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Abstract—Touch pattern based implicit authentication has 
been proposed to defend against diverse attacks against mobile 
devices that aim to obtain credentials, e.g., passwords, in the 
process of user authentication. However, this defense technique 
cannot obtain a complete user operation pattern by merely 
deriving user operation data via a touch-enabled screen, since 
user operations, including on-screen and in-air finger movements, 
are performed in a three-dimensional space. In this paper, we 
propose a novel three-dimensional magnetic finger motion 
pattern based implicit authentication technique, referred to as 
FingerAuth. To use FingerAuth, a user first wears a magnetic 
ring on her finger and uses this finger to operate her mobile 
device, e.g., typing messages and surfing websites. By using a 
built-in three-axis magnetometer on the mobile device, we can 
derive the three-dimension (3D) magnetic finger motion pattern 
that is used as a human behavioral feature to implicitly 
authenticate the user. We construct robust 3D magnetic finger 
motion pattern detection model using machine learning 
techniques. Real-world experiments were conducted to 
demonstrate that our approach achieves high accuracy of 
96.38% as well as low false acceptance rate of 4.06% and low 
false rejection rate of 3.18%. 

Keywords—Behavioral Biometrics; Implicit Authentication; 
Mobile Device 

I. INTRODUCTION  
As computing power of mobile devices keeps growing, it 

plays an important role in collaborative environments, such as 
smart home and healthcare systems. Since various services can 
be accessed through mobile devices in these systems, extensive 
sensitive user information is stored on them. To keep the data 
from attackers, authentication techniques are pervasively 
adopted. However, most existing authentication techniques 
(e.g., password, fingerprint recognition, Android pattern lock) 
used on mobile devices today are usually invoked at the 
beginning of a session. Hence, attackers could pose a severe 
threat to security of the entire systems by retrieving the 
authentication credential through various side channels [1], [2], 
[3], [4], [5] and then perform impersonation attacks against 
mobile devices in these systems. 

Although some secure input methods [6] were proposed to 
defend against side channel attacks, implicit authentication [7], 
[8] is widely accepted as a more promising technique to 
address the above issue. In contrast to explicit authentication 
that requires users to perform predefined authentication actions 
(e.g., enter the password or place the finger on top of certain 
sensor), implicit authentication commonly employs traits of the 

users that can be transparently sensed by using built-in sensors 
on a mobile device to implicitly authenticate the users. Since 
the majority of human-device interactions are performed using 
touchscreens, some researchers [8] use geometric patterns of 
users’ interaction behavior on the touchscreens to implicitly 
authenticate users. However, the touchscreen could only record 
part of the finger interaction data, e.g., timestamp, touch 
pressure, touch position, and area of the finger touching the 
screen. It cannot completely model the finger motion pattern as 
user operations are performed in a three-dimensional space. 
Therefore, touch pattern based implicit authentication cannot 
provide accurate user identification. 

In this paper, we propose a novel implicit authentication 
approach by exploiting three-dimensional magnetic finger 
motion pattern. A user is asked to wear a magnetic ring on her 
finger. When the user interacts with her mobile device, the 
finger motion could cause nearby magnetic field change and be 
sensed by a built-in magnetometer on the mobile device. The 
finger length and the angle between the finger and touchscreen 
vary among different people. Moreover, the in-air finger 
gestures are different as well. Thus, distinct user’s finger 
motion could lead to various magnetic field changing pattern 
and this pattern can be used to distinguish different users. By 
excluding the influence of background magnetic field, the 
finger motion magnetometer data can be obtained during user-
device interactions. Effective features are extracted and 
classification algorithms are then applied to detect the user 
finger pattern for implicit authentication. Our extensive 
empirical experiments are performed to show the effectiveness 
and efficiency of this approach. 

The major contribution of this paper is summarized as 
follows. 

 FingerAuth is the first of its kind for implicit 
authentication over mobile devices. Only a magnetic 
ring is required and a magnetometer is commonly an 
integral part of the mobile devices. Since users’ finger 
and their motion pattern contains both physiological and 
behavioral characteristics, we make use of the magnetic 
ring to retrieve these biometric characteristics for 
implicit authentication purpose. 

 We carefully choose effective features from the 3D 
magnetic finger motion pattern to accurately identify 
the users. We perform extensive real-world experiments 
to demonstrate the feasibility and effectiveness of our 
approach. The results show that the accuracy is 96.38%, 
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while false acceptance rate and false rejection rate are of 
4.06% and 3.18%, respectively. 

The rest of this paper is organized as follows. We first 
discuss related work in Section II, then introduce the threat 
model and the basic idea of our proposed approach in Section 
III. In Section IV, we present the experimental results to verify 
the performance of the proposed implicit authentication 
approach. Finally, we conclude this paper in Section V. 

