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Abstract The study of information cascade in multiplex networks, where agents are con-
nected by using multiple linking types, has received increasing attention. Compared with
the cascade in simplex networks, a noticeable characteristic of the cascade in multiplex net-
works is that information may be spread between multiple layers. In this study, we focus on
the cross-layers cascade, which helps clarify two opposing opinions about the information
cascade in multiplex networks: multiplexity can speed up or slow down information cas-
cade. The linear threshold model is generalized into multiplex networks as conjoint agents
become active, if the influences of active neighbors in any layer reach a predefined threshold.
The preconditions and reasons for the slow-down and speed-up phenomena are discussed
using four representative case studies and theoretical analyses. Next, analytical results are
validated by using extensive simulations in which the multiplex networks are generated by
random, small-world and scale-free network models. It is found that the slow-down phenom-
enon emerges due to the obstruction of cross-layers cascade which connects the distributed
shortest path in multiple layers and the inhibitory effect of negative influence. Conversely,
extra short paths or rapid spreading in one additional layer can facilitate the cascade process
in existing networks, respectively. Extensive simulations also show that multiplex networks
consisting of different network models are more competent for the cascade process compared
with multiplex networks generated by a single network model. In conclusion, the concept of
cross-layers cascade may elucidate the additional study of information spreading in multiplex
networks.
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1 Introduction

Cascade is an interesting phenomenon referring to a global diffusive process of a local
effect, which is initialized by one node or a small fraction of nodes in a network [1,2]. In
social life, the adoption of innovation and social norms [3,4], propagation of behaviors and
strategies [5–7], and catastrophic spreading of failures and epidemics [8–11] are well-known
cascade phenomena. These diffusive processes are often studied by using the linear threshold
model [2,12,13] in which a node becomes active if the influences of active neighbors exceed
a predefined value. Traditional studies generally analyzed the cascade process in simplex
networks where linking types between nodes are identical. Recently, more studies have
realized that real social networks contain multiple-layer structures mainly because social
agents are connected by multiple linking types [14–18]. In multiplex networks, an agent can
transfer information between layers in addition to spreading information within each layer.
For instance, a person can share topics in real life communication to online social networks or
post his/her tweets (from Twitter) to Facebook. To the best of our knowledge, few studies have
formally described the details of cross-layers cascade, which helps to analyze the complicated
effects of multiplexity on cascade processes.

Based on some solid theoretical foundations, many studies have analyzed the cascade
process in multiplex networks and compared it with the cascade process in a simplex network.
One general opinion is that multiplexity can speed up the cascade process [18–21]. References
[18] and [19] reveal the dramatic effect of conjoining two entirely different networks based
on the velocity and size of the information cascade. In [20], a superdiffusive behavior is
discussed, which means that the cascade process in multiplex networks is faster than the
cascade process in any disjointed layers. Meanwhile, Brummitt et al. show that multiple
networks are more vulnerable to global cascades than simplex networks and suggest that
adding or removing sparse layers in existing multiple layers is a feasible way to control
the cascade process in multiplex networks [21]. In a word, it is generally accepted that
multiplexity provides more feasible paths for information cascade. Indeed, people receive vast
amounts of information quickly from multiple channels every day, and many new fashions
in online social networks have become hot topics in real life.

However, according to some real data, cascade processes always turn out slow as infor-
mation spreads on a topologically inefficient path, which means the propagation path is
considerably longer than the shortest link between two randomly selected nodes in large
scale networks [22–24]. It is known that the speeds of spreading information on distinct
linking types are different [25,26]. In real networks, information flows easily on part of the
edges, while the cascade tends to be dampened in the remaining part. For example, Tang et
al. first identify the relationships among social network users and then utilize the different
efficiencies of the relationships on the cascade processes to maximize the final adoption rates
of the different products [26]. Therefore, multiplexity may cause a slow-down phenomenon
because information selectively propagates on networks and cannot be freely transferred
from one layer to conjoining layers.

In this paper, we focus on the cross-layers cascade to understand and explain how the
cascade process in multiplex networks is slowed down or sped up. Two features of cross-
layers cascade are proposed: the mapping relationship conjoins multiple layers and provides
the transfer paths; and the vertical transfer coefficient quantifies the influences of nodes
varied in multiple layers. The two features help clarify the details of the information cascade
in multiplex networks. Then, the linear threshold model is generalized to multiplex networks
in which a node becomes active if the influences of active neighbors in any layer reach a
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predefined threshold [21]. Based on the cross-layers cascade, different cascade processes
are scrutinized in four representative case studies, and the preconditions for slow-down and
speed-up phenomena are discussed. With the aid of theoretical analyses, we also show that the
final size and velocity of the cascade process in the underlying simplex networks are larger
than the ones in multiplex networks under certain conditions. Moreover, extensive simulations
are utilized to validate the analytical results above and present other features of the cascade
process in multiplex networks. In this paper, the topologically inefficient paths of information
cascade in social networks [22] are analyzed based on the perspective of the multiplex
networks. The obstruction of cross-layers cascade which connects the distributed shortest
path in multiple layers and the inhibitory effect of negative influence are the underlying
reasons. We hope that the introduction of cross-layers cascade can provide new insights into
the study of information cascade in multiplex networks.

The rest of the paper is organized as follows. In the following section, an overview of the
related literature is given. We outline the details of cascade across layers and the cascade
model in Sect. 3. In Sect. 4, we analyze the slow-down and speed-up phenomena in multiplex
networks. Simulation results and analyses are presented in Sect. 5. In Sect. 6, we present our
conclusions and note the future outlook of our research.

2 Background and related work

In this section, we briefly compare the theoretical analyses and empirical studies of the
cascade process and highlight the advantages of the agent-based modeling and simulation
method [16,27] used in this paper.

