
Migration Cost-Sensitive Load Balancing for Social Networked
Multiagent Systems with Communities

Wanyuan Wang, Yichuan Jiang*, IEEE Senior Member
Laboratory for Complex Systems and Social Computing,

School of Computer Science and Engineering, Southeast University, Nanjing 211189, China.
*Corresponding author, Email: yjiang@seu.edu.cn

Abstract—In the past, many approaches have been devised to
address the load balancing problem for social networked mul-
tiagent systems (SN-MASs). However, few of these approaches
consider the migration cost incurred when migrating tasks
for load balancing; moreover, current SN-MASs often consist
of communities, and the migration costs of intra-community
and intercommunity transfers are heterogeneous. To minimize
the load imbalance of agents and to incur the least migration
cost, this paper introduces a net profit-based load balancing
mechanism. In this mechanism, each load balance process (i.e.,
migrating a task from one agent to another agent) is associated
with a net profit value which depends on the benefit it gains by
making a contribution to alleviating the system load unfairness
and the cost of migrating the task. The agents always perform
the optimal load balance process that has the maximum net
profit value, thereby improving system performance, as well
as reducing the migration cost. Our simulations show that our
approach not only guarantees that agents can undertake fair
loads but also reduces the overhead migration costs compared
with the previous load balancing approaches that ignore the
cost of migrating the task.

Keywords-multiagent systems; social networks; load balanc-
ing; community; migration cost; net profit

I. INTRODUCTION

Currently, social networks play the role of the under-

lying interaction medium for many large-scale multiagent

systems, which can be called social networked multiagent

systems (SN-MASs) [1][2]. In SN-MASs, because tasks are

distributed to agents in a decentralized manner and agents

are heterogeneous in capacities, tasks might vary greatly in

waiting time at the agents [2-7]. Migragting the excess tasks

on the heavy-burdened agents to the light-burdened agents

through social interactions to make each agent undertake the

load proportional to its capacity can be generalized as load

balancing for SN-MASs [3-5].

In the past, many approaches have been devised to address

the load balancing problem in networked multiagent systems

[2-7]. Existing approaches primarily focus on minimizing

the load imbalance of agents, i.e., minimizing the waiting

time of tasks at agents; however, they ignore the migration

cost incurred when migrating tasks which might play an

important role in load balancing [8][9]. For example, in a

transportation system, if a transportation company transports

some commodities to another company by truck to alleviate

its heavy-burdened level, it will have to consider the fuel

expenses consumed by trucks. Moreover, current SN-MASs

often consist of communities, and the migration costs of

intra-community and intercommunity transfers are heteroge-

neous [11-13]. For example, in the transportation systems,

the volumes of fuel consumed by intra-city (community) and

inter-city transportation for transporting commodities are

heterogeneous because the fact that the physical distances

of intra-city and inter-city trips are heterogeneous.

With this motivation, in this study, we investigate the

community-aware load balancing problem in SN-MASs. We

assume that agents are partitioned into communities, and

there exist task migration cost between agents; moreover,

the migration costs of intra-community and intercommunity

transfers are heterogeneous. Under this community-aware

scenario, a migration cost-sensitive load balancing approach

should not only strive to ensure fair load distribution over

agents but also should aim to minimize the migration costs

incurred by migrating tasks. To satisfy the two objectives

simultaneously, in this paper, we introduce a net profit-based

load balancing mechanism. This mechanism functions by

associating a net profit value with each load balance process

(i.e., migrating a task from one agent to another agent). The

net profit of a load balance process depends on the benefit it

gains by making a contribution to alleviating the system load

unfairness and the cost lost by migrating the task between

agents. The agents always perform the optimal load balance

process that has the maximum net profit value, thereby

decreasing system load unfairness as well as reducing the

system overhead migration costs.

