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Reliable Task Allocation with Load Balancing in Multiplex Networks
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In multiplex networks, agents are connected by multiple types of links; a multiplex network can be split
into more than one network layer that is composed of the same type of links and involved agents. Each
network link type has a bias for communicating different types of resources; thus, the task’s access to the
required resources in multiplex networks is strongly related to the network link types. However, traditional
task allocation and load balancing methods only considered the situations of agents themselves and did
not address the effects of network link types in multiplex networks. To solve such problem, this paper
considers both link types and agents and substantially extends the existing work by highlighting the effect
of network layers on the task allocation and load balancing; two multiplex network-adapted models of task
allocation with load balancing are then presented, which are network layer-oriented allocation and agent-
oriented allocation. Moreover, this paper addresses the unreliability in multiplex networks, which includes
the unreliable links and agents, and implements a reliable task allocation based on a negotiation reputation
and reward mechanism. Our findings show that both of our presented models can effectively and robustly
satisfy the task allocation objectives in unreliable multiplex networks; the experiments prove that they
can significantly reduce the time costs and improve the success rate of tasks for multiplex networks over
the traditional simplex network-adapted task allocation model. Lastly, we find that our presented network
layer-oriented allocation performs much better in terms of reliability and allocation time compared to our
presented agent-oriented allocation, which further explains the importance of network layers in multiplex
networks.
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1. INTRODUCTION
The interest in developing networked distributed systems has increased over the past
decade [Liu et al. 2005; Abdallah and Lesser 2007; Das and Islam 2012]. In fact, most
network applications, such as social networks, transportation networks, and P2P net-
works, can be viewed as networked multiagent systems (NMASs), in which agents
represent the autonomous nodes and interaction relations represent the interconnec-
tions among nodes [Das and Islam 2012; Jiang and Huang 2012; Ye et al. 2013]. The
concept of NMASs enables users to represent networked distributed systems at an ab-
stract level without addressing the particulars of the target systems [Abdallah and
Lesser 2007]. When a NMAS intends to execute tasks, these tasks will be allocated to
some agents according to a certain criterion, which is called task allocation [Shehory
and Kraus 1998; Kraus and Plotkin 2000]; if too many tasks are crowded on certain
agents, tasks could be switched from heavy-burdened agents to light-burdened ones to
reduce the waiting time of tasks at agents, which is called load balancing [Liu et al.
2005].

In NMASs, some resources are placed within the networks and can be accessed by
agents to execute tasks. Therefore, many existing models of task allocation and load
balancing have been implemented based on the accessibility of required resources [An
et al. 2011; Weerdt et al. 2012; Jiang and Jiang 2009; Jiang et al. 2013b], i.e., an a-
gent’s probability of being allocated tasks is determined by its accessibility to required
resources for the tasks. Most existing studies on this subject are based on the assump-
tion that all the links in the network are of the same type, i.e., the underlying network
is assumed to be simplex.

However, in reality, multiplex networks are often seen where there are multiple
types of links between agents [Gómez-Gardeñes et al. 2012; Yaǧan and Gligor 2012;
Szell et al. 2010; Brummitt et al. 2012]. In multiplex networks, each type of links may
have different relative biases in communicating different types of resources [Yaǧan
and Gligor 2012]. For example, in a multiplex transportation network, an express let-
ter may prefer air transportation, but bulk goods may prefer railway transportation;
in a multiplex social network, the friendship links easily communicate entertainmen-
t resources, but scientific collaboration links easily communicate academic resources
[Gómez-Gardeñes et al. 2012]. Therefore, an agent’s accessibility to a resource is deter-
mined not only by the localities of the agent and the resource in the network but also by
the link types between them.

To address the above situation in multiplex networks, this paper extends the exist-
ing resource based task allocation and load balancing approaches as follows: 1) the
resource negotiation between agents considers both the agent localities in networks
and the link types with varying communication biases for different resources; 2) the
accessibility of an agent for resources is measured by both the communication dis-
tances and the link types; and 3) the targets of task allocation and load balancing
include not only agents but also network layers.