2.1 Theoretical analyses

The cascade process is the cumulative result of each agent’s behavior based on the interaction
environment. The interactive behaviors between social agents or people’s decisions in a
cascade process are generally formulated by different cascade models. The linear threshold
model [2] is a widely analyzed model in addition to the independent cascade model [13]
and epidemic models [28,29] in which an agent decides to disseminate the information
according to a given probability. These models are very concise and convenient for theoretical
analyses in the framework of different types of social networks. Reference [18] finds that
global cascade can emerge in multiplex networks even if no cascade processes take place
in each individual layer with the epidemic model. By using mean-field approaches, the final
size and critical condition of the global cascade are both quantified. The construction of
a supra-Laplacian matrix is proposed in [20] to represent the entire structure of multiplex
networks. After the analyses of eigenvectors and eigenvalues of the supra-Laplacian matrix,
a superdiffusive behavior is discussed, which means that the cascade process in multiplex
networks is faster than the cascade process in any disjointed layers. In [19], Buldyrev finds
that the multiplex networks consisting of different infrastructure systems are more vulnerable.
From the perspective of phase transition in a complex system, Brummitt and his coworkers
report that the cascade process can be facilitated by both splitting a simplex network into
multiplex networks and by combing different layers [21]. The main objects of this theoretical
study are to establish the formula for estimating the size of the cascade process and give the
critical condition under which the cascade process dies out quickly. A more comprehensive
review can be found in [30,31].
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The results of using a theoretical perspective are provable and rigorous under given con-
ditions and cascade models. However, there are still two main problems. First, the cascade
velocity, namely, the time to reach a stationary state (global cascade), is largely overlooked.
This parameter is of profound practical significance. For instance, in virtual marketing, the
influence of an innovation product should be spread to the maximized scope in the shortest
time [32]. As Salehi et al. [30] suggest, the issue of cascade velocity needs more attention.
Second, most theoretical studies focus on the differences of the cascade processes in simplex
and multiplex networks and ignore the differences between diverse multiplex networks. For
example, in [18] and [21], all layers of multiplex networks are Erdős–Renyi networks. In
[33] and [34], the Erdős–Renyi network and scale-free network are conjoint. In fact, dif-
ferent network models have diverse characteristics, such as a smaller mean-shortest path of
the Erdős–Rényi model [35], higher clustering coefficient of the small-world model [36] and
robustness with random failures of the scale-free model [37]. Using agent-based simulations,
one of our goals is to analyze the effects of the multiplex structure consisting of different
networks models.

2.2 Empirical studies

An empirical study can clarify the cascade process more appropriately and requires a spe-
cific example of the cascade process, massive quantities of data and efficient tools for data
analysis. Moreover, many empirical conclusions validate or query the hypotheses proposed
by theoretical analyses. An excellent example is the online experiment performed by Cen-
tola, who validates the hypothesis that a random network is less effective for behavioral
diffusion than a small-world network, when behaviors require social reinforcement [5].
The slow-down phenomenon of information cascade occurs in the framework of a sim-
plex mobile phone network [22,23]. The bursty activity patterns of individuals and the
dynamical weights of links are proposed to be the main reasons for the slowing down
phenomenon [22,23]. In fact, each individual has diverse types of relationships with neigh-
bors in the mobile phone network. The empirical data for mobile phone communication
is not analyzed in the form of multiplex networks because the relationships between peo-
ple are more difficult to identify compared with the frequency and duration of the phone
call.

Currently, real field data concerning information cascade in multiplex social networks
is still very rare. How to identify the cross-layers cascade is the main difficulty because
online social networks belong to different companies. Very recently, some empirical studies
have tried to discover the cross-layers relationship of account names in different online social
networks. With the aid of machine learning technology, the spelling of account names [38,39],
overlap of linking friends [40] and behavioral features [41] in different social networks
are essential factors for identifying the cross-layers relationship. Other researchers try to
construct multiplex networks based on the reported quality of edges. According to the movie
genres, Nicosia and Latora [42] successfully generate a 28-layer multiplex network based
on the Internet Movie Database (IMDb). Meanwhile, the relationships between Indonesian
terrorists are the main standards of the multiplex data set [43]. Because of the noise and time
sampling in real data, an empirical study is generally costly (huge quantities of data and
excellent processing ability) and may not directly analyze the effect of a particular network
structure on information cascade.
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2.3 Agent-based models

Agent-based modeling and simulation is an economical and powerful approach to investigate
the cascade process because it offers a feasible way to generate complex structures of social
networks and reproduce human behavior patterns [16,27,44–47]. For instance, Anshelevich
and his coworker use agent-based models to determine the optimal seed sets of inhabitants,
which can lead to the best evacuation procedure during emergency warnings [45]. Moreover,
agents can be assumed to have the ability of reinforcement learning and decision-making
[46,47] in multi-agent systems. Exhaustive advantages of agent-based models have been
discussed in [16,27] and [44] from different perspectives. In this paper, we use the agent-based
modeling method to give a simple definition of cross-layers cascade and to easily construct
diverse types of multiplex networks. Then, analytical results and different phenomena of
cascade processes are validated by using extensive agent-based simulations.

3 Model outline

In this section, we first give the model of multiplex social networks and describe the features
of the cross-layers cascade. Then, we generalize the linear threshold model to multiplex
networks.

3.1 Multiplex networks

A network is always formulated as a graph G = (V, E) in which V is the set of nodes and
E is the set of edges linking nodes [26]. Agent and node are interchangeable concepts as
follows. In this paper, we use G to represent the structure of an underlying simplex network
of multiplex networks. Multiple and parallel graphs are usually used to represent multiplex
networks [20,21]. According to the categories of linking types {l1, l2, . . . , ln} [26], multiplex
networks which contain n layers are denoted by {L1, L2. . .Ln}, as shown in Fig. 1.

For simplicity, L1, L2. . .Ln also represent the set of agents in each layer. The letter i is
the identification of agent, and agents with the same identification are conjoint in multiple
layers. Meanwhile, the factor v

Ln
i indicates the agent in Ln and v′

i represent the set of conjoint

agents {vL1
i , v

L2
i . . . v

L3
i } in multiple layers. For the sake of simplicity and clear description,

we use ai and bi to denote the two conjoint agents in L1 and L2. Agent has binary states:
a1
i (a

s
i = 1) means ai is active, and a0

i (a
s
i = 0) means current state is inactive. �L1

ai is the set

of nodes linking to ai in L1(ai ∈ L1,�
L1
ai ⊆ L1). The degree of ai in L1 equals |�L1

ai |.