II. RELATED WORK

Many load balancing studies have addressed the mini-

mization of tasks’ waiting time at agents. For example, in

[16], the researchers devise a bidding-based mechanism to

minimize the mean job execution time. In their mechanism,

the agent with a high load assigns its excess tasks to

the optimal bidder agent which has the lightest load. A

mobile agent-based load balancing model is proposed in

[4] where a task (agent) probabilistically decides to join

or leave a node according to the number of tasks waiting

at that node. It proves that perfect load balancing exists if

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.29

127

and only if agents have the complete information about the

entire system. Hu and Klefstad utilize a distributed balanced

tree technique to make the system converge to the global

optimal load balancing state [10]. These models all ignore

the heterogeneity of agents’ capacities.

For computing in heterogeneous systems, Hui and Chan-

son propose a decentralized hydrodynamic model to make

agents undertake loads proportional to their capacities [5].

On the other hand, Jiang and Jiang [6] devise a centralized

load balancing approach to reduce the waiting time of tasks,

where if the number of tasks queuing at an agent becomes

larger, the central authority will decrease the agent’s prob-

ability of being allocated new tasks in the future [2][7].

However, all these methods only aim at minimizing the load

imbalance of agents, ignoring other overhead costs (e.g., the

communication cost between tasks and the task migration

cost between agents) during load balancing.

Other related works with the aim of reducing system

communication cost have also been studied. For example, in

[3], Chow and Kwok introduce a communication-based load

balancing algorithm to reduce the inter-machine communi-

cation cost of agents. They propose that if an agent has a

higher computation or communication workload, the agent

will be likely to migrate to another machine where it has

a lower inter-machine communication load. A game theory-

based model is presented in [14] to provide the fair response

times of all the tasks and to minimize the system’s expected

communication delay. These models both assume that agents

have the complete information of the entire system. While

in our study, agents can only exchange information with

their local immediate neighbors, which is better suited to

real-world applications [1][5][10].

III. PROBLEM DESCRIPTION

We formulate the community-aware load balancing prob-

lem as follows. First, we assume that there is a society of

agents organized by a community-aware social network.

Definition 3.1 (Community-aware social networks). A
community-aware social network, CA-SN, is defined as
<A,C,E>, where A={a1, ..., am} is the set of agents.
The communities C={C1, ..., Cq} form a partition of these
agents. ∀(ai, aj)∈E indicates the existence of a direct social
interaction between ai and aj , and each interaction (ai, aj)
is associated with a weight w(ai, aj), which represents
the migration cost of one unit load between ai and aj .
Particularly, each agent ai∈A is aware of its community
attribute: which community it belongs to itself and which
communities its neighbors Ni(Ni={aj |(ai, aj)∈E}) belong
to1.

Each agent ai∈A then can be defined by a 2-tuple

<pi, com(ai)>, where the capacity function pi:A→R rep-

1This assumption is plausible in a real-world scenario, in which each
individual knows which community it joins itself, and which communities
its close friends join [1].

resents agent ai’s capacity to process tasks. The community

function com(ai): A→C represents the community that

agent ai belongs to.

Second, we suppose that there is a set of tasks T=
{t1, ..., tn} distributed over these agents. Then, each task

tj∈T can be defined by a 2-tuple <l(tj), loc(tj)>, where

the load function l(tj): T→R indicates the process time the

task tj needs. The location function loc(tj): T→A indicates

the agent where tj is queuing. The tasks that queue at

agent ai are stored in the local task set T (ai) of agent ai,
i.e., T (ai)={tj |loc(tj)=ai}. The total load Li that agent ai
undertakes is then given by the total load of its local tasks,

i.e., Li=
∑

tj∈T (ai)
l(tj). An agent ai’s utilization degree

represents the percentage of capacity that has been used.

This utilization, ui, is given by the ratio between the total

load (Li) it undertakes and its capacity (pi) for processing

task, i.e., ui=Li/pi. Furthermore, we assume that each agent

ai is limited to other agents’ load and capacity information

within its local domain Ωi, which consists of itself and its

immediate neighbors Ni.

The primary objective of traditional load balancing ap-

proaches for SN-MASs is to ensure fair load distribution

over agents proportional to their capacities, that is, the

utilization u
′
i of each agent ai at system global load fairness

state should be equal to system average utilization ū, i.e.,

u
′
i = L

′
i/pi = ū =

∑
tj∈T l(tj)/

∑
ak∈A pk (1)

However, under the community-aware SN-MASs scenario,

when an agent ai migrates a certain local task tk∈T (ai)
to its certain neighbor aj∈Ni, it will incur the overhead

migration cost w(ai, aj)·l(tk). Therefore, the other objective

of a migration cost-sensitive load balancing approach for the

community-aware SN-MASs is to minimize the migration

cost incurred by load balancing.