Moreover, agents are often attributed to different organizations due to the multi-
plicity of the agents’ links [Szell et al. 2010]. Therefore, some agents may not provide
reliable resources for other agents in different network layers, and some types of links
may also be unreliable for communicating certain types of resources. Therefore, the
problem of unreliable resources [Jiang et al. 2013b; Ohtsuki et al. 2006] needs to be
solved in the multiplex networks.

Thus, this paper’s main contribution is to present systematic research on reliable
task allocation with load balancing in multiplex networks, which extends previous
benchmark works by introducing the factor of multiple link types into task alloca-
tion for the first time. The rest of this paper is organized as follows. In Section 2, we
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compare our work with the related work on the subject; in Section 3, we present the
problem description; in Section 4, we model the multiplex networks; in Section 5, we
propose the model of reliable task allocation with load balancing; in Section 6, we pro-
vide the experimental results; finally, we discuss and conclude our paper in Section
7.

2. RELATED WORK
To the best of our knowledge, systematic previous works on task allocation and load
balancing for multiplex networks have not yet been presented. We now introduce the
related work of task allocation and load balancing in simplex networks and unreliable
systems; then, we introduce the related work of multiplex networks.

2.1. Task Allocation and Load Balancing in Simplex Networks
Existing related studies in simplex networks can be categorized as follows: 1) self-
owned resource-based methods vs. contextual resource-based methods (according to
the resource negotiation mechanisms for tasks); 2) centralized control methods vs. dis-
tributed control methods (according to the allocation control mechanisms); and 3) pas-
sive adaptation vs. proactive adjustment for networks (according to the adjustment
mechanism for the constraints of network structures).

2.1.1. Self-Owned Resource-Based Methods vs. Contextual Resource-Based Methods. Many
related works have aimed to optimize the execution time of tasks. Task execution in
NMASs can be described via the agents’ operations when accessing required resources
in the networks [Liu et al. 2005; An et al. 2011; Weerdt et al. 2012; Jiang et al. 2013b];
therefore, resource accessibility can significantly influence the task’s execution time.
Many related works have been implemented based on two types of resources: 1) a
self-owned resource-based approach implemented based on the agents’ self-owned re-
sources status, i.e. an agent’s probability of being allocated tasks is determined only
by its self-owned resources [Liu et al. 2005; Kraus and Plotkin 2000]; and 2) a con-
textual resource-based approach implemented based on not only the agent’ self-owned
resources status but also their contextual resources status because agents may cooper-
ate with others within their contexts when they execute tasks [Jiang and Huang 2012;
Jiang and Jiang 2009].

Generally, previous works have assumed that the underlying networks are simplex.
In comparison, our study considers the characteristics of multiple links in the commu-
nicating paths for resources and implements the task allocation and load balancing
based not only on the situations of agents’ resources but also on the situations of net-
work layers’ resources.

2.1.2. Centralized Control Methods vs. Distributed Control Methods. Related works can also
be categorized into centralized and distributed approaches according to their alloca-
tion control mechanisms [Zhang et al. 2012]. In the centralized approach, a central
controller needs to know the information of the whole system to implement task al-
location [Fjuita and Lesser 1996]. In the distributed approach, a central controller is
not necessary; a typical distributed method is the contract net protocol [Smith 1980],
a wellknown task sharing protocol in which each agent in a network can be a manager
or a contractor at different times or for different tasks.

In our previous work [Jiang and Jiang 2009], we provided a spectrum between a
totally centralized approach and a totally decentralized approach to task allocation:
the manager is selected by the centralized heuristic that can be utilized to control the
overall status information, and the contractors are selected by the distributed heuristic
that can be utilized to achieve the flexibility of task allocation in large NMASs. In our
previous study [Jiang and Jiang 2009], the manager is fixed throughout the whole
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allocation process for one task; in comparison, this paper proposes a method where
the manager can be altered during the allocation process according to the current
intermediate allocation results. This mechanism allows the manager to be adaptable
to current network structures. Moreover, both agents and network layers can act as
the manager/contractor in this paper.

