
On Malware Leveraging the Android
Accessibility Framework

Joshua Kraunelis1(B), Yinjie Chen1, Zhen Ling2, Xinwen Fu1, and Wei Zhao3

1 Computer Science Department,
University of Massachusetts Lowell, Lowell, USA

{jkraunel,ychen1,xinwenfu}@cs.uml.edu
2 Southeast University, Nanjing, China

zhen ling@seu.edu.cn
3 University of Macau, Macau, China

weizhao@umac.mo

Abstract. The number of Android malware has been increasing dra-
matically in recent years. Android malware can violate users’ security,
privacy and damage their economic situation. Study of new malware
will allow us to better understand the threat and design effective anti-
malware strategies. In this paper, we introduce a new type of malware
exploiting Android’s accessibility framework and describe a condition
which allows malicious payloads to usurp control of the screen, steal user
credentials and compromise user privacy and security. We implement a
proof of concept malware to demonstrate such vulnerabilities and present
experimental findings on the success rates of this attack. We show that
100 % of application launches can be detected using this malware, and
100 % of the time a malicious Activity can gain control of the screen.
Our major contribution is two-fold. First, we are the first to discover the
category of new Android malware manipulating Android’s accessibility
framework. Second, our study finds new types of attacks and comple-
ments the categorization of Android malware by Zhou and Jiang [21].
This prompts the community to re-think categorization of malware for
categorizing existing attacks as well as predicting new attacks.

Keywords: Android · Malware · Attack

1 Introduction

The number of mobile malware samples has increased enormously over the past
two years while mobile devices have become a ubiquitous tool in our daily life.
In March 2013, Juniper Networks [8] reported their Mobile Threat Center had
discovered over 276 thousand malware samples, a 614 % increase over 2012. With
92 % of mobile malware being Android malware, analyzing and categorizing these
malware are important steps toward predicting new attacks.

In this paper, we explore a security and privacy risk hiding within the Android
accessibility framework. The Android accessibility framework is developed to
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 512–523, 2014.
DOI: 10.1007/978-3-319-11569-6 40



On Malware Leveraging the Android Accessibility Framework 513

assist physically impaired users. Android developers can utilize accessibility
applications programming interface (API) methods to provide customized acces-
sibility services in their own applications. However, the accessibility service has
access to critical sensitive information, including information about applications
that are currently running and account information. Attackers could utilize such
a vulnerability to conduct various types of attacks.

Our major contributions are summarized as follows:

– We are the first to identify malware leveraging Android’s accessibility frame-
work. The impact of this attack is severe, given that it can be used to activate
various malicious payloads. For example, the payload can be various masquer-
ade attacks, emulating Email, Facebook and other popular apps to steal user
credentials and cause other damage. We test our proof-of-concept malware
against multiple anti-malware applications and none are able to detect it.

– We identify a potential logic error in the way the Android user interface frame-
work manages the order of application launches. When two applications are
launched nearly simultaneously, both launch requests consider the first request
to be processed as the next application to be launched, preventing the second
launch from occurring. This can lead to a variety of attacks, such as denial of
service and masquerade attacks, as we discuss in Sect. 3.3.

– Our study complements the categorization of Android malware by Zhou and
Jiang [21], who present a systematic characterization of existing Android mal-
ware by their strategies of installation, activation, payload and permission use.
We identify new events for activation and our attack shows that the payload
can be other attacks, such as the masquerade attack demonstrated in this
paper. This prompts the community to ask: are there better ways of clas-
sifying Android and other mobile malware? We hope this classification not
only allows us a systematic and holistic study of existing malware, but also
provides assistance to predict new attacks and design countermeasures.

– We also discuss possible countermeasures against the security risk from the
Android accessibility framework.

The rest of the paper is organized as follows. Section 2 introduces Android
accessibility service. Section 3 introduces our attack. We evaluate our proposed
attack in Sect. 4, and discuss countermeasures in Sect. 5. Section 6 introduces
other related work, and Sect. 7 concludes this paper.