To minimize the load unfairness of agents with the least

migration cost, in this paper, we propose a net profit-based

load balancing mechanism where each load balance process

(e.g., migrating a task tk from one agent ai to another agent

aj) is associated with a net profit value which depends on

the benefit it gains by making a contribution to alleviating

system load unfairness and the cost of migrating the task tk
from ai to aj . The agents always perform the optimal load

balance process that has the maximum net profit value.

IV. LOAD BALANCING MODEL

We are mainly concerned with the social position of

agents in a CA-SN when dealing with load balancing. The

social position of agents can be categorized into the internal

and boundary positions.

Definition 4.1 (Social position of agents). Given a CA-
SN=<A,C,E>, an agent ai∈A is denoted as the internal
agent if all of its neighbors belong to the same community
that includes ai. The agent ai is denoted as the boundary
agent if its certain neighbor belongs to a different community

128

than ai’s. The neighbors that belong to the same community
as ai’s are called its intra-community neighbors (N intra

i).
Otherwise, they are called the intercommunity neighbors
(N inter

i) of ai.
As the internal and boundary agents possess different

social positions, they might play different roles in load

balancing. For example, the boundaries are able to com-

municate with the agents of other communities, while it is

impossible for the internals. Thus, it is necessary to devise

different mechanisms for the internal and boundary agents.

A. Internal Load Balancing Mechanism

It is known that the first phase of load balancing is load

evaluation [3]: each agent aggregates its local domain’s load

and capacity information, detects its load imbalance status

and decides whether to invoke load balancing. The status of

the internal agent can be defined as follows:

Definition 4.2 (Load status of internal agent). For an
internal agent ai, the average utilization, ūi, of its local
domain Ωi, is given by:

ūi =
∑

aj∈Ωi
Lj

/∑
aj∈Ωi

pj (2)

Agent ai is denoted as an overloaded agent if its own utiliza-
tion exceeds its domain average utilization, i.e., ui>ūi, an
under-loaded agent if ui<ūi and otherwise a neutral one.

If an internal agent ai undertakes more tasks than it

can process and becomes overloaded, the tasks queuing at

ai might experience a much longer waiting time. In this

scenario, it may be desirable for ai to transfer its excess tasks

to its under-loaded neighbors. Consequently, we propose

that only the overloaded agents perform load balancing;

neutral and under-loaded agents do not perform any load

balancing (Remark 4.1 demonstrates the other advantage of

this design).

If an internal agent ai

Figure 1: A toy example of community-aware social network consisting of
two communities C1 and C2.

fairness. To avoid the unnecessary operations, we require the

load balance process that to be executed to be with positive

benefit value. A formal description of the internal agent’

load balancing procedure can be seen in Algorithm 1.

Algorithm 1. Internal Load Balancing Algorithm (ai,Q)

/* ai: the internal agent where load balancing executed; */

/* Q: the migration cost. */

1. Set b=0; agent ai computes its own utilization ui and its

domain average utilization ūi by Equation (2).

2. While (ui > ūi &&b �= 1) do
3. Select the optimal strategy s∗i (aj , tk) by Equation (6).

4. If (gi(s
∗
i) > 0), then

5. Execute s∗i ; Q = Q+ w(ai, aj) · l(tk).
6. Else b=1.

7. End While
B. Boundary Load Balancing Mechanism

In many real social networks with explicit communities,

the migration cost of the intercommunity transfer is al-

ways larger than the migration cost of the intra-community

transfer [12][13]. If agents only rely on the above internal

load balancing mechanism, they will be more likely to

balance loads with their intra-community neighbors, which

will deteriorate the system global load fairness. We give an

illustration example as follows.