2.1.3. Passive Adaptation vs. Proactive Adjustment for Network Structures. To consider the ef-
fects of network structures in task allocation and load balancing, the related work can
be categorized into two types.

The first type is a passive adaptation approach, in which task allocation is imple-
mented by passively satisfying the constraints of the network structure. For example,
Weerdt et al. [2012] developed an algorithm based on the contract-net protocol to im-
plement distributed task allocation for social networks.

Another type is a proactive adjustment approach, in which task allocation is imple-
mented by proactively adjusting network structures to improve the performance. Kota
et al. [2012] presented a decentralized approach to structural adaptation by explicitly
modeling problem-solving agent organizations. Their approach enables agents to mod-
ify their structural relationships to improve the allocation of tasks; and agents can set
the edge weights to either 0 (disconnected) or 1 (connected) for task allocation.

Overall, the works described above did not consider the multiplicity of links in the
network. In comparison, our study satisfies the multiplex characteristics of links in
multiplex networks.

2.2. Task Allocation and Load Balancing in Unreliable Systems
Various studies have addressed unreliable systems to a certain extent using game the-
ory and mechanism design. For example, a representative work by Weerdt et al. [2012]
presented a mechanism design approach that can incentivize self-interested agents to
correctly report their private information; Zlotkin and Rosenschein [1991] presented a
negotiation mechanism that can address incomplete information and deception in un-
reliable systems; Shehory and Kraus [1998] presented algorithms for task allocation
among agents via coalition formation, which can motivate the agents to act in order
to maximize the benefits of the system as a whole so that the deceptive problem can
also be addressed to a certain extent. However, these approaches did not consider the
objective of minimizing the access time of resources in networks, which is crucial to
the performance of task execution in NMASs. Furthermore, they also did not consider
the multiple link characteristics of multiplex networks.

In our previous work [Jiang et al. 2013b], we presented a task allocation model for
unreliable multiagent systems in simplex social networks, which can achieve reliable
resources with the least access time to execute tasks. However, the work did not con-
sider the multiplicity of links in the network. In comparison, this paper substantially
extends the model in our previous study [Jiang et al. 2013b] by considering the charac-
teristics of links in multiplex networks and implementing reliable task allocation not
only to agents but also to network layers.

2.3. Multiplex Networks
Many real-world systems can be modelled as a set of interdependent networks or net-
works with multiple types of connection links, which are called multiplex networks
[Salehi et al. 2014; Lee et al. 2012]. In multiplex networks, agents are connected by
multiple types of links [Yaǧan and Gligor 2012]; for example, people in a multiplex so-
cial network interact via their friendships, family, or colleague relationships. In multi-
plex networks, each type of links may have different relative biases in communicating
different types of resources [Yaǧan and Gligor 2012]; for example, in a multiplex trans-
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portation network, an express letter may prefer air transportation, but bulk goods may
prefer railway transportation. Therefore, the communication in multiplex networks
should consider the factors of link characteristics and network layers.

Generally, the existing studies of multiplex networks mainly include the following
three aspects: modeling the structures of multiplex networks, diffusion processes in
multiplex networks, and cooperation in multiplex networks [Boccaletti et al. 2014]

2.3.1. Modeling the Structures of Multiplex Networks. In related work, how to model the
structural characteristics of multiplex networks is a crucial problem [Jiang and Jiang
2014]. For example, Gómez et al. [2013] modeled the multiplex networks as structured
multi-level graphs in which the interconnections between the layers determine how
a given agent in a layer and its counterpart in another layer are linked and influence
each other; Buldyrev et al. [2010] presented a method for modeling multiplex networks
that concerned the coupling and interdependence among different networks. In this
paper, we mainly model the structures of multiplex networks based on our previous
conference paper [Jiang et al. 2013a] that modeled a multiplex network as a set of
associative network layers; in our model, each network layer is composed of links of
the same type and the involved agents and is associated with different communication
biases for different types of resources.