2 Android Accessibility Service

An Android application must contain one or more of the following four compo-
nents: Activity, Service, Broadcast Receiver, and Content Provider [5]. Activities
represent tasks involving user interaction and can display drawable components,
such as widgets, to the screen. The operating system ensures that only a sin-
gle Activity for any application is displayed at once, i.e. only one application
may be in the foreground at one time. Services are used for long running tasks
that do not require a user interface. Unlike Activities, Services may run in the



514 J. Kraunelis et al.

background and therefore multiple Services from different applications may run
simultaneously. Broadcast Receivers receive messages, in the form of data con-
structs called Intents, from the Android system or user applications. An appli-
cation must register for those Intents which it is interested in receiving. The
registration of certain Intents may require permission to be granted by the user
at install time. Content Providers enable data sharing between applications. The
exploit presented in this paper will focus on Activities and Services.

The Android operating system contains an accessibility framework [1] for
enhancing the experience of users who have visual or other impairments.
Typical accessibility enhancements include enlargement and text-to-speech
conversion of on-screen elements, high contrast color schemes, and haptic
feedback. Android provides a Java API to its accessibility framework so that
developers can integrate accessibility functionality into their applications. All
drawable elements derive from a common ancestor, the View class, which con-
tains built-in calls to Accessibility API methods. Thus, most user interface wid-
gets in the Android framework make their accessibility information available by
default, though developers are encouraged to provide additional information in
the android:contentDescription XML layout attribute. Accessibility infor-
mation such as the UI event type, class name of the object in which the event
occurred or originated, and string value representing some associated data can
be populated into an AccessibilityEvent object and dispatched to enabled
AccessibilityServices via the appropriate method call [9]. There are twenty
two AccessibilityEvent types.

Additionally, as of Android 1.6, developers may create custom accessibil-
ity services by extending the AccessibilityService class [2]. Descendants
of AccessibilityService must override the onAccessibilityEvent method,
which gets called each time an Accessibility Event occurs and is passed the popu-
lated AccessibilityEvent object. A custom AccessibilityService may then
use the information contained in the AccessibilityEvent or optionally query
the window content for the contextual data needed to perform its function. Nat-
urally, the receipt of an event and its associated data and the ability to query
window content present a security risk. For example, every time a user inputs
text into an EditText widget, a custom AccessibilityService will receive
an AccessibilityEvent with type TYPE VIEW TEXT CHANGED that contains the
text that the user input. To mitigate this risk, the Android system requires that
AccessibilityServices be enabled manually by the user and displays a dialog
window alerting the user to the risk.

3 Malware Exploiting Accessibility Service

In this section, we first give an overview of the malware that exploits the Android
accessibility framework. We then address major challenges for such malware
to work, including detection of the launch of a victim app and race condition
between the victim app and malware.



On Malware Leveraging the Android Accessibility Framework 515

3.1 Overview

We now introduce the novel malware’s installation, activation, malicious pay-
loads and permission uses.

Installation: The new Android malware can provide regular accessibility service
as it claims and conduct attacks silently. Therefore, impaired users and users who
prefer big font text may be interested in such malware and install it onto their
phones. This installation strategy is installation.others.3rdgroup in [21], referring
to apps that intentionally include malicious functionality. For brevity, we denote
installation.others.3rdgroup as trojan, “a program made to appear benign that
serves some malicious purpose” according to the taxonomy in [15], although this
definition of trojan may be controversial.

Permission Uses: During installation, the malware requests the BIND
ACCESSIBILITY SERVICE permission. After installation, users must enable the
AccessibilityService in Android’s Accessibility Settings menu. Since a legit-
imate accessibility service also requests such permission and requires enabling,
users may not suspect the motivation of our malware. Of course, other permis-
sions are required if the malicious payload requires them.