L2

L1

a1

b1

a2

a3

a4

a5

a6

b2

b3

b5

b6

b4

Simplex Network

Multiplex Network

Fig. 1 Illustration of simplex and multiplex networks
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It is worth noting that there are two methods to generate multiplex networks: one is
“splitting” [15,26]; and the other is “combining” [18,19,21]. The splitting method means
that nodes and edges of G are distributed in L1, L2. . .Ln as realizing the diverse linking
types of a simplex network. The combining method indicates that L1, L2. . .Ln are conjoint
by the relationships between nodes in different layers if one agent takes part in interdependent
cascade processes in different networks. No matter how multiplex networks are generated,
the degree of agent in each layer is no larger than the one in G.

3.2 Cross-layers cascade

3.2.1 Mapping relationship

The mapping relationship indicates the dependence of states between agents. We first define
the mapping relationship of agents in a single layer. The symbol “→” is used to represent the
correlation between agents. �L1

ai → ai means the state of ai depends on the neighbors of ai .
If ai → a j and a j → ai , then ai ↔ a j . In a single layer, the mapping relationship is like
the directed edge in graph theory [48]. Then, the mapping relationships of agents between
layers are given.

Definition 1 bi is injective to ai . If ai ∈ L1, ∃ bi ∈ L2 and bi is unique, such that bi → ai
and bi is not corresponding to ai

Definition 2 If ai ∈ L1, ∃ bi ∈ L2 and bi is unique, and if b j ∈ L2, ∃ a j ∈ L1 and a j is
unique, such that ai ↔ bi and b j ↔ a j , then the mapping relationship between L1 and L2

is bijective.

Definition 3 The mapping relationship between L1 and L2 is multi-bijective. If ∀ ai ∈
L1,∀ b j ∈ L2, and ∃ bi ∈ L2, ∃ a j ∈ L1, such that {bi . . .} → ai , {a j . . .} → b j .

The injective relation is unidirectional and provides a foundation for other mapping
relationships. The multi-bijection relation is the main characteristic of interdependent
infrastructure systems. For example, one power station can supply several nodes in the Inter-
net communication network, and several power stations may communicate through one or
more communication nodes [8,19]. Many online social networks, email networks and mobile
communication networks can be considered as bijective multiplex social networks. In this
paper, we focus on the cascade process under the bijective relationship between layers. The
symbol � is introduced: �

L2
ai is the set of agents in L2 that are �

L2
ai ⊆ L2 and �

L2
ai → ai .

For example, �
L2
a1 = {b1} in Fig. 1.

The mapping relationship conjoins multiple layers and provides the paths for cross-layers
cascades. Figure 2 shows that the cascade process in multiplex networks consists of a cascade
across layers and a cascade on each layer. At first, a1 and a4 are set as active. Then, cross-
layers cascades take place: b1 and b4 are activated. In next time step, a2 is activated by a1

in L1, and b6 becomes active due to b4 in L2. At last, b2 and a6 are activated, even though
b2 is not linked to b1 and a6 is isolated from a4. Therefore, without the consideration of
cross-layers cascade, a cascade on each layer is difficult to analyze.

In real multiplex social networks, it may take different time intervals to transfer information
between multiple layers. Time intervals of cross-layers cascades lead to asynchronous cascade
processes [49] in multiple layers: when bi is activated by its neighbors in L2, its mapping
agent ai in L1 has been in an active state for several time steps. In this paper, the time interval
of the cross-layers cascade is assumed to be zero for the sake of simplicity. Only a simple
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Fig. 3 Illustration of slow-down phenomenon in multiplex networks

4.1.1 Case one

In the first case study, a simplex network is split into two-layer multiplex networks [15,26],
and the slow-down phenomenon in multiplex networks emerges. λ

L1
L2

and λ
L2
L1

are both one
unit.

As shown in Fig. 3, each layer contains part of edges in G, and some agents cannot be
activated in a certain layer because of isolation or an insufficient number of neighbors. For
example, the activations of b2 and b4 depend on cross-layers cascades from a2 and a4, which
can both become active following the shortest paths in G. Meanwhile, a3 cannot be activated
by neighbors in L1, which only contains the first part of the shortest path to active v3 in G.
The cross-layers cascade from a3 to b3 is obstructed because a3 is surrounded by insufficient
active nodes in L1. One additional step is needed to activate b3(a3, v3) after the activation of
b4. However, v3 and v4 can be activated by v1 and v2 simultaneously in G.

Therefore, the shortest path in a simplex network is distributed in multiple layers, and
the obstruction of cross-layers cascade is the main reason for the slow-down phenomenon.
If an intermediate agent lacks sufficient neighbors in one layer, which contains the first part
of the shortest path, the cross-layers cascade from the intermediate agent cannot take place,
and information spreading on the shortest path is blocked. Then, downstream nodes will be
activated by information spreading on other longer paths, which are topologically inefficient.
As a result, the slow-down phenomenon of the cascade process in multiplex networks emerges
compared with the information spreading in a simplex network. With the consideration of the
time interval of the cross-layers cascade, the global cascade will be further postponed. For
example, if the cascade from a2 to b2 falls behind the cascade from a4 to b4, the activation
of b3 will be delayed.

It needs to be mentioned that traditional studies on social networks focused on the topology
of agents’ interactions without the consideration of the types of interactions. In other words,
the topologically inefficient path found in empirical data may be the most efficient path in
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Fig. 4 Illustration of facilitation of additional layer in multiplex networks

the framework of multiplex networks. For instance, in the mobile communication network
[22,23], mobile phone users constitute the underlying simplex network, which can be split into
multiplex networks according to different linking types (multi-relation) [15,22]. Therefore,
whom a person calls must be related to the topic. Then, the edges of the shortest path (whom
a person knows) between two randomly selected nodes are distributed in multiple layers,
and many paths of cross-layers cascades are added. In social life, people consciously block
cross-layers cascades because people do not communicate with every acquaintance about
new fashions or share all new messages in online social networks.

4.1.2 Case two

The second case study describes the facilitation of an additional layer in multiplex networks,
as shown in Fig. 4. λL1 , λL2 and λL3 are all one unit. Compared with the multiplex networks
in Fig. 3, the structure of the underlying simplex network remains the same, but L3 provides
an extra path to activate c3, which is shorter than the existing path in L2 and improves the
speed of the information cascade. By cross-layers cascade, mapping nodes in L1 and L2 are
successively activated. However, the time to reach global cascade is still T3.

