collection.

Fortunately, it is found that the CFO of each smartphone

will decrease monotonously with the temperature in practical

experiments. Therefore a potential relationship between CFO

and temperature can be used for the estimation of smartphone

fingerprints. To be specific, the CFO at unregistered tempera-

tures can be roughly estimated through regression analysis.

The process of TeRFF is shown in Algorithm 1. In

detail, it is assumed that the fingerprint dataset FP ={(
μj
i , σ

j
i

)
| di ∈ D, tj ∈ Tr

}
, where D and Tr represents

the set of smartphones and registered temperatures separately.

The appropriate function type in candidate function type set

F = {f1, f2



θji = min
∑

tk∈Tc1

(
μk
i − fj(tk, θ)

)2
(12)

In the next process, the best function type in F is chosen to

improve the performance of CFO estimation. Mean Absolute

Error (MAE) is a common kind of evaluation metric in

estimation, which is resistant to outliers of CFO sampling

points in the fingerprint dataset. In addition, Xdi,tj indicates

the real CFO set of the device di at the temperature tj .

Therefore the best function type is decided by the following

expression:

fbest =min
∑
di∈D

∑
tj∈Tr2

∑
x∈Xdi,tj

∣∣fk(θki , tj)− x
∣∣

s.t. fk ∈ F

(13)

In this paper, function type set F includes linear polyno-

mial, second-degree polynomial and third-degree polynomial.

Then the linear polynomial and corresponding parameter are

chosen to estimate the CFO at unregistered temperatures.

Algorithm 1 The process of TeRFF

Input: fingerprint dataset FP , CFO sample x, temperature

t, device set D{d0, d1, ..., dn}, best function type f ,

registered temperature set Tr, unregistered temperature set

To, parameter set Θ of function type f , index searching

function f ′ : Z → N

Output: identified device di
1: if t ∈ Tr then
2: d ← d0, p ← 0, m ← f ′(t)
3: for μm

i , σm
i in FP do

4: if p > pdf(μm
i , σm

i , x) then
5: p ← max (p, pdf(μm

i , σm
i , x)), d ← di

6: end if
7: end for
8: else if t ∈ Tu then
9: dis ← +∞

10: for θi in Θ do
11: if |f(θi, t)− x| < dis then
12: dis = |f(θi, t)− x|
13: d ← di
14: end if
15: end for
16: end if

After determining the parameters and type of function, we

can estimate the mean value of the device’s CFO at any

unregistered temperature among devices which can be used

as the reference fingerprints. Compared with the fingerprints

collected directly at the registered temperatures, the estimated

CFO achieves less accuracy. Because the estimated function

only calculates a mean value of CFO which can not describe

the CFO comprehensively. Therefore it is more reliable to

leverage the Gaussian distribution of CFO than to use a mean

value of CFO for smartphone identification. However, practical

experiments below have confirmed that these estimated CFOs

are still effective in smartphone identification.

IV. EVALUATION

A. Experiment Setup

Obstacle

Rx A B C

D

Fig. 6. This is our experimental scenario where point Rx is USRP N210.
Besides, point A, B, C and D indicate four deployment locations of smart-
phones.

The experimental environment is an office in our university,

which is full of electromagnetic interference. Besides, it is a

typical indoor environment. The layout of the office is shown

in Fig. 6. The model types and quantities of smartphones are

shown in Table I, including multiple models of smartphones

and multiple smartphones under one model. Each alternative

sensor for extracting crystal oscillator’s temperature in a

smartphone is also listed in Table I. In addition, the front-end

of the receiver is USRP N210 platform, and gr-ieee802-11

[18] project based on GNU Radio is modified to extract CFO

from Wi-Fi signals.

TABLE I
THE LIST OF SMARTPHONES AND THEIR ALTERNATIVE SENSORS

Device Model Alternative Sensor Device Number
Nexus 5 pa therm0 9

Huawei Nexus 6P pa therm1 1
Nexus 5X pa therm0 1
Huawei P9 pa 0 1

Vivo X9 pa therm0 1
OnePlus 3 pa therm0 1

Huawei Honor 7 pa 0 1

Given a RF sample from smartphones, accuracy refers to

the proportion of correctly identified RF samples in all RF

samples.

Accuracy =
Nright

Nall
(14)

B. Effects of Temperature

We investigate the impact of whether considering temper-

ature is necessary. The RF samples of all smartphones are

captured at registered temperatures between 26°C and 33°C. In

detail, the number of RF samples emitted by each smartphone

at each registered temperature is 3000. The entire samples

are split into training and test sets in 2:1 allocation ratio. To

simplify the experiment, we assume a common case: the period

of training sample collection is short and the temperature

of the smartphone varies little. Therefore, the classifier is
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trained by training samples at a certain temperature. Firstly,

we train eight classification models in eight temperatures

separately. When the temperature of device is considered, the

corresponding model can be selected for smartphone identi-

fication. On the other hand, when smartphone’s temperature

is not under consideration, the temperature corresponding to

testing samples is possibly not equal to the temperature of

Naive Bayes model so that the performance of smartphone

identification will degrade. As it is shown in Fig. 7, it is found

that the identification method with temperature (i.e. TeRFF)

is obviously greater than that without temperature (i.e. Naive

Bayes approach). The experiment illustrates that temperature

is one of the most significant factors which can influence

smartphone identification. Therefore the identified smartphone

would report its own temperature to the authentication server

for a better performance.