Example 4.1. In Figure 1, each agent is associated with

two variables. The former indicates its capacity and the

latter indicates the load it undertakes. Each edge (ai,aj)

a i

of all the domain communities C(Ωi), ūi,C(Ωi), from the

community perspective is:

ūi,C(Ωi) =
∑

Cj∈C(Ωi)
L̄i,Cj

/∑
Cj∈C(Ωi)

p̄i,Cj
(7)

As discussed above, a boundary agent should not only bal-

ance the load within its community but also be responsible

for migrating its community’s excess load to the neighbor

communities. Thus, the load status of a boundary agent

should be detected from two perspectives: the load status

from the intra-community perspective and that from the

intercommunity perspective.

Definition 4.8 (Load status of boundary agent). A bound-
ary agent ai is denoted:
• overloaded in the intercommunity domain if its intra-
community average utilization (ūi,com(ai)) exceeds its do-
main communities’ average utilization (ūi,C(Ωi));
• overloaded in the intra-community domain if its own uti-
lization (ui) exceeds its intra-community average utilization.

The behaviors of the boundary agent ai during load

balancing can then be described as:

• Intercommunity load balancing: ai checks whether it is

overloaded in the intercommunity domain or not; if yes, it

performs load balancing between communities.

• Intra-community load balancing: ai compares its utiliza-

tion with its intra-community average utilization and decides

whether to balance the load within its community.

Next, we will describe the intercommunity and intra-

community load balancing mechanisms for the boundary

agent ai in detail.

1) Intercommunity load balancing
It is worth noting that if ai performs load balancing with

its intra-community neighbors, it makes no contribution to

the intercommunity load fairness. Thus, we modify ai’s
intercommunity load balancing strategy space Sinter

i as:

Sinter
i = {si(aj , tk)|aj ∈ N inter

i ∧ tk∈T (ai)}.
Definition 4.9 (Intercommunity load balancing benefit).
The benefit to ai under intercommunity load balance strategy
si(aj , tk)∈Sinter

i , ginteri (si), is defined as: ginteri (si)=1−
SD∗

i,C(Ωi)
/SDi,C(Ωi), where SDi,C(Ωi) is the utilization

standard deviation of C(Ωi) before load balancing from the
community perspective, i.e.,

SDi,C(Ωi)=
(∑

Cj∈C(Ωi)

(ūi,Cj−ūi,C(Ωi))
2/|C(Ωi)|

) 1
2 (8)

and SD∗
i,C(Ωi)

is the utilization standard deviation of C(Ωi)
after load balancing.

The net profit of an intercommunity load balance strategy

si(aj , tk)∈Sinter
i , net-prointeri (si), then is defined as:

net–prointeri (si) = βginteri (si)− w(ai, aj) · l(tk) (9)

The coefficient β(β > 0) is the influence factor of the

intercommunity load balance benefit.

2) Intra-community load balancing
After certain boundary agent aj unloads its community’s

excess loads to its intercommunity neighbor ai∈N inter
j , it

is also essential for ai to apportion the excess loads to

its intra-community neighbors. Agent ai’s intra-community

load balancing strategy space is modified as:

Sintra
i ={si(aj , tk)|aj ∈N intra

i ∧ tk ∈ T (ai)}.
Definition 4.10 (Intra-community load balancing ben-
efit). The benefit to ai under the intra-community load
balance strategy si(aj , tk)∈Sintra

i , gintrai (si), is defined as:
gintrai (si)=1−SD∗

i,com(ai)
/SDi,com(ai), where SDi,com(ai)

is the utilization standard deviation of Ωi,com(ai) before load
balancing from ai’s intra-community perspective, i.e.,

SDi,com(ai)=
(∑

aj∈Ωi,com(ai)

(uj−ūi,com(ai))
2/|Ωi,com(ai)|

) 1
2

(10)
and SD∗

i,com(ai)
is the utilization standard deviation of

Ωi,com(ai) after load balancing.
The net profit of an intra-community load balance strategy

si(aj , tk)∈Sintra
i , net-prointrai (si), is given by:

net–prointrai (si) = αgintrai (si)− w(ai, aj) · l(tk) (11)

The influence factor α of the intra-community load balanc-

ing benefit is similar to that described in Definition 4.6.