It is worth noting that the acceleration of the cascade process in multiplex networks
emerges compared with the case in which the network contains disjoint multiple layers
[18,20]. In Fig. 4 for instance, a global cascade will not appear in any layer if the three
layers are disjoint. By conjoining different networks, the increase of nodes’ degrees and the
structural changes in an underlying simplex network are the probable reasons for the speed-
up phenomenon. Meanwhile, references [18] and [20] made no comparison between conjoint
multiple layers and the underlying simplex network.

In [21], Watt’s threshold model is generalized to multiplex networks, and a node is activated
if the proportion of active neighbors exceeds the threshold in any layer. The facilitation
of multiplexity depends on the property of Watt’s threshold model. A single layer may
be unsusceptible to global cascade because of the constraint of network connectivity: a
sparse network lacks global connectivity; and a node is always surrounded by an insufficient
proportion of active neighbors in a dense layer. By coupling together or splitting a sparse
layer from a dense network, most nodes easily become active in the sparse layer, and the
influences of active nodes are widely spread because of the high connectivity in the dense
layer.
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Fig. 5 Illustration of speed-up
phenomenon in multiplex
networks
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4.1.3 Case three

The third case study shows the speed-up phenomenon in multiplex networks caused by a
rapid cascade in one layer (large transfer coefficient). λ

L1
L2

is set as two, and λ
L2
L1

is still one.
In this case, the influence of a1 equals two active agents. Then, agents in L1 are activated by
a1 at T2, and agents in L2 become active because of cross-layers cascades simultaneously.
The large value of transfer coefficient induces a rapid cascade process in one layer and has
a positive effect on global cascade.

The third case study is simple but shows an interesting and common phenomenon in
daily life. It is supposed that L1 denotes Facebook or Twitter, L2 is the word of mouth
communication network for acquaintances [18], and a1 represents a famous music star. Thus,
Fig. 5 means that a2, a3 and a4 are “fans” of a1 but have no personal relationship with a1 (the
music star is isolated in L2). If a1 uploads a new song on an online social network, a2, a3

and a4 know it immediately without talking to each other in L2. Indeed, new fashion spreads
very fast and can become a hot topic mostly because of the rapid cascade process in online
social networks instead of the one in word of mouth communication.

On the other hand, if the vertical transfer coefficient of a certain layer is considerably larger,
the cascade processes in other layers may be inhibited. In Fig. 5, no nodes are activated in
L2 because the active states are all vertically transferred from L1. However, if a3 is not a fan
of a1 in L1, b3 will know about the new song from the conversations between b2 and b4.

4.1.4 Case four

In the fourth case study, only λ
b4
a4 is set as −1, and the other parameters are the same as the

ones in the first case study. In Fig. 6, the slow-down phenomenon caused by the negative
vertical transfer coefficient is depicted. It can be found that the cascade process is the same
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Fig. 6 Illustration of inhibitory effect of negative vertical transfer coefficient
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as the one in Fig. 3 before T4. Agent a4 is activated in L1 at T3, and b4 is activated by the
cross-layer cascade. Because of the negative influence of active b4 on inactive b3, the positive
influence of b2 is canceled out, and the sum of influence on b3 is zero. Different from the foe
or negative relation in the studies of social balance [51,52] and a signed network [53], the
negative value of the vertical transfer coefficient indicates the inhibitory effect of an agent
on the activation of linking neighbors because more positive influences are needed to cancel
out the negative influences.

The inhibitory effect of the negative vertical transfer coefficient can be clearly depicted
in the case of the adoption of an innovation product [13,54]. The adoption of an innovation
is a composite result of complex spreading phenomena in many conjoint social networks,
such as the advertisement or sales promotion in online social networks [55] and talks in
word-of-mouth communication networks between friends or acquaintances [13]. If a person
is not satisfied with the innovation, which is bought because of the promotion in online
social networks, he/she may spread a negative appraisal in many networks. In this case, this
negative opinion can interfere with the adoptions of the innovation of other people and inhibit
the cascade process.

4.2 Mathematical description

It is useful to theoretically understand the differences between the cascade processes in
the simplex network and multiplex networks. The final size and velocity are two important
features of the cascade process. At first, we prove that the final size of the cascade process in
multiplex networks is no larger than the one in a simplex network with the same parameter
values of agents’ influences and threshold distributions. Then, the times to reach global
cascade in multiplex networks is shown to be not shorter than the one in a simplex network.

Lemma 1 If the cascade process in a simplex network G = (V, E) reaches the stationary
state, the final state is also stationary in any multiplex network {L1, L2. . .Ln} split from the
G = (V, E) with the one unit influence of each agent.

Proof The Lemma follows because the number of agents in each layer equals |V |, and each
layer contains part of or all of the edges in E . The stationary state means that no more agents
can be activated. When the cascade process in G is terminated, the following condition is
satisfied for every inactive node:

τv< θv.

Then, if the states of agents in multiplex networks are assigned the same states of nodes with
the identical identifications in a simplex network, the following condition is also satisfied for
all conjoint agents that are not activated:

τ L1
v < θv; τ L2

v < θv · · · τ Ln
v < θv.

This indicates that no more agents can be activated, and the final state in a simplex network
is also stationary in multiplex networks no matter how the edges are distributed. ��

Lemma 2 If the cascade process inmultiplex networks {L1, L2} reaches the stationary state,
the final state may not be stationary in the underlying simplex network G = (V, E) with the
one unit influence of each agent.
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Proof When the cascade process in {L1, L2} is terminated, the influences received by the
inactive conjoint agents satisfy

τ L1
v < θv;

τ L2
v < θv.

Then, for the nodes in the underlying simplex network, the following condition is satisfied:

τv ≤ τ L1
v +τ L2

v .

By removing the redundancies of active conjoint agents, τv= τ
L1
v +τ

L2
v −α. Supposing that

the distributions of τ
L1
v and τ

L2
v −α are f1(τ L1

v ) and f2(τ L2
v −α) within the internal [0, θmax ]

where θmax is the maximum threshold of inactive agents, the function f (τ v) is the distribution
of τv and is derived by

f (τv)=
∫ θmax

0
f1(τ

L1
v ) f2(τv − τ L1

v )dτ L1
v .

Then, when τv is set as the maximum threshold θmax ,

f (θmax )=
∫ θmax

0
f1(τ

L1
v ) f2(θmax − τ L1

v )dτ L1
v ≥ 0.