26 27 28 29 30 31 32 33
Temperature corresponding to the samples in the training set(℃)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

TeRFF
Naive Bayes

Fig. 7. Accuracy of TeRFF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted labels

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Tr
ue

 la
be

ls

353 0 76 0 0 0 27 44 0 0 0 0 0 0 0

0 208 0 0 66 0 0 0 0 0 0 165 0 13 48

41 0 453 0 0 0 6 0 0 0 0 0 0 0 0

0 0 0 402 0 0 0 0 90 0 8 0 0 0 0

0 13 0 0 342 0 0 0 0 0 56 87 0 0 2

0 0 0 0 0 500 0 0 0 0 0 0 0 0 0

1 0 7 0 0 0 492 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 476 0 0 0 0 0 0 0

0 0 0 53 0 0 0 0 414 0 33 0 0 0 0

0 0 0 0 0 0 0 0 0 500 0 0 0 0 0

0 0 0 0 59 0 0 0 21 0 416 4 0 0 0

0 163 0 0 94 0 0 0 0 0 0 186 0 2 55

0 0 0 1 0 0 0 0 0 0 0 0 499 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 382 117

0 70 0 0 0 0 0 0 0 0 0 10 0 110 310
0

100

200

300

400

500

(a) Real CFO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predicted labels

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Tr
ue

 la
be

ls

208 0 76 0 0 0 60 156 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 11 0 0 489

44 0 456 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 194 0 0 0 0 258 0 48 0 0 0 0

0 67 0 0 310 0 0 0 0 0 83 40 0 0 0

0 0 0 0 0 500 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 500 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 500 0 0 0 0 0 0 0

0 0 0 35 0 0 0 0 465 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 500 0 0 0 0 0

0 0 0 6 62 0 0 0 4 0 426 2 0 0 0

0 212 0 0 42 0 0 0 0 0 1 105 0 76 64

0 0 0 0 0 0 0 0 0 0 0 0 500 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 173 327

0 83 0 0 2 0 0 0 0 0 0 30 0 3 382
0

100

200

300

400

500

(b) Estimated CFO

Fig. 8. Effectiveness of estimated CFO

C. Effectiveness of Estimated CFO

We validate the effectiveness of estimated CFO at unregis-

tered temperatures. As Fig. 8 shows, the accuracy of smart-

phone identification at unregistered temperatures achieves at

69.59%. Compared to the CFO-based method at registered

temperatures whose accuracy reaches 79.10%, that at un-

registered temperatures has a lower performance. However,

it is obvious that the estimated CFO is also effective in

smartphone identification when the smartphone’s temperature

is an unregistered temperature.
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Fig. 9. Four-period(day) experimental results

D. Stability over Time

We collect RF samples in four days between December

2021 and January 2022. Furthermore, 500 samples are col-

lected per day. The performance of smartphone identification

in different days is shown in Fig. 9. It is found that the

accuracy of smartphone identification on four days is 66.49%,

66.27%, 70.51% and 71.49% separately. It is shown that

the accuracy can remain stable and can achieve a tolerable

accuracy.

E. Effects of Different Locations

To further verify the effectiveness of our proposed method,

we test whether the location change of smartphones will de-

grade the accuracy of smartphone identification. To be specific,

location A is the farthest from the USRP receiver, location B is

the next, and location C is the closest. The distance between

the two close locations above is approximately 0.5 meters.

Besides, We further put the smartphones in location D to

investigate the impact of the obstacle on the performance of the

smartphone identification method. As illustrated in Fig. 10, the

accuracy of smartphone identification in location A to C are

65.93%, 66.23% and 68.77% which are very close. In addition,

we also find that the obstacle doesn’t degrade the performance

of our proposed method which can achieve 68.36% in location

D. Therefore our proposed method is robust to locations.

F. Multiple Consecutive Samples in the Network Traffic

We also explore whether utilizing multiple consecutive

samples in a network traffic flow improves the performance

of smartphone identification. The consecutive samples are

captured in two days. The identification result of a traffic

flow is determined by the majority of identification results

in multiple consecutive samples. It is found that the low

dimension of RF fingerprints limits the performance of smart-

phone identification. To be specific, the CFO of device 14 and
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VI. CONCLUSION

In this paper, we propose an enhanced CFO-based finger-

printing solution TeRFF to overcome the challenge that the

CFO fingerprint of smartphone is unstable under different

crystal oscillator’s temperatures. First, we establish a dataset

containing crystal oscillator’s temperature and the correspond-

ing CFO value on multiple smartphones over a period. To

be specific, a set of temperature values is combined with

the extracted temperature values, and when a smartphone is

at the registered temperature, its corresponding CFO values

are stored in the dataset. On this basis, we train multiple

Naive Bayes models, each tagged with a registered temperature

value. Moreover, in order to solve the problem that the

temperature values are not in the temperature set during the

smartphone identification, we design a CFO estimation method

to estimate the CFO fingerprint at the unregistered tempera-

ture. Finally, it is demonstrated by actual experiments that our

proposed solution TeRFF makes the CFO fingerprinting still

effective for smartphone identification, and TeRFF has a better

performance than other existing RF fingerprinting schemes.
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