2.3.2. Diffusion Processes in Multiplex Network. Recently, there are a non-trivial amount
of related studies that concerned about the diffusion processes in multiplex networks
[Salehi et al. 2014]. In related studies on the diffusion in multiplex networks, a com-
mon method is extending the existing diffusion models in simplex networks by consid-
ering the multiplicity of links [Li and Jiang 2014]. Two typical classes of approaches
are: generalizing the epidemic model and the threshold model in simplex networks
to the multiplex networks. For example, Cozzo et al. [2013] extended the traditional
epidemic model in simplex networks, SIS (susceptible-infected-susceptible) model, and
proposed a contact-based Markov chain approach to study epidemic-like social conta-
gion in multiplex networks; Brummitt et al. [2012] studied cascades in multiplex social
networks by generalizing the threshold diffusion model, in which an agent activates if
a sufficiently large fraction of its neighbors in any type of link are active.

2.3.3. Cooperation in Multiplex Networks. Cooperation in multiplex networks is another
issue in existing studies, where game theory is often used. It is generally accepted that
interdependence between network layers in multiplex networks does promote cooper-
ation by means of organizational complexity and enhanced reciprocity that is out of
reach on isolated networks; then, Wang et al. [2013] determined how strong the inter-
dependence between the network layers really ought to be for the optimal promotion
of cooperation. Gómez-Gardeñes et al. [2012] showed that multiplexity enhances the
resilience of cooperation to defection, which relies on a nontrivial organization of coop-
erative behavior across network layers. On the other hand, Wang et al. [2014] found
that degree mixing in two-layer scale-free networks impedes the evolution of coopera-
tion.

Overall, the existing studies on multiplex networks mainly considered the aspects
of structural modelling, diffusion processes, and cooperation. However, they did not
address the issues of task allocation and load balancing. Therefore, this paper investi-
gates the task allocation and load balancing in multiplex networks for the first time.

3. PROBLEM DESCRIPTION
3.1. Task Allocation with Load Balancing in NMASs

3.1.1. Formal Definitions
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Definition 3.1 (Task Allocation in NMASs). [Jiang et al. 2013b]. Given a NMAS,
N =< A;E >, where A is the set of agents and each agent owns a different set of
resources, and ∀ai; aj ∈ E indicates the existence of a network link between agent ai

and aj , the set of resources in agent ai is assumed to be Rai, and the set of resources
required by task t is assumed to be Rt. If task t arrives at the network, the task allo-
cation in NMAS can be defined as the mapping of task t to a set of agents, At, which
can satisfy the following situations:

1) The resource requirements of t can be satisfied, i.e.,Rt ⊆ ∪∀ai∈AtRai ;
2) The predefined objective can be achieved by the task execution of At, such as

minimizing the execution time [Ma et al. 1982] or maximizing the reliability [Shatz et
al. 1992].

3) The agents in At can execute the allocated tasks under the constraint of the net-
work structure, e.g. ∀ai; aj ∈ At ⇒ Pij ⊆ E, where Pij denotes the negotiation path
between ai and aj .

If an agent has a higher probability of accessing the necessary resources for tasks, it
may be allocated with more tasks. However, if too many tasks are crowded on certain
agents with high probabilities of accessing the tasks’ required resources, the tasks will
require significantly more time to wait for the necessary resources [Liu et al. 2005;
Jiang and Huang 2012; Jiang and Jiang 2009]. Moreover, the problem of waiting time
may outweigh the advantage of the time saved by accessing resources at the allocated
agents; therefore, we should now apply load balancing to the task allocation.