The probability density distribution when τv = θmax does not identically equal zero. It
indicates that the influences received by the nodes in the underlying simplex network may
satisfy τv ≥ θmax . Therefore, the final state may not be stationary in the underlying simplex
network because some additional nodes can be activated by combining the multiplex networks
into the underlying simplex network. ��

For the sake of simplicity, Lemma 2 is based on two-layer multiplex networks because
the distribution function of an n-dimensional random vector is very complex. However, the
final state in n-layer multiplex networks may also not be stationary in the underlying simplex
network. Based on Lemmas 1 and 2, we can derive Corollary 3.

Corollary 3 The final size of the cascade process in any multiplex network is no larger than
the one in the underlying simplex network with the one unit influence of each agent.

The time to reach the stationary state is used to represent the cascade speed in networks.
The size of the stationary state in Lemma 4 is restricted to the global cascade because the
time to reach the stationary state cannot represent the velocity of the cascade process if the
cascade process terminates quickly and the final size is very small in the multiplex networks.
Then, Lemma 4 is given.

Lemma 4 The time to global cascade in the underlying simplex network is less than the one
in multiplex networks {L1, L2. . .Ln}.
Proof Global cascade means that nearly all nodes in the networks can be activated. Suppos-
ing that the average probability of activating each node in a simplex network is p and the
one of activating every conjoint agent is p′. The average influence received by the node in
the simplex network is τv . The average influences received by conjoint agents in multiplex
networks are τ

L1
v , τ

L2
v . . . τ

Ln
v . For the agent with the same identification, we have τv ≥ τ

L1
v ,

τv ≥ τ
L2
v . . .τv ≥ τ

Ln
v and τv= τ

L1
v +τ

L2
v + · · · +τ

Ln
v −α where α is the factor of influ-

ence redundancy. The probability of activating grows in direct proportion to the influences
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received by each agent. Then, p = P(τ v ≥ θv) > p′= P(τ L1
v ≥ θv||τ L2

v ≥ θv. . . ||τ Ln
v ≥ θv).

We use the δ and δ′ to represent the final cascade sizes in the underlying simplex net-
work and multiplex networks, respectively. According to the initial condition, δ = δ′ and
δ/δ′ = 1. Then, δ/δ′ ≤ p/p′. After the transformation, δ/p ≤ δ′/p′. Because p and p′
are the average probability of activating each node, the times to reach global cascades in the
underlying simplex network and multiplex networks can be represented as δ/p and δ′/p′,
respectively. ��

The above lemmas and corollary give upper bounds on the final size and velocity of the
cascade process in multiplex networks and hold only if the parameter values of the agents’
influences and threshold distributions in multiplex networks and the underlying simplex
network are the same.

5 Simulation

The cascade process in multiplex social networks has been simulated on a computer. Accord-
ing to many previous studies [18,21,22,33,50], multiplex networks are constructed based on
the Erdős–Rényi model [35], small-world model [36] and scale-free model [56]. Thresholds
of nodes follow normal and uniform distributions.

The velocity and cascade size are two main parameters associated with the cascade process
in networks. The velocity of the cascade process in networks is evaluated by comparing the
time to reach the stationary state. The cascade size is measured by the average fraction of
active nodes in a stationary state. Each trial is performed 500 times. The network is created
in each of the 500 simulations, and the thresholds of agents are reassigned each time. All of
the phenomena analyzed in the four case studies are simulated, and the theoretical results are
validated.

To clarify the relationship between the velocity of information cascade and the network
structure, some properties of the simplex network needs to be extended into the multiplex
networks, such as the network density, average clustering coefficient, average path length
and degree distribution [36,56]. The density D of the multiplex networks is defined as the
ratio of the number of all the edges in multiplex networks to the number of the possible edges
in multiplex networks, and is given by

D =
∑

Ln

∑
i |�Ln

vi |
(∑

Ln
|Ln |

) [(∑
Ln

|Ln |
) − 1

] .

The local clustering coefficient quantifies how close the neighbors of a node are to being a
clique [36] and indicates the intensity of the reinforcements from neighbors in the cascade

process [5]. In this paper, the local clustering coefficient C
v′
i

local of the conjoint agents v′
i is

defined as the proportion of the number of the links between neighbors in all the layer of
the multiplex networks divided by the number of the links that could possibly exist in the

multiplex network [57]. Let Cclique

(
�

Ln
vi

)
be the number of links between the neighbors of

v
Ln
i in Ln . Then,

C
v′
i

local = 2
∑

Ln
Cclique(�

Ln
vi )

∑
Ln

|�Ln
vi |(|�Ln

vi | − 1)
.
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The average clustering coefficient C of the multiplex networks is the average of the local

clustering coefficient of all the conjoint agents, and C= ∑
i C

v′
i

local/|V |.
The average path length P is the measure of the efficiency of information cascade in

networks and is defined by the average of the shortest paths between all pairs of agents in the
multiplex networks [11]. The shortest paths in multiplex networks contain the cross-layers
paths. Moreover, we use the graphs to represent the degree distribution of the multiplex
networks. The degrees of all the agents in the multiplex networks are counted. The factor k
represents the degree of the agent and p(k) represents the fraction of agents with degree k in
networks [56].

5.1 Which is faster, simplex or multiplex?

The main object of this section is to compare the cascade processes in simplex and multiplex
networks. Layer structures and threshold distributions are varied in different trials. We assume
that the influence of a node in a simplex network equals one unit. The vertical transfer
coefficients are constant to ensure that the influences of a node in multiple layers equal the
one in a simplex network.

Based on the Erdős–Rényi model, small-world model and scale-free model, we first con-
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Fig. 7 Time to reach stationary state with Erdős–Rényi model. a Mean and variance of normal threshold
distribution. b Upper limit of uniform threshold distribution

Fig. 8 Time to reach stationary state with small-world model. a Mean and variance of normal threshold
distribution. b Upper limit of uniform threshold distribution

is large, a node can receive enough influences from neighbors to be activated more easily.
On the contrary, if the average number of neighbors in one layer is comparatively small,
activations rely more heavily on the cascades from other layers.

Compared with two-layer multiplex networks, one additional layer with the same average
number of neighbors in three-layer (type II) multiplex networks provides extra paths of
information propagation. As shown in Table 1, the additional layers do not vary the network
densities, the average clustering coefficients and the degree distributions compared with two-
layer multiplex networks. However, the average path lengths decrease but are larger than the
one in simplex networks. Thus, cascade processes in three-layer (type II) multiplex networks
are faster than in two-layer multiplex networks but are still slower than in simplex networks.