Finally, a formal description of the load balancing procedure

for the boundary agent can be seen in Algorithm 3.

Algorithm 3. Boundary Load Balancing Algorithm (ai,Q)

1. Set b = 0, c = 0; compute ui, ūi,com(ai), and ūi,C(Ωi).

2. While (ūi,com(ai)>ūi,C(Ωi
) &&T (ai) �=∅&&b �= 1) do

3. Select the optimal strategy s∗i (aj , tk) by Equation (9).

4. If (ginteri (s∗i) > 0), then
5. Execute s∗i ; Q = Q+ w(ai, aj) · l(tk).
6. Else b=1.

7. End While
8. While (ui > ūi,com(ai) &&c �= 1) do
9. Select the optimal strategy s∗i (aj , tk) by Equation (11).

10. If (gintrai (s∗i) > 0), then
11. Execute s∗i ; Q = Q+ w(ai, aj) · l(tk).
12. Else c=1.

13.

(

optimal load balance state, where Π is the sum loads of all
the tasks in the system, i.e., Π =

∑
tk∈T l(tk).

Proof. For the sake of the proof, we use the metric utilization

variance D instead of the utilization standard deviation SD,

where D = SD2. The proof is divided into two parts: i) we

prove that if an agent executes a load balance process, there

will be a substantial reduction in system utilization variance;

ii) we prove that the difference between system utilization

variance in the initial state and that in the optimal state is

not larger than a finite value. As discussed above, agents can

be categorized into internal and boundary cases.

Internal case: Assume that an internal overloaded agent

ai migrates its local task tk to its under-loaded neighbor aj
at time t. From ai’s local domain perspective, we have:

Di−D∗
i =

(
(ui−ūi)

2+(uj−ūi)
2−(u∗

i−ūi)
2−(u∗

j−ūi)
2
)/|Ωi|

= l(tk)
(
ui + u∗

i − uj − u∗
j

)/(|Ωi|p
)

= 2l(tk)
(
ui − uj − l(tk)/p

)/(|Ωi|p
) (12)

where Di and D∗
i are the utilization variances of ai’s domain

Ωi before and after load balancing. It follows from the

constraint that the benefit of a load balance process must

be positive, and the assumption that the minimum load of a

task is λ, we can derive:

l(tk) ≥ λ(
ui − uj − l(tk)/p

) ≥ λ/p

}
⇒ Di −D∗

i ≥ 2λ2/(|Ωi|p2) (13)

Alternatively, from the system global perspective, we have:

D−D∗ =
(
(ui−ū

)2
+(uj−ū)2−(u∗

i −ū)2−(u∗
j−ū)2

)/
m

= l(tk)(ui + u∗
i − uj − u∗

j)
/(

mp
)

= (Di −D∗
i)|Ωi|

/
m ≥ 2λ2

/(
mp2

) (14)

where m is the number of agents, ū is the system’s average

utilization, D and D∗ are the system’s utilization variances

before and after load balancing. Up to this point, we have

proved that an internal load balance process reduces the

system utilization variance by at least 2λ2/(mp2).
Boundary case: It follows from remark 4.2 that the

boundary agent gains more benefit than the internal agent

if it migrates its community’s excess load to its neighbor

communities. On the other hand, when the boundary agent

balances load within its community, the gained benefit is

equivalent to that of the internal case. Therefore, we can

determine that the boundary load balance process also reduce

the system utilization by at least 2λ2/(mp2).
Now we will prove ii). Notice that the worst case in the

initial state is that the entire system load is distributed to a
single agent, where the system utilization variance Dini is:

Dini =
[(
Π/p−Π/(pm)

)2
+ (m− 1)

(
Π/(pm)

)2]/
m

= (m− 1)Π2/(m2p2)
(15)

On the other hand, in the optimal load balance state, the

entire system load Π is distributed among agents evenly, i.e.,

each agent has the same utilization: u1=...=um=Π/(mp),
where we have the system utilization variance Dopt=0. The

difference between Dini and Dopt then is Dini−Dopt≤

Dini=(m − 1)Π2/(m2p2). Finally, to reach the optimal

balance state, the system needs at most (Dini−Dopt)/(D−
D∗) ≤ (m−1)Π2/(2mλ2) steps. Now, we can conclude that

the system will converge to the optimal load balance state

in O(Π2/λ2) steps. �
In this study, because of the heterogeneity of agents’

capacities, the local load balance process might not always

alleviate the system global load unfairness (sometimes, the

process may even aggravate the unfairness). However, it

will not prevent the system converging to an approximate

optimal load fairness state (This will be validated in the

experiments).