Activation: After the installation, our malware can derive a list of all installed
applications in that phone. This can be achieved via many sources, such as the
Package Manager. Based on which applications are installed, our malicious appli-
cation could download various payloads and use them to launch different attacks.
Each time a user launches an application from the home screen or the application
drawer, our malicious accessibility service is activated, and a malicious payload
which targets that application is also activated.

Here, we make one complement to the events which could be used by Android
malware, introduced in [21]. As we introduced in Sect. 2, the AccessibilityEvent
is one critical event, which carries sufficient information. There are twenty-two
types of AccessibilityEvent, and these types of events can trigger various types
of malicious payloads.

Malicious Payload: Since we know what applications are installed, we can use
different malicious payloads to launch different attacks. For example, the default
Email application source code is freely available from the Android Open Source
Project [4]. In this case, our malicious payload could masquerade as the Email
application. Therefore, when a user launches the Email application, a fake login
window will display and prompt the user to input account name and password.
Such account information is then collected and sent over an encrypted channel
to a remote server.

To implement the masquerade attack in this example, we extract the Account
SetupBasics Activity and its corresponding resources from the Email appli-
cation, modify it, and package it into a fake application as a malicious payload.
AccountSetupBasics is displayed when the Email application is launched and no
previous email account has been setup. It was chosen because of its simple design,
the popularity of the Email application, and having the fields required to demon-
strate the attack. The AccountSetupBasics layout consists of two EditText



516 J. Kraunelis et al.

widgets for username and password input, and two Buttons: one for activating
the Manual Setup feature and the other for navigating to the next step in the
setup process. The counterfeit AccountSetupBasics Activity included in our
AccessibilityService application duplicates all of the graphical user interface
elements of the victim Activity, but the email account setup functionality of the
victim Activity has been removed. Though we have chosen to imitate the Email
application’s AccountSetupBasics Activity for this experiment, any Activity
may be used in the attack. In this example, our AccessibilityService pro-
vides no additional accessibility features, but attackers could easily provide such
features to increase the guile of this attack.

Therefore, we make one complement to the categorization of malicious pay-
load in [21]. Android malware can perform blended attacks. The payload could
contain a vector of payloads that perform different functions. The payload itself
can be other malware or attacks. In the example above, our malware, a trojan
app, contains a fake Email Activity that performs a masquerade attack.

For our trojan to work, there are two more details we have to address:

– How can the trojan detect the victim app launch? Although the malicious
accessibility service is able to receive events related to Activity launch, it
still needs to distinguish which app is generating these events so that it can
launch the corresponding fake app and perform the masquerade attack.

– How can the trojan display itself to the user while the victim app is hidden
in the background? When the user touches an app, this app will be launched.
Which app, our trojan or the victim app, will be displayed? How can our
trojan win the race condition?

We address these two issues below.

3.2 Detecting Application Launch

A crucial piece of our masquerade attack is the ability to detect the launch
of a victim application. There is no public API to allow a user application
to be notified when another application is launched. By registering to receive
AccessibilityEvent callbacks in the application manifest, our custom
AccessibilityService is guaranteed to be notified when an application is
launched by the user. The notification comes in the form of an Accessibility-
Event object that is delivered as an argument to our AccessibilityService’s
onAccessibilityEvent method. The Launcher application, which is responsible
for displaying icons and widgets on the home screen and maintaining the app
drawer, populates the AccessibilityEvent when the Email application icon is
clicked by the user.

From the information in the AccessibilityEvent, we can determine that the
user clicked an icon in the Launcher, because the event type is TYPE VIEW CLICKED
and the originating package name is com.android.launcher. We’re able to identify
which icon was clicked based on the Text field of the Accessibility-Event. In the
case of attacking Email, the Text field is a single element list containing the string



On Malware Leveraging the Android Accessibility Framework 517

“Email”. Once the app launched by the user has been detected, the next step in the
attack is to launch the malicious Activity instead of the user desired Activity.
To do this, an Intent that specifies the malicious Activity to be launched is cre-
ated and passed to the startActivity method of our AccessibilityService.