Definition 3.2 (Load Balancing in Task Allocation). Given a NMAS, N =< A;E >,
where A is the set of agents, ∀ai ∈ A, the team of tasks that queue for resource rk of
agent ai can be denoted as Qik. The size of Qik is sik and the processing capability of ai

is vi; the original probability of agent ai to receive tasks (which need k type resources)
is Pi(k). We should perform load balancing when sik is too large, which is implemented
by adjusting the probability of ai’s receiving new tasks:

P
0

i (k) =  (sik=vi) · Pi(k) (1)

where  is an attenuation function, 0 ≤ ≤ 1; the value of  (sik=vi) decreases monoton-
ically from 1 to 0 as sik=vi increases.

3.1.2. Objectives of Task Allocation with Load Balancing in Unreliable NMASs. One of the main
goals of task allocation is to minimize the task execution time [Liu et al. 2005; Shehory
and Kraus 1998; An et al. 2011; Jiang and Jiang 2009; Ma et al. 1982; Chow and Kwok
2002; Xu et al. 2011]. Task execution in NMASs can be described as the operations of
agents when accessing the necessary resources distributed in the networks [An et al.
2011; Weerdt et al. 2012; Jiang and Jiang 2009]. Therefore, one of the key problems in
reducing the execution time of a task is to reduce the time used to access the resources
necessary for the task [Jiang and Huang 2012; Jiang et al. 2013b; Chow and Kwok
2002; Xu et al. 2011; Hong et al. 2007]. In a NMAS, the resource access time includes
two factors [Xu et al. 2011]: 1) the communication time between the allocated agents
in the network,

P
∀ai;aj∈At

Cij ; and 2) the task’s waiting time for resources at the a-
gents,

P
∀ai∈At

Wti. (At is the set of agents allocated to task t, Cij is the communication
time between at and aj , and Wti is the waiting time of task t at agent ai.).

Moreover, if an allocated agent is unreliable in the NMAS and cannot provide the
desired resources, the other allocated agents will require more time to seek the miss-
ing resources. A new task allocation may be implemented if the task cannot obtain the
necessary resources, which will waste additional time. Therefore, we should guaran-
tee reliable resource access as well as minimize resource access time to reduce
task execution time in unreliable NMASs.
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Thus, the objective of task allocation with load balancing in unreliable N-
MAS is to select the agent set, At, to satisfy the following situation:

At = argminAt⊆A((

Communication timez }| {X
∀ai;aj∈At

Cij| {z }
T ask allocation

+

W aiting timez }| {X
∀ai∈At

Wti| {z }
Load balancing

)=

Reliabilityz }| {
Rel(At)| {z }

Reliable allocation

) (2)

where Rel(At) is the probability that At can contribute reliable resources for task t. To
reduce the communication time and waiting time, we should implement effective task
allocation and load balancing; to improve the reliability, we should implement reliable
task allocation.

3.2. New Problems Taken by Multiplex Networks
Multiplex networks arise when agents are connected by multiple types of links
[Gómez-Gardeñes et al. 2012; Yaǧan and Gligor 2012; Szell et al. 2010; Brummitt et
al. 2012], where each type of links may have a different relative bias and reliability
for communicating a different type of resources. Each type of links and the involved a-
gents comprise a network layer. In summary, the new problems of task allocation with
load balancing in unreliable multiplex networks can be described as follows:

— The communication time between agents in the multiplex network is influenced by
the link types along their communication paths. Therefore, Cij in Equation (2) and
the resource negotiation model between agents should be adjusted for multiple link
types.

— Each network layer has different reliability for communicating different types of re-
sources, and an agent may have different reliability when it is attributed to different
network layers. Therefore, Rel(At) in Equation (2) should consider the effects of net-
work layers.

— The tasks may wait not only at individual agents but also at network layers that are
composed of the same types of links and involved agents. Therefore, the waiting time
in Equation (2) should also consider the factor of network layers.

To solve the above problems, we adopt the following measures in this paper:

— We devise a new model to negotiate resources between agents in multiplex networks.
With this resource negotiation model, an agent’s accessibility to a resource is deter-
mined by the link types as well as the communication distance between the agent
and the resource.