V. EXPERIMENTS

A. Experiment setting

We apply our load balancing approach to a set of artificial

SN-MASs with explicit communities which were used in

[13]. Each SN-MAS consists of 1024 agents partitioned into

64 communities, each with 16 agents. Next, we connect the

agents randomly, with the probability pintra for agents to

connect to their intra-community members, and pinter for

agents to connect to the intercommunity individuals. The

probabilities pintra and pinter are chosen to create a network

with a community structure (here, we set pinra/pinter=4).

Finally, we assign weight (migration cost) to the connec-

tions: intra-community connections are given the weight of

U(0, 1) (U(a, b) returns a value distributed over the interval

(a,b] uniformly), while those between communities are set

to U(2, 3).
The capacity of each agent is given as U(0, 20) and we

assume that there are 10000 tasks waiting to process in the

system. We set the system loads associated with these tasks

equal to the total capacities of agents (i.e., the system’s

average utilization ū=1) and distribute these system loads to

tasks uniformly. Next, we distribute these tasks over agents

as follows: 1) Simulating the loads of communities: we use

the Gauss distribution N(μ, σ2) to simulate the utilization

of each community. The parameter μ represents the average

utilization of all communities, and σ represents the standard

deviation of community utilization (here, we set μ=σ=1).

The load that each community undertakes is given by its

utilization multiply its capacity. 2) Distributing tasks to com-
munities: we distribute tasks to communities randomly (tasks

would not be distributed to a certain community if the total

loads of that community reach the bound value simulated in

step 1)). When a task is distributed to a community, the

location (agent) in that community is randomly selected.

Finally, the influence factors α and β, providing for the

benefit involved in calculating the net profit for the internal

and the boundary agents, are set to 10 and 20, respectively.

We compare our migration cost-sensitive load balancing

approach with three migration cost-ignorant algorithms: the

load-based random algorithm, the benefit-based greedy al-

gorithm, and the agent-based probability algorithm.

132

• The load-based random model (Random model). An

overloaded agent selects a task from its local task set

randomly, and migrates this task to the neighbor agent

that has the lightest load [16].

• The benefit-based greedy model (Greedy model). An

agent executes the optimal load balance process that has

the maximum benefit value [3].

• The agent-based probability model (Probability
model). A task(agent) probabilistically decides to join

or leave a node based on the number of tasks queuing

at that node [4].

We evaluate the performance of these methods by the

system global load balance benefit (E) and the migration

cost (Q). We are charged the migration cost each time a

task is migrated between agents. The system global load

balance benefit is computed as follows: let the initial system

utilization standard deviation be SD(0), and as the load bal-

ancing progresses, the system utilization standard deviation

becomes SD(t) at time t. Then, we have the system load

balance benefit, E(t) at time t is: E(t)=1−SD(t)/SD(0).

B. Simulation results

Figure 2 shows the community utilizations before and

after load balancing. The x-axis represents the community

identity, and the y-axis is the community’s utilization. From

Figure 2, we can determine that our load balancing approach

can reduce the imbalance of community utilizations: having

heavily-burdened communities send their excess loads out

to alleviate their high load level (e.g., the utilization of

community 14 is 1.5 before load balancing, it drops down to

1.0 after load balancing) and the light-burdened communities

receive these excess loads to improve the system perfor-

mance (e.g., the utilization of community 48 is 0 before

load balancing, it rises up to 0.9 after load balancing).