3.3 Racing to the Top

The launch of the malicious Activity from our AccessibilityService does not
prevent the Launcher app from also calling startActivity to start the legit-
imate Activity. Both Activities are created and dispatched to the Activity-
Manager to be displayed. As previously mentioned, only a single Activity may
be displayed in the foreground at one time. This is a source of contention for
our malicious Activity, which we want to be displayed instead of the vic-
tim Activity and without any suspicious screen flicker or transition anima-
tion that may alert the user to the presence of malware. Since the malicious
AccessibilityService receives AccessibilityEvent and is able to detect
launch of victim app, it has a chance to launch the malicious Activity before
the victim Activity is launched.

There exists a source of contention for our malicious Activity. An attacker
wants the malicious Activity to be displayed instead of the victim Activity
without any suspicious screen flash, flicker, or transition animation that may
alert the user to the presence of malware. To achieve this goal, the timing of
launching malicious Activity should be carefully adjusted so that the malicious
Activity is processed soon after the victim Activity. Therefore, the problem
is how to derive an optimal delay for the malicious Activity. We present our
analysis below.

We find that different delay of the malicious Activity produces four different
statuses of the phone screen. Before introduce the four statuses, please note
that when the malicious Activity is processed, a fake interface is created and
displayed. Please also note that when the victim Activity is processed, a victim
interface is created and displayed. Depending on the timing of processing each
activity, there are four scenarios. (I) The malicious Activity is processed before
the victim Activity. The fake interface will be displayed first, and then replaced
by the victim interface. In this scenario, we can observe the victim interface
showing up with a flash, and the status of phone screen is defined to be Ω1. (II)
The malicious Activity is processed before the victim Activity, but these two
activities are processed nearly simultaneously. In this scenario, only the victim
interface is displayed without a flash. The status of phone screen is defined to
be Ω2. (III) The malicious Activity is processed after the victim Activity,
but these two activities are processed nearly simultaneously. In this scenario,
only the fake interface is displayed without a flash. The status of phone screen
is defined to be Ω3. (IV) The malicious Activity is processed after the victim
Activity. The victim interface will be displayed first, and then replaced by the
fake interface. In this scenario, we can observe the fake interface showing up
with a flash, and the status of phone screen is defined to be Ω4. These statuses
are listed in Table 1.





On Malware Leveraging the Android Accessibility Framework 519

the launch detection simply must match this title in order to detect application
launch. Application shortcuts that belong to the hotseat, the horizontal space at
the bottom of the default home screen that stays “docked” when navigating to
alternate home screens, do not display a title but all shortcut icons in the appli-
cation drawer do. Although the hotseat applications do not display a title, the
AccessibilityEvent that is dispatched on click does contain the title, however
this is not the case in CyanogenMod 9.

We tested the launch detection capability on the HTC Nexus One for the
following six Android applications: Messaging, Email, LinkedIn, Facebook, Bank
of America, and Browser. For each application, a shortcut icon was created on
the home screen. The launch detection was successful for all six applications.

4.2 Winning Race Condition

During the launch detection testing, we noticed that the malicious Activity was
not displayed instead of the victim Activity 100 % of the time, especially when
the victim application was being launched for the first time since system boot.
To test this, we performed two separate experiments. In the first experiment,
we ensured the application we were launching was not running by pressing the
Force Stop and Clear Data buttons under the corresponding Settings -> Manage
Applications -> All menu for that application. These two operations effectively
force the application to be reloaded from its initial state, as if the system had
just booted. We then returned to the home screen, launched the application
normally, and recorded which Activity, malicious or victim, was displayed. In
the second experiment, we followed the same procedure, but instead of force
stopping and clearing the data, we made sure that the victim application had
previously been launched before relaunching from the home screen.

The two experiments were performed repeatedly for each of the aforemen-
tioned applications, and we observed the impact of the race condition discussed
in Sect. 3.3. However, by setting the malicious Activity to sleep for specific
time period before it is started, we can guarantee that the malicious Activity
displays without a flash.