From Figs. 10, 11, and 12, multiplexity also restricts the final size of the cascade process.
The inhibition effect of multiplexity becomes more obvious when thresholds of nodes become
larger. Meanwhile, if network models and threshold distributions are different, multiplexity
shows diverse inhibition effects on cascade processes. The fraction of active nodes largely
decreases in three-layer (type I) multiplex networks with a uniform threshold distribution.
However, with normal threshold distributions, the cascade size in the small-world network
is larger than in the Erdős–Rényi and the scale free networks. The probable reason is that a
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Fig. 9 Time to reach stationary state with scale-free model. a Mean and variance of normal threshold distri-
bution. b Upper limit of uniform threshold distribution

Fig. 10 Average cascade size with Erdős–Rényi model

small-world network can provide more reinforcements from neighbors because of the high
local clustering coefficient [5].

Therefore, the average path length of networks is closely related to the velocity of the
cascade process. With different distributions of thresholds, the average clustering coefficient
may relate to the size of the cascade process. For instance, the average clustering coefficients
of the two-layer and the three-layer type II multiplex networks are similar and cannot indicate
the variability of sizes of different cascade processes. However, the density and the degree
distribution cannot be directly associated with the two features of the cascade process.

5.2 Effect of vertical transfer coefficient and multiplex structure

The main object of this section is to show the effect of the vertical transfer coefficient on
the cascade process as analyzed in the third and fourth case studies. Meanwhile, the effect
of the multiplex structure consisting of different network models is further investigated.
There are two layers in the simulated multiplex networks. In the first series of trials, vertical
transfer coefficients are positive, and two layers are generated by different network models.
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Fig. 11 Average cascade size with small-world model

Fig. 12 Average cascade size with scale-free model

λ
L1
L2

and λ
L2
L1

are both varied from 0.1 to 3.0. The average number of neighbors in each
layer is 10. In a small-world layer, the probability of interpolating between regular lattices
is 0.1. In the scale-free layer, the number of seed nodes is 50 with an average of five edges,
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Fig. 13 Average cascade size with normal threshold distribution: N (2.5, 1)

Fig. 14 Time to reach stationary state with normal threshold distribution: N (2.5, 1)

Fig. 15 Average cascade size with uniform threshold distribution: U (0, 10)

cascade processes in a random network and small-world network are similar but take place
more quickly in a scale-free network with uniform threshold distributions.

The critical phenomena in Figs. 13 and 15 indicate that the scale free network is more vul-
nerable to the global cascade. However, reference [2] reports that the increased heterogeneity
of degree distribution makes networks less vulnerable by comparing the cascade processes in
scale free networks and Erdős–Rényi networks. The difference between our threshold model
and the classical threshold model proposed in [2] is the underlying reason. In the classical
threshold model, agents become active if enough fractions of the neighbors are activated.
Therefore, hub nodes are hard to be activated because of the considerably larger amount of
neighbors. Meanwhile, most nodes with very small amounts of neighbors are easily activated
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Fig. 16 Time to reach stationary state with uniform threshold distribution: U (0, 10)

but have difficulty propagating the influence due to poor connections. In our threshold model,
an agent is activated if it receives enough influences from active neighbors. Therefore, initial
nodes with very small amounts of neighbors can still activate some hub nodes, and global
cascades can emerge. Generally, hub nodes [10] are essential to the susceptibility of scale
free networks with different types of threshold models.

As the transfer coefficients of two layers increase, more nodes gradually become active,
and the times to reach final prevalence achieve peaks rapidly and then decrease sharply. This
parameter space is named the B-area, which favors a fall in the graphs for a fraction of active
nodes and a ridge in the graphs for the time to reach a stationary state. Many cascade processes
in reality belong to the B-area, which is the transition region between global cascade and local
popularity. In the B-area, multiplex networks contain many small groups of nodes, which are
susceptible to the cascade process because of low thresholds but are separated by nodes with
large thresholds. These separated groups of susceptible nodes mean that the sizes of the final
prevalence may be different if different nodes are initialized as active to trigger the cascade
processes in the same multiplex networks.

C-area means that the global cascades emerge smoothly. As the third case study analyzed,
the large value of the vertical transfer coefficient leads to a rapid cascade in one layer. Because
of the cross-layers cascades, a global cascade can take place in the multiplex networks even
if the transfer coefficients of other layers are very small. Taking the online social network and
word of mouth communication network as an instance, new fashions become widely known
mostly because of the rapid spreading in an online social network.

In the second series of trials, vertical transfer coefficients for a part of agents in the duplex
layers are set as negative. The fraction of agents with negative influences is varied from 0 to
0.2. The influences of other agents are set as one unit. The “splitting” and “combining” meth-
ods are both used to generate simulated multiplex networks. There are two layers in multiplex
networks, and each layer has 10,000 nodes and an average of 10 neighbors. According to
the model of simplex networks, multiplex networks generated by the “splitting” method are
denoted by Erdős–Rényi (ER), small-world (SW) and scale-free (SF), respectively. Mean-
while, multiplex networks generated by the “combining” method are denoted by “ER + SW”,
“SF + SW” and “ER + SF” according to the network models of duplex layers. Thresholds
of nodes follow N(2.5, 1) normal distribution and U(0, 10) uniform distribution. The cor-
responding results are shown in Figs. 17 and 18. The properties of simulated networks are
listed in Table 2. To save space, the graphs of degree distributions are not shown.

From Figs. 17 and 18, it can be generally found that the sizes of cascade processes
decrease and the times to reach stationary states generally increase as the fraction of agents
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Fig. 17 Normal threshold distribution: N (2.5, 1)

Fig. 18 Uniform threshold distribution: U (0, 10)

Table 2 Selected properties of simulated networks

Types of networks Network density Average clustering
coefficient

Average path
length

ER + SF 5.236 × 10−4 0.00315 3.824

SF 5.218 × 10−4 0.00472 3.688

SF + SW 5.252 × 10−4 0.378 4.000

SW 5.058 × 10−4 0.344 4.877

ER + SW 5.013 × 10−4 0.340 4.403

ER 5.00 × 10−4 0.00138 4.141
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with negative influences increases. The reduction of time to reach a stationary state in Fig. 18b
means the cascade process quickly dies out instead of the high cascade velocity according
to the cascade size shown in Fig. 18a. Meanwhile, the sizes of cascade processes decrease
more rapidly if the thresholds of agents follow uniform distribution. If one layer in multiplex
networks is a scale-free network, the times to reach stationary states are shorter and increase
more slowly as the fraction of agents with negative influences increases. The probable reason
is the robustness of scale-free networks with random failures [37] and shorter average path
length compared with the SW, ER + SW and ER multiplex networks.