II. RELATED WORK 
Implicit authentication is transparently performed to 

identify normal user activities without any explicit actions [9]. 
Implicit authentication technique could either be used at login 
or post-login phase. When adopted at login phase, it could 
serve as a secondary factor for authentication [7] to enhance 
the system to effectively defend against potential attackers who 
has already obtained a legitimate user’s knowledge or 
possession factor for explicit authentication. To keep an 
attacker who can access a system authenticated by a legitimate 
user from obtaining the unauthorized information, implicit 
authentication techniques can be employed to re-authenticate 
the user at post-login phase.  

The majority of implicit authentication techniques 
commonly exploit behavioral biometrics [10] for verifying the 
user’s authenticity. Since most user-device interacting 
behaviors are achieved through a touchscreen, many 
researchers investigate various characteristics of touch 
behaviors for authentication purpose. The raw data a 
touchscreen could record usually are timestamp, touch 
pressure, touch position, and size (area of the finger touching 
the screen). Then, statistical and/or geometric features are 
extracted from the raw data. Algorithms and techniques such as 
Dynamic Time Warping and Machine Learning are finally 
utilized upon the raw data or extracted features [8], [11], [12], 
so as to authenticate the users. Among various touch 
interactions, typing has attracted much attention due to 
previous studies on keystroke dynamics in the past decades 
[13], [14], [15], which initially focus on physical keyboards for 
traditional systems. On a mobile device, typing is usually 
performed using an on-screen virtual keyboard. Consequently, 
touch features combining with traditional features such as 
latency, interval, dwell time, and flight time [16] can make this 
approach even more promising. Other built-in sensors are 
investigated as well, for example, accelerometer and/or 
gyroscope are used to extract biometric from gait [17], [18], 
typing [19], [20], or other user behaviors [21], and camera [22] 
is also used in some study. 

There are also existing works exploring the built-in 
magnetometer in the field of human-computer interaction [23], 
[24], [25] and explicit authentication [26]. The study of [26] 
concentrates on explicit authentication by using a magnet to 
derive a user signature. However, we .1(n)-.8 



 

 

Fig. 1. A Magnetic Ring on the User’s Index Finger Fig. 2. Magnetometer Readings during Sentence Typing 

  

Fig. 3. Workflow of the FingerAuth Approach Fig. 4. Coordinate System of the Used Mobile Device 

 

used on iOS devices is as depicted in Fig. 4, the field strength 
sensed by a magnetometer along each axis is in units of 
microteslas, while the direction of the field is represented by 
signs of sensor readings. As the finger moves around the 
device, strength and signs of magnetometer readings will 
change. Since the environment magnetic field can vary in 
distinct locations, we need to exclude the environment 
magnetic field to mitigate unexpected influence. 

1) Background magnetic field cancellation: The overall 
magnetic field around a phone (BT) is the superposition of the 
magnetic field from the magnetic ring (BR) and the 
environment (BE, it is a superposition of magnetic field from 
Earth and nearby ferromagnetic materials). Thus, we have: 

BT = BR + BE                                  (1) 

Due to device rotations and the presence of hard-iron and 
soft-iron effects on the magnetometer, the magnetic field 
measured by a smartphone (BP) is as follows [27]: 

BP = W · M · BT + V                            (2) 

where M denotes the rotation matrix of the smartphone, W and 
V represent soft-iron and hard-iron effects for simplicity. Hard-
iron effect is caused by permanently magnetized ferromagnetic 
components of the sensor, while soft-iron effect is defined as 
“the interfering magnetic field induced by the geomagnetic 
field onto unmagnetized ferromagnetic components on the 
PCB” [27]. Most smartphone operating systems provide 

calibration methods to mitigate these effects. We further 
eliminate potential side effects that can be brought out by 
environment magnetic field. After standard calibration process 
is performed, the magnetic field measured by a smartphone 
will be: 

 BP = M · (BR + BE) (3) 

The magnetic field strength of BE in Equation (3) can be 
treated as a constant at a given location without significant 
environmental change, (e.g., increasing temperature). To 
cancel the background magnetic field, we first collect it using 
the built-in magnetometer without existence of the magnetic 
ring. Let BE0 be the recorded background magnetic field 
vector, and M0 be the rotation matrix corresponds to the 
attitude of the smartphone during environment magnetic field 
collection, since the inverse of a rotation matrix is its transpose, 
then we can have the background magnetic field: 

BE0 = M0 · BE                                  (4) 

 BE = (M0)-1 · BE0 = (M0)T · BE0   (5) 

For magnetic field vector BP recorded with the presence of 
the magnetic finger ring, we have: 

 BP = M · (BR + BE) = BǋR + M · BE 

 = BǋR + M · (M0)T · BE0    (6) 
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In Equation (6), M is the rotation matrix corresponding to a 
new attitude of the smartphone, while BǋR is the measured 
magnetic field introduced by the ring. Since the measured 
magnetic field of the magnetic ring is of our concern in this 
study, we have: 

BǋR = BP ī M · (M0)T · BE0                         (7) 

While BE0 and BP can be directly obtained from recorded 
data, the rotation matrix M0 and M could be easily calculated 
using the rotation angles of the mobile device. On the basis of 
equation (7), we may minimize potential side effects caused by 
environment magnetic field on later experiment. Then we can 
focus on analyzing the magnetic field changing pattern caused 
by the magnetic ring on the users’ finger. 