Figure 3 shows the performances of the community-aware

(Our model), load-based random (Random model), benefit-

based greedy (Greedy model) and agent-based probability

(Probability model) load balancing algorithms with respect

to the system benefit. The x-axis denotes the system time

and the y-axis represents the system benefit. From the

experimental results in Figure 3, we have the following

observations: 1) In the early stages, the Greedy, the Proba-

bility and the Random models outperform our model. This

can be explained by the fact that in the earlier stages,

the load balance decision-making by the boundary agent

of our model attempts to minimize the load unfairness of

communities, which might make no contribution to system

load fairness from a single agent’s perspective. 2) As the load

balancing proceeds, our model gains a higher benefit than the

others and can eventually reach as high as 0.96. The reason

is that the agents in the community-ignorant models (i.e.,

Greedy, Probability and Random) only focus on minimizing

load unfairness from their own local domain perspectives.

Obviously, this will lead the system to converge to a locally

balance state. In contrast to these models, our community-

aware model does not only balance the load within local

domain (internal load balancing) but also reduces the load

unfairness from community’s perspective (boundary load

balancing), thereby making the system converge to a global

load fairness state. 3) Our model converges to the stable

state faster than other models. This can be explained as

follows: when the boundary agents have balanced the loads

of communities, it will be easy for the internal agents to

converge to the local intra-community fair state due to the

dense interactions within communities.

Figure 4 evaluates the migration costs of these algorithms.

From this figure, we can observe that the overhead migration

cost of our migration cost-sensitive model is less than those

of the Probability, the Random and the Greedy models. This

is because these migration cost-ignorant approaches only

Figure 2: Community utilization comparison between before load balancing
and after load balancing.

Figure 3: Performance comparison of load balancing algorithms in terms
of system benefit E.

Figure 4: Performance comparison of load balancing algorithms in terms
of movement cost Q.

133

Table I: Results of different α and β

Case α β E Q
1 2 4 0.9084 2146
2 4 8 0.9149 2348
3 6 12 0.9195 2845
4 8 16 0.9207 3385
5 10 20 0.9249 4022
6 12 24 0.9286 4672
7 14 28 0.9291 5255
8 16 32 0.9301 5726
9 18 36 0.9374 6302

10 20 40 0.9337 6805

aim to minimize the load imbalance of agents and do not

consider the migration cost at all, which definitely will incur

tremendous overhead migration costs.

Finally, we investigate the effect of the influence factors

α and β, providing for the benefit involved in calculating

the net profit for the internal and boundary agents. We vary

the value of α from 2 to 20 with intervals of 2, and vary the

value of β from 4 to 40 with intervals of 4. The results of

these test cases are shown in Table I. From Table I, we can

find that when α and β become larger, the gained benefit

increases slightly as well, while the overhead migration cost

increases rapidly. This can be explained by the fact that

the larger α and β are, the greater influence of the benefit

of a load balance process. Consequently, the agents are

more likely to execute the process that has a larger benefit

value, ignoring the overhead migration cost. Therefore, the

coefficients α and β should be set properly to make a

tradeoff between the system benefit and the migration cost.

VI. CONCLUSION

In this paper, we devise a migration cost-sensitive load

balancing mechanism to address the load balancing problem

for SN-MASs with communities. In our mechanism, the

internal agents execute the optimal load balance process

that has the maximum net profit value, thereby alleviating

system local load unfairness and reducing the migration cost.

A boundary agent migrates its community’s excess loads

to the neighbor communities first, and later performs load

balancing within its community, thereby making the system

converge to the global load fairness state. The simulation

results demonstrate that there are three advantages of our

load balancing mechanism. First, the mechanism makes the

system converge to an approximately perfect fair load distri-

bution state. Second, the mechanism converges to the steady

state faster than other load balancing models that ignore

the community structure. Third, the mechanism reduces the

overhead migration cost significantly compared with the

previous migration cost-ignorant approaches.

In this paper, we make the restrictive assumption that

tasks are independent. However, in real-world applications,

tasks might be interdependent; that is, there exist social

communications among tasks [3]. This property will involve

significant communication load for the agents where the

tasks are queuing. Therefore, in the future, we will extend

our load balancing model such that it takes the communica-

tion load into consideration.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation
of China (No.61170164), the Funds for Distinguished Young Scholars of
Jiangsu Province of China (No.BK2012020), and the Program for Distin-
guished Talents of Six Domains in Jiangsu Province of China (No.2011-
DZ023).