The ER + SW, ER + SF and SF + SW multiplex networks also have the main advantages
of the small-world model and Erdős–Rényi model. Compared with ER multiplex networks
with a normal threshold distribution, the sizes of cascade processes in ER + SW multiplex
networks are considerably larger, and the times to reach stationary states are shorter. It is
because that the small-world layer increases the average clustering coefficient of the multiplex
networks as shown in Table 2. The cascade processes in ER + SW multiplex networks are
similar to the ones in the ER multiplex networks if thresholds follow a uniform distribution.
Meanwhile, the sizes of cascade processes in SF multiplex networks are less than the ones in
SF + SW multiplex networks with a normal threshold distribution and in ER + SF multiplex
networks with a uniform threshold distribution. Therefore, multiplex networks consisting of
different network models are more competent for cascade process compared with multiplex
networks generated by a single network model.

However, it can be found that the average clustering coefficient and average path length
cannot be perfectly associated with the velocity and size of the cascade processes. For
instance, the average path length of ER + SW multiplex networks is longer than the one
of ER multiplex networks, but the cascade process take places more quickly in ER + SW
multiplex networks with normal threshold distribution. Compared ER + SF multiplex net-
works and ER multiplex networks, the properties of networks can fit the two features of the
cascade process. Oppositely, the clustering coefficient of ER + SF multiplex networks is less
than the one of SF multiplex networks but the cascade sizes are larger. It means that the
effects of the multiplex structure and the distribution of thresholds on the velocity and size
of the cascade process are very complex. It requires more attention to propose more robust
properties of the multiplex structure [31].

5.3 Leverage of tiny-scale layer

In this section, our aim is to present and discuss the leverage of a tiny-scale layer on the global
cascade in multiplex networks: largely increasing the fraction of active nodes in a stationary
state and reducing the time of the cascade process.

Multiplex networks contain two or three layers, and |V | = 10,000. In L1 and L2, the
average numbers of neighbors are both 10. According to the network models of L1 and L2,
simulated networks are named as ER + SW, ER + SF and SF + SW multiplex networks,
respectively. In a small-world layer, the probability of interpolating between regular lattices
is 0.1. In a scale-free layer, the number of seed nodes is 50 with an average of five edges,
and each subsequent node is added with five edges. Each layer contains all nodes of V . One
percent or two percent of nodes are randomly selected from V and constitute L3 according to
the Erdős–Rényi model with an average three or six neighbors. Thus, the scale of L3 is very
small, and connectivity is also sparse. Vertical transfer coefficients are constant. Influences
of nodes in L1 and L2 are set as one unit. The vertical transfer coefficient of a tiny-scale
L3 (λL3) has five units because we want to analyze the effects of quick propagation in a
tiny-scale layer on other layers. L3 is only set as a random layer because propagations with
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Fig. 19 Leverage of tiny-scale layer on final size of cascade process: a ER + SW b SF + SW c ER + SF

Fig. 20 Leverage of tiny-scale layer on time to reach stationary state of cascade process: a ER + SW b
SF + SW c ER + SF

the three network models are similar (quick global cascading) when transfer coefficients are
large as shown in Sect. 5.2. Threshold distributions are varied. One node in L3 is randomly
set as the active state to trigger cascade processes in multiplex networks. The corresponding
results are shown in Figs. 19 and 20. The selected properties of simulated networks are shown
in Table 3.

As mentioned above, information spreads quickly in L3 because the influence of a node
is large in L3, while cascade processes in L1 and L2 are considerably slower. After adding
L3, the densities of multiplex networks slightly decrease. The average clustering coefficients
and average path lengths generally remain unchanged. However, it can be found that the
final sizes of cascade processes are raised from local popularity to global cascade by adding
L3 into multiplex networks if thresholds of nodes follow normal N (3, 1) and N (3.5, 1)
distributions. As analyzed in the second case study, more layers added into multiplex networks
can facilitate the cascade process more or less if additional layers can provide extra short
paths for information cascade. However, L3 is sparse and the number of nodes activated
in L3 makes up a very small proportion of the final cascade size in multiplex networks.
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Table 3 Selected properties of simulated networks

Types of networks Network density Average clustering
coefficient

Average path
length

ER + SW multiplex
networks

Two-layer 5.013 × 10−4 0.340 4.403

L3 contains 1 %
nodes of V

4.972 × 10−4 0.340 4.403

L3 contains 2 %
nodes of V

4.945 × 10−4 0.340 4.402

SF + SW multiplex
networks

Two-layer 5.252 × 10−4 0.378 4.000

L3 contains 1 %
nodes of V

5.207 × 10−4 0.377 4.000

L3 contains 2 %
nodes of V

5.179 × 10−4 0.376 4.006

ER + SF multiplex
networks

Two-layer 5.236 × 10−4 0.00315 3.824

L3 contains 1 %
nodes of V

5.194 × 10−4 0.00318 3.826

L3 contains 2 %
nodes of V

5.165 × 10−4 0.00329 3.820

cascade processes in SF + SW and ER + SF multiplex networks but only leads to a very small
size of the cascade process in ER + SW multiplex networks.

However, if thresholds of nodes follow uniform distributions, the facilitation effect of
a rapid cascade in L3 is limited. When the upper limits of uniform threshold distributions
are larger than average degrees of L1 and L2, many nodes cannot be activated even if all
linking neighbors are active. Meanwhile, most nodes can be easily activated in two-layer
multiplex networks if the upper limits of uniform threshold distributions are smaller than
average degrees of L1 and L2. In spite of this, the percentage increment of the fraction of
active nodes by adding L3 is considerably larger than the scale of L3.