2) Sensor Data Segmentation: Three types of sensor data 
are collected, including magnetometer data, touchscreen 
sensor data, and device attitude data. The magnetometer 
readings we collected are series of timestamp and values of 
the magnetic field along each axis that can be denoted as T(i), 
Bx(i), By(i), and Bz(i), respectively. Touchscreen sensor data 
contains the touch information, e.g., timestamp, touch phase, 
etc. The device attitude data is used for background magnetic 
field cancellation purpose. 

In the first step, we segment out magnetic field sensor data 
corresponding to user operations by using the timestamp of the 
first touch press and the last touch release. The second step is 
data alignment between magnetometer readings and device 
attitude values, this process is required because of the sampling 
rate difference between magnetometer and orientation sensor. 
On the iPhone used in our experiment, the sampling rate of the 
magnetometer is approximately around 50Hz, while the 
orientation sensor is about 100Hz. For each record from 
magnetometer readings, the timestamp T(i) is used to find the 
corresponding device attitude record with a minimum time 
difference. After data alignment is done, the background 
magnetic field cancellation process is conducted based on 
Equation (7). The last step is to further divide magnetometer 
data into smaller segments corresponding to on-screen and in-
air finger movements for later data analysis purpose using 
touch information recorded from touch sensor. 

D. Feature Extraction 
After the data is properly preprocessed, a feature extraction 

process is performed. For each magnetic field data segment Si 
obtained from data segmentation phase, a corresponding 
feature vector F = {f1(Si), f2(Si), …, fn(Si)} is extracted for each 
axis data. Sixteen features are adopted: Mean, Median, 
Variance, Standard Deviation, Mode, Coefficient of Variation, 
Kurtosis, Skewness, Root Mean Square, Zero Crossing Rate, 
and the 1st, 5th, 25th, 75th, 95th, 99th Percentile. 

IV. EXPERIMENTAL EVALUATION 

A. Data Collection 
We design and conduct extensive experiments to test the 

applicability of using magnetometer to collect and extract 

motion pattern information of the finger with a magnetic ring 
on, and the effectiveness of utilizing this pattern to implicitly 
authenticate the user. The typical typing scenario is considered, 
which mainly involves tap gesture, as well as in-air gestures 
between taps. In order to collect sensor data in the scenario 
mentioned above, corresponding application for iOS devices is 
designed and implemented, it logs data from touch and 
magnetic field sensors, as well as device attitude data for 
preprocessing purpose while the user typing. Fifteen volunteers 
from our campus are recruited to participate in the data 
collection activity, and each one is asked to type the same ten 
predefined sentences for three times using the application we 
developed. To make data comparable among different 
participants, the same iPhone 5s smartphone is used, as well as 
the same magnetic ring, which is put on each participant’s right 
index finger with identical direction, and all operations are 
performed using the index finger. Before each collection 
session, background magnetic field value without the presence 
of magnetic ring is also collected for background magnetic 
field cancellation purpose. Each extracted feature vector is first 
labeled with corresponding participant’s name to make the data 
traceable. Then, each participant is assumed as a legitimate 
user in turn, corresponding data is copied and labeled with the 
string “legitimate”, approximately the same amount of 
“illegitimate” data is produced by evenly copying data from 
other participants and the labels are changed to “illegitimate”. 
The newly generated data (we may call it input instances) is 
stored in specific format that the machine learning software 
later used could utilize. Counting information of input 
instances for each participant is as TABLE I.  shows. 