— We present new definitions for the reliability of agents and network layers and devise
a new reliable task allocation model based on both agents and network layers.

— We present a new load balancing mechanism, which adjusts the probabilities of a-
gents and associated network layers to obtain new tasks if too many tasks are crowd-
ed on certain agents. The new load balancing mechanism can alleviate both the wait-
ing time at heavily burdened agents and the waiting time at highly congested net-
work layers.

4. MODELING MULTIPLEX NETWORKS
4.1. Network Layers in Multiplex Networks

Definition 4.1 (Network layer in multiplex network). In a multiplex network, the
same type of links and involved agents comprise a network layer. Assume that the
links in the multiplex social network, N =< A;E >, are classified into � different
types 1,: : :, �. N can then be split to � network layers. Each network layer, Nx, where
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1 ≤ x ≤ �, is defined as follows:

N = {Nx| Nx =< Ax; Ex > ∧Ax ⊆ A ∧ Ex ⊆ E ∧ (∀exi; exj ∈ Ex ⇒ lexi = lexj )} (3)

where exi and exj are the links in the network layer Nx, lexi and lexj denote the types
of exi and exj .

In a multiplex network, each agent may associate with different network layers and
other agents.

Definition 4.2 (Associated network layers and agents). Given a multiplex network,
N =< A;E >; ∀ai ∈ A, the associated network layers of ai are defined as the set of
network layers that have direct or indirect links with ai. Thus, the associated network
layers of ai with d hops are defined as follows:

ANai(d) = {Nx|Nx ∈ N ∧ h(ai; Nx) = d} (4)

where h(ai; Nx) denotes the hops from ai to Nx:

h(ai; Nx) = min
∀aj∈Ax

h(ai; aj) (5)

where h(ai; aj) denotes the hops between ai and aj in the network, and the hops be-
tween two adjacent agents is set to 1. Then, the dth-order set of associated agents of ai

is:

AAai
(d) = {Ax|∀Nx ∈ ANai

(d)} (6)

In NMASs, some resources are placed at agents within the network and can be ac-
cessed by agents to execute tasks. A resource at an agent can be communicated and
accessed by other agents. Based on the benchmark work in a previous study [Yaǧan
and Gligor 2012], the resource communication relevant to link types in multi-
plex networks is set as follows in this paper:

Let there be m types of resources in the multiplex social network N =< A;E >; N can
be split to � network layers. Each network layer, ∀Nx ∈ N , is associated with a parame-
ter, cxk(1 ≤ x ≤ �; 1 ≤ k ≤ m), for k-type resources that measures the relative bias speed
Nx has in communicating k-type resources. The value of cxk negatively correlates with
the communication time cost necessary for the k-type resources in Nx.

4.2. Tasks and Resource Negotiation in Multiplex Networks
Without the loss of generality, task execution in NMASs can be described via the oper-
ations of agents when accessing necessary resources distributed in the networks [An
et al. 2011; Weerdt et al. 2012; Jiang and Jiang 2009; Jiang et al. 2013b]. Therefore, a
task can be decomposed into < operations; resources >. Each task can be implemented
if its required resources are all satisfied, or else it will wait for the resources. The ex-
ecution of a task can be simply described as follows: 1) access the required resources
(if the resources are occupied by other tasks, this task should wait until the resources
are freed); 2) carry out the operations while all resources are satisfied; 3) free the oc-
cupied resources after the operations are finished. Let the set of operations of a task,
t, be OPt = {opt1, opt2; : : : ; optn}. The set of resources for each operation is Ropi, where
1 ≤ i ≤ n. Thus, the total task execution time is defined as follows:

Et =
X
opti

(exec−time(opti) + resource−access−time(Ropti
)) (7)

Therefore, the execution time of a task is composed of two parts, one is the real
executing time of operations, and the other is the time for accessing resources.
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The operations in tasks are related to real applications, and the operations in d-
ifferent real tasks may significantly vary. Therefore, this paper only focuses on the
optimization of resource access in multiplex social networks (Eq.(2)), which is crucial
to the performance of tasks in NMASs, as stated in Section 3.1.2.