The leverage of a tiny-scale layer is a complement to the previous studies on the facilitation
of multiplexity. In [21], Brummitt et al. suggest that the cascade process in multiplex networks
can be controlled by adding or removing the sparse layer, but the sparse layer contains the
most parts of nodes in the dense layer and simulated multiplex networks. Our work suggests
that a tiny-scale layer, which contains only one hundredth of nodes in multiplex networks, is
also important. The superdiffusive behavior discussed in [20] means that the cascade process
in multiplex networks is faster than in any disjoining layers. In our work, a fraction of active
nodes in L3 reaches the stationary state much faster than in the multiplex networks. The
scale of L3 is very small, and information propagates quickly. Cascade processes in some
susceptible groups in L1 and L2 will not take place until the information has been transferred
from L3. In real social life, human behaviors always fall behind the cascade processes in
online social networks. In spite of the time interval of cross-layers cascade, only prevailing
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information, which has activated a large fraction of nodes in online social networks, can
become the hot topics in a word of mouth network or even induce other collective behaviors,
such as panic buying and a protest movement. The leverage of the tiny-scale layer is also
different from the effect of hub nodes in networks [10]. Hub nodes have a considerably larger
amount of neighbors than other nodes in networks. Nodes in L3 are randomly selected and
have a similar number of neighbors in the underlying simplex network. Moreover, if the
influences of agents vary across layers, the properties of network structure can be hardly
used to evaluate the cascade process in multiplex networks.

6 Discussion and future work

In this paper, we focus on the role of a cascade across layers in the information propagation in
multiplex networks. The mapping relationship and vertical transfer coefficient are proposed
to be the main features of the cross-layers cascade: one conjoins multiple layers and provides
the paths for information spreading between layers; and the other one quantifies the influences
of one node varied in multiple layers. After providing the generalized linear threshold cascade
model, we analyzed how multiplexity slows down or speeds up information cascades based
on the cross-layers cascade.

The main reason for the slow-down phenomenon of information spreading is the obstruc-
tion of cross-layers cascade, which connects the distributed shortest path in multiple layers.
When the information spreading on the first part of the shortest path in one layer cannot be
transferred to the next intermediate nodes in other layers, downstream nodes can only be acti-
vated by the cascade processes on other topologically inefficient paths. As a result, the time to
reach global cascade in multiplex networks is longer than in simplex networks. However, the
topologically inefficient path reported in the research of empirical data [22] may be the most
efficient in the framework of multiplex networks because information selectively propagates
on networks. On the other hand, information can spread in a particular part of social agents
more pertinently with the consideration of diverse linking types (multi-relation). For example,
Google+ allows users to arrange neighbor nodes and share information in different “Circles”
according to different relationships. “Circles” restrict the velocity and range of spreading
information but help to protect the privacy of users and avoid the troubles caused by a wide
dissemination of information with no restriction. In other words, cross-layers cascade can be
carefully controlled by users with the aid of these subjectively created “Circles”.

The inhibitory effect of a negative agent’s influence is the other reason for the slow-down
phenomenon. To activate linking neighbors, more positive influences are needed to cancel
out the negative influences with the generalized linear threshold model. Therefore, the time
to reach the stationary state is delayed, or the final size of the cascade process decreases.
The negative influence generally represents the adverse opinion on a product [54], and the
adverse opinion cannot be disseminated in this paper. However, multiplex networks provide
a new framework to analyze the issue of competitive cascade processes, which are more
closely coupled because of the cross-layers paths. By extensive simulations, it is found that
the inhibitory effect of negative influence can be mitigated if one of the multiple layers
is a scale-free network. The robustness of scale-free networks with random failures [37]
is the probable reason. It can also be found that the cascade size is larger with a uniform
threshold distribution if one layer is the Erdős–Rényi network, and the information spreads
more widely with a normal threshold distribution if one layer is the small-world network.
Moreover, a scale-free layer in multiplex networks can make the facilitation effect of a tiny-
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scale layer more obvious if thresholds follow a normal distribution. Therefore, multiplex
networks consisting of different network models are more competent for the cascade process
compared with multiplex networks generated by a single network model. It is suggested that
combining suitable networks together may be a feasible approach to controlling the cascade
process.

Extra short paths and rapid spreading in the additional layer can both facilitate cascade
processes in multiplex networks compared with disjointed layers. The effect of popular online
social networks on information spreading is similar to the one of additional layers conjoining
to traditional communication networks because users can make friends and share information
with strangers conveniently in online social networks. The leverage of a tiny-scale layer on
global cascade indicates the difficulties of predicting or controlling the cascade process in
multiplex networks. Because of the cascade across layers, nodes activated in a tiny-scale
layer can trigger concurrent cascade processes in the conjoining large-scale layer if there are
many susceptible but separated groups in multiplex networks.

The issue of information cascade in multiplex social networks may provide a basis for
further exploration in other multi-agent systems, such as normative multi-agent systems [58],
trust systems [59] and artificial agent societies [60], where the role of simplex network topolo-
gies has been widely investigated. Similar to the different speeds of information cascades
in multiple layers, the time to reach convention [58] or the rule of norm evolution [60] in
each layer of multiplex networks may also be different. Meanwhile, the trust path for the
selection of trustworthy service analyzed in [59] is probably distributed in multiple layers
and connected by many cross-layers paths. The effect of multiplex networks generated by
a single or different network models on these multi-agent systems is still an open ques-
tion. The timescales for formulating multiplex networks vary greatly according to different
real-world systems. For instance, multiple relationships between human in social networks
are inherent [15] but integrated cyber-physical systems emerge because of the progressive
development of underpinning technology for major industries [9]. Generally, traditional sys-
tems can be represented as multiplex networks if the inherent multiple relationships greatly
affect the interactions between agents [15] or several multi-agent systems are functionally
interdependent [19].

In future work, we intend to provide a more detailed description of the cross-layers cascade
and apply it to real multiplex networks. A formalized description of the cascade process in
multiplex networks depending on the cross-layers cascade is needed. In addition, the effects of
threshold distribution and layer structure on the cascade process will also be further analyzed.
Moreover, the timescale of the cross-layers cascade and the communication between nodes
in single layer may also lead to topologically inefficient paths if some nodes in the shortest
paths are temporally incapable of the communication [32]. Research on multiplex networks
is attracting more attention, but real field data of the cascade process in multiplex social
networks are still rare. The main difficulties are how to judge social agents that are conjoint
in different networks and track the information spreading on and across networks together.
We anticipate that the concept of cross-layers cascade can inspire the additional study of
information spreading in multiplex networks.
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