TABLE I.  COUNTING INFORMATION OF INPUT INSTANCES 

Participant ID 
Count of Instances with 

Different Labels Total 
Count 

Legitimate Illegitimate 

#1 1529 1526 3055 

#2 1563 1554 3117 

#3 1904 1904 3808 

#4 1920 1918 3838 

#5 1544 1540 3084 

#6 1470 1470 2940 

#7 1561 1554 3115 

#8 1443 1442 2885 

#9 1937 1932 3869 

#10 1528 1526 3054 

#11 1456 1456 2912 

#12 1570 1568 3138 

#13 1687 1680 3367 

#14 1375 1372 2747 

#15 1462 1456 2918 
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TABLE II.  EVALUATION RESULTS 

Participant ID 
Naive Bayes Random Forest Support Vector Machine 

Accuracy FAR FRR Accuracy FAR FRR Accuracy FAR FRR 

#1 90.44% 18.02% 1.11% 97.68% 3.54% 1.11% 93.72% 7.27% 5.30% 

#2 76.48% 44.66% 2.50% 97.34% 2.25% 3.07% 95.73% 4.89% 3.65% 

#3 64.44% 65.97% 5.15% 95.06% 5.36% 4.52% 87.50% 11.08% 13.92% 

#4 64.36% 69.24% 2.08% 95.44% 5.53% 3.59% 85.10% 19.34% 10.47% 

#5 65.99% 60.91% 7.19% 99.42% 0.78% 0.39 98.80% 1.69% 0.71% 

#6 83.57% 17.96% 14.90% 97.79% 1.43% 2.99% 94.80% 4.69% 5.71% 

#7 67.67% 61.39% 3.40% 96.73% 4.25% 2.31% 86.04% 7.79% 20.12% 

#8 68.77% 59.85% 2.63% 97.61% 1.32% 3.47% 95.42% 4.37% 4.78% 

#9 72.09% 54.24% 1.65% 96.33% 1.97% 5.37% 87.34% 12.63% 12.70% 

#10 73.12% 52.10% 1.70% 95.68% 6.29% 2.36% 89.95% 10.16% 9.95% 

#11 66.41% 65.80% 1.37% 90.69% 12.84% 5.77% 77.30% 19.71% 25.69% 

#12 71.03% 57.02% 0.96% 95.60% 4.34% 4.46% 87.09% 11.86% 13.95% 

#13 92.16% 2.44% 13.22% 98.40% 0.48% 2.73% 96.35% 3.39% 3.91% 

#14 88.75% 6.49% 16.00% 98.91% 0.66% 1.53% 97.67% 2.62% 2.04% 

#15 68.71% 60.58% 2.12% 93.04% 9.82% 4.10% 75.91% 25.41% 22.78% 

Average 74.27% 46.44% 5.06% 96.38% 4.06% 3.18% 89.91% 9.79% 10.38% 

B. Security Evaluation 
We use both classification and authentication metrics to 

evaluate the performance of the proposed approach, 
specifically, classification accuracy, false acceptance rate 
(FAR), and false rejection rate (FRR). In classification 
scenarios, accuracy is the proportion of correctly classified 
instances over a given instances set, while FAR and  FRR are 
used in biometric systems to measure the probability of 
incorrectly accepting a malicious user and falsely rejecting a 
legitimate user respectively [9]. 

Recall that the goal is to study the feasibility of using the 
magnetic three-dimensional finger motion pattern to verify 
current user’s authenticity, which could be abstracted as a 
classification problem in the domain of machine learning over 
feature vectors extracted from corresponding sensor data. Since 
the study itself is not targeting at machine learning issues, the 
widely used open-source machine learning software Weka [28] 
is used. Three classification algorithms are employed upon the 
same input data to learn which algorithm has the best potential 
performance. Specifically, the algorithms used are Naive Bayes 
[29], Random Forest [30] and Support Vector Machine [31], all 
are supported by Weka. Evaluation results using 10-fold cross-
validation are shown in TABLE II. From the table we could 
see that although Naive Bayes could achieve high accuracy on 
some users’ data, the FAR and FRR remain high comparing 
with other two algorithms, which could lead to security and 
usability issues. While SVM has considerable performance, it 
fails on some users’ data. In general, Random Forest has the 
best performance among the three, with an average accuracy of 

96.38%, an average FAR of 4.06%, and an average FRR of 
3.18%. The promising results verified the applicability of the 
proposed approach for implicit authentication purpose. 

V. CONCLUSION 
In this paper, we proposed a novel three-dimensional 

magnetic finger motion pattern based implicit authentication 
technique to mitigate attacks that current explicit authentication 
techniques fail to defend against. We uncovered the hidden 
finger motion pattern by extracting effective features from 
magnetic field value introduced by the magnetic ring on user’s 
finger, and constructed robust models using machine learning 
technique. Our extensive empirical experiments showed an 
encouraging result with accuracy above 90%, average FAR 
and FRR both below 5%, which verified that the proposed 
magnetic three-dimensional finger motion pattern is a 
promising trait that could be used to implicitly authenticate 
mobile device users. In further studies, we will delve into the 
causes and countermeasures of false acceptances and false 
rejections on a larger group of users to make the approach for 
real world application. The requirement of a magnetic ring 
maybe limits the wide range deployment, however, it won’t be 
a problem when mobile devices are equipped with certain kind 
of sensor that could track the finger motion in a three-
dimensional way.  
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