REFERENCES

[1] W. Chen, Z. Liu, X. Sun, and Y. Wang, ”Community Detection in
Social Networks Through Community Formation Games”, Proceed-
ings of the Twenty-Second International Joint Conference on Artificial
Intelligence(IJCAI-11), pp.2576-2581, Barcelona, Spain, July 16-22,
2011.

[2] Y. Jiang, Y. Zhou, and W. Wang, ”Task Allocation for Undependable
Multiagent Systems in Social Networks”, IEEE Transactions on Par-
allel and Distributed Systems, 24(8): 1671-1681, 2013.

[3] K.P. Chow and Y.K. Kwork, ”On Load Balancing for Distributed Mul-
tiagent Computing”, IEEE Transactions on Parallel and Distributed
Systems, 13(8): 787-801, 2002.

[4] J. Liu, X. Jin, and Y. Wang, ”Agent-based Load Balancing on Ho-
mogeneous Minigrids: Macroscopic Modeling and Characterization”,
IEEE Transactions on Parallel and Distributed Systems, 16(7): 586-
598, 2005.

[5] C.C. Hui and S.T. Chanson, ”Hydrodynamic Load Balancing”, IEEE
Transactions on Parallel and Distributed Systems, 10(11): 1118-1137,
1999.

[6] Y. Jiang and J. Jiang, ”Contextual Resource Negotiation-Based Task
Allocation and Load Balancing in Complex Software Systems”, IEEE
Transactions on Parallel and Distributed Systems, 20(5): 641-653,
2009.

[7] Y. Jiang and Z. Li, ”Locality-Sensitive Task Allocation and Load Bal-
ancing in Networked Multiagent Systems: Talent Versus Centrality”,
Journal of Parallel and Distributed Computing, 71(6): 822-836, 2011.

[8] B. Godfrey, K. Lakshminarayanan, S. Surana and R. Karp, ”Load
Balancing in Dynamic Structured P2P Systems”, Proceedings of the
Twenty-third Annual Joint Conference of the IEEE Computer and Com-
munications Societies (INFOCOM-04), pp.2253-2262, Hong Kong,
March 7-11, 2004.

[9] Y. Zhu and Y. Hu, ”Efficient, Proximity-Aware Load Balancing for
DHT-based P2P Systems”, IEEE Transactions on Parallel and Dis-
tributed Systems, 16(4): 349-361, 2005.

[10] J. Hu and R. Klefstad, ”Decentralized Load Balancing on Unstruc-
tured Peer-2-Peer Computing Grids”, The Fifth IEEE International
Symposium on Network Computing and Applications, pp.247-250,
Massachusetts, USA, July 24-26, 2006.

[11] M. Girvan and M.E.J. Newman, ”Community Structure in Social
and Biological Networks”, Proceedings of the National Academy of
Sciences of the United States of America, 99(12): 7821-7826, 2002.

[12] A. Barrat, M. Barthlemy, R.P. Satorras, and A. Vespignani, ”The
Architecture of Complex Weighted Networks”, Proceedings of the
National Academy of Sciences of the United States of America,
101(11): 3747-3752, 2004.

[13] M.E.J. Newman, ”Analysis of Weighted Networks”, Physical Review
E, 70(5): 056131, 2004.

[14] S. Penmatsa and A.T. Chronopoulos, ”Game-Theoretic Static Load
Balancing for Distributed Systems”, Journal of Parallel and Distribut-
ed Computing, 71(4): 537-555, 2011.

[15] S. Kraus, O. Shehory, and G. Taase, ”Coalition Formation with
Uncertain Heterogeneous Information”, Proceedings of the Second In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS-03), pp.1-8, Melbourne, Australia, July 14-18, 2003.

[16] A. Chavez, A. Moukas, and P. Maes, ”Challenger: A Multi-Agent
System for Distributed Resource Allocation”, Proceedings of the First
International Conference on Autonomous Agents (ICAA-97), pp.323-
331, California, USA, February 05-08, 1997.

134