Now we evaluate our strategy of optimizing delay as discussed in Sect. 3.3.
We choose Browser app and conduct two groups of tests on the HTC Nexus One
running Android 2.3.6.

In the first group of tests, we test the Browser app with reloading. The
procedure for our test is as follows. (I) We select a set of different delays, and
choose each of these delays to launch our malicious Activity. (II) We press the
Force Stop and Clear Data buttons under the corresponding Settings -> Manage
Applications -> All menu



520 J. Kraunelis et al.

Table 2. Status with reloading

Delay (ms) Ω1 Ω2 Ω3 Ω4

0 0 % 100 % 0 % 0 %

1–740 0 % 0 % 100 % 0 %

750 0 % 0 % 90 % 10 %

760 0 % 0 % 70 % 30 %

770 0 % 0 % 50 % 50 %

780 0 % 0 % 30 % 70 %

790 0 % 0 % 30 % 70 %

800 0 % 0 % 20 % 80 %

810 0 % 0 % 20 % 80 %

820 0 % 0 % 20 % 80 %

830 0 % 0 % 10 % 90 %

840 0 % 0 % 0 % 100 %

Table 3. Status without reloading

Delay (ms) Ω1 Ω2 Ω3 Ω4

0 0 % 20 % 80 % 0 %

1–60 0 % 0 % 100 % 0 %

70 0 % 0 % 90 % 10 %

80 0 % 0 % 100 % 0 %

85 0 % 0 % 80 % 20 %

90 0 % 0 % 90 % 10 %

95 0 % 0 % 80 % 20 %

100 0 % 0 % 80 % 20 %

105 0 % 0 % 90 % 10 %

110 0 % 0 % 50 % 50 %

115 0 % 0 % 10 % 90 %

120 0 % 0 % 20 % 80 %

125 0 % 0 % 10 % 90 %

130 0 % 0 % 20 % 80 %

135–145 0 % 0 % 0 % 100 %

From Table 2, we make the following observations. (I) When delay is 0 ms,
the victim interface shows up without a flash (Status Ω2) 100 % of the time. (II)
When delay increases from 1 ms to 740 ms, the fake interface shows up without
a flash (Status Ω3) 100 % of the time. (III) When delay increases from 750 ms to
840 ms, the rate of (Status Ω3) decreases to 0 %, while the rate of fake interface
showing up with a flash (Status Ω4) increases to 100 %. Therefore, the optimal



On Malware Leveraging the Android Accessibility Framework 521

is between 1 ms and 60 ms. Combining the experimental results from these two
groups, the optimal delay for the malicious Activity is between 1 ms and 60 ms.

5 Discussion

The attacks mentioned above are not foolproof. There are certain safeguards
built into Android devices to thwart a full device takeover by a malicious user.
Recovery Mode is one such safeguard that allows the user to install a clean OS,
wiping any malicious apps from the data partition in the process. An experienced
user could use the Android Debug Bridge (ADB) to obtain a command shell
into the device and launch applications from the command line am tool or even
locate and uninstall the malicious applications. Applications launched from the
am tool do not invoke the Launcher application, therefore our technique is unable
to detect this.

As a countermeasure to the malicious Activity payload, the logic which
reorders the Activity



522 J. Kraunelis et al.

system for evaluating the detection of Android malware. ADAM uses repackag-
ing and code obfuscation to generate different variants of a malware. Rastogi,
Chen and Jiang [18] made similar effort to test state-of-the-art Android com-
mercial mobile anti-malware products for detecting transformed malware. Such
transformation techniques include polymorphism (where transformed code is
still similar to the original code) and metamorphism (where transformed code
is totally different from the original code, but with similar malware function-
ality). Zhou et al. [22] developed a system called DroidRanger, evaluating the
health of Android markets, including the official Android Market, eoeMarket
[6], alcatelclub [3], gfan [7], and mmoovv [10]1. DroidRanger was able to find
211 malicious or infected apps out 204,040 apps from the five studied market-
places, including two zero-day malware. Zhou and Jiang [21] made a one year
effort and analyzed more than 1,200 malware samples, which covered a major-
ity of state-of-the-art Android malware. Bugiel et al. [12] studied ways to defend
against privilege-escalation attacks on Android. Such privilege-escalation attacks
include confused deputy attacks and colluding attacks.

There are other survey works on mobile security and malware. Becher et al.
[11] performs a comprehensive survey of mobile security from hardware to soft-
ware. It is a comprehensive enumeration of existing wireless technologies and
possible attacks against those technologies and devices. La Polla et al. [17] sur-
veys mobile device security and complements the work in [11]. Peng et al. [16]
performs a survey of malware on platforms such as Android, Windows Mobile
and Symbian. The categorization of malware follows traditional jargons such as
worms, viruses and trojans. They also survey malware propagation strategies.
For our future work, we hope to have a system of categorization that systemat-
ically characterizes the underlying techniques of mobile malware.

7 Conclusion

This paper introduces a new type of malware that leverages Android’s accessi-
bility framework to activate its malicious payloads. The implementation of an
example malicious application that uses the Accessibility APIs to masquerade as
a legitimate application is detailed. Additionally, we describe how the emergence
of this malware elicits the need for better malware categorization and charac-
terization of malware. We describe results from the experiments we performed
to quantify both the success of application launch detection and exploiting the
logic error in the ActivityStack class. We show that, by adding a delay to the
launch of the malicious Activity, we can guarantee 100 % that the malicious
Activity will be displayed. We also discuss possible strategies to mitigate this
type of malware.
1 Link is no longer valid.



On Malware Leveraging the Android Accessibility Framework 523

References

1. Accessibility. http://developer.android.com/guide/topics/ui/accessibility/index.
html (2013)

2. Accessibility services. http://developer.android.com/guide/topics/ui/accessibility/
services.html (2013)

3. Alcatelclub. http://www.alcatelclub.com/ (2013)
4. Android open source project. http://source.android.com/ (2013)
5. Application fundamentals. http://developer.android.com/guide/components/

fundamentals.html (2013)
6. eoemarket. http://www.eoemarket.com/ (2013)
7. Gfan. http://www.gfan.com/ (2013)
8. Juniper networks third annual mobile threats report. http://www.juniper.net/us/

en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.
pdf (2013)

9. Making applications accessible. http://developer.android.com/guide/topics/ui/
accessibility/apps.html (2013)

10. Mmoovv. http://android.mmoovv.com/web/index.html (2013)
11. Becher, M., Freiling, F.C., Hoffmann, J., Holz, T., Uellenbeck, S., Wolf, C.: Mobile

security catching up? revealing the nuts and bolts of the security of mobile devices.
In: Proceedings of the 2011 IEEE Symposium on Security and Privacy, pp. 96–111
(2011)

12. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry, B.:
Towards taming privilege-escalation attacks on android. In: Proceedings of the
19th Network and Distributed System Security Symposium (NDSS) (2012)

13. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proceedings of the 20th USENIX Conference on Security (2011)

14. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM) (2011)

http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/services.html
http://developer.android.com/guide/topics/ui/accessibility/services.html
http://www.alcatelclub.com/
http://source.android.com/
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://www.eoemarket.com/
http://www.gfan.com/
http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf
http://www.juniper.net/us/en/local/pdf/additional-resources/3rd-jnpr-mobile-threats-report-exec-summary.pdf
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://android.mmoovv.com/web/index.html

	On Malware Leveraging the Android Accessibility Framework
	1 Introduction
	2 Android Accessibility Service
	3 Malware Exploiting Accessibility Service
	3.1 Overview
	3.2 Detecting Application Launch
	3.3 Racing to the Top

	4 Evaluation
	4.1 Detecting Application Launch
	4.2 Winning Race Condition

	5 Discussion
	6 Related Work
	7 Conclusion
	References