When some agents attempt to access the resources of other agents to execute tasks,
they should negotiate the resources in the multiplex networks; and resources of an
agent can be communicated via the negotiation path to another agent.

We now design the algorithm to compute the resource negotiation path in multiplex
networks. Let the multiplex network be N =< A;E >= {< Ax; Ex > |1 ≤ x ≤ �}.
The algorithm to compute the resource negotiation path in multiplex networks is
described in Algorithm 1. We assume that the communication time of two adjacent
agents within the same network layer, Nx, for k-type resources is 1=cxk. P k

ij denotes the
k-type resource negotiation path between ai and aj ; Ck

ij denotes the communication
time for accessing a k-type resource along P k

ij , and < ai; aj >x denotes the x-type link
between ai and aj .

———————————————————————————————————————–
Algorithm 1. Resource negotiation path between two agents for k-type resource in the
multiplex networks.———————————————————————————————————————–
/*Reduce the multiplex network to a weighted single layer network*/
For (i = 1; i � jAj; i++)

For (j = 1; j � jAj; j ++)
fb =1;x� = 0;
For (x = 1;x � �;x++)
fIf there is a x-type link between ai and aj , then:
fIf cxk < b, then:fb = cxk;x

� = xg;gg
If b 6=1, then: fP k

ij = f< ai; aj >x�g;Ck
ij = 1=bg

else:fP k
ij = ;;Ck

ij =1g;g
/* Compute the shortest resource negotiation paths and minimum communication time costs */
For (m = 1;m � jAj;m++)

For (i = 1; i � jAj; i++)
For (j = 1; j � jAj; j ++)

If Ck
ij > (Ck

im + Ck
mj),

then:fP k
ij = P k

im [ P k
mj ;C

k
ij = Ck

im + Ck
mjg;

Output P and C.———————————————————————————————————————–

4.3. Unreliable Situations in Multiplex Networks
In multiplex networks, each type of links may have different relative biases for com-
municating different types of resources [Yaǧan and Gligor 2012]. Thus, the commu-
nication of some resources on some network links may be unreliable. Moreover, some
agents may take unreliable actions and cannot contribute reliable resources for ex-
ecuting tasks due to the openness and heterogeneity of NMASs [Weerdt et al. 2012;
Ohtsuki et al. 2006]. Therefore, the unreliable situations to access resources in task
execution in multiplex networks include two aspects: unreliable network links and
unreliable agents.

4.3.1. Unreliable Network Links. The information loss rate is a very important perfor-
mance measure for most network communication systems [Zhou et al. 2007]. There-
fore, we also present the concept of the resource loss rate of x-type links for communi-
cating k-type resources, Lk

x, to measure the reliability of links in multiplex networks:

Lk
x = (nk

x − nk
0

x )=nk
x (8)
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where nk
x is the total number of k-type resources communicated via the network layer,

Nx (i.e. the x-type links); nk
0

x is the number of k-type resources that are successfully
communicated via Nx. The x-type links are unreliable for k-type resources if Lk

x 6= 0.
The value of Lk

x negatively correlates with the reliability of x-type links for communi-
cating k-type resources.

4.3.2. Unreliable Agents. In our previous work [Jiang et al. 2013b], we modeled the
unreliable agents according to their behaviors toward resources during the periods
of task allocation and task execution, which neglects the variation of resource types.
We now describe the unreliable agents in a multiplex network by considering varying
resource types.

Let there be m types of resources in a multiplex social network. The resource status
of an agent in this network can then be described as Ra =

P
1≤k≤m nkrk, which denotes

that the agent owns k-type resources (1 ≤ k ≤ m) with the amount of nk. We can now
define the unreliable agents as follows:

Definition 4.3 (Unreliable agent). An agent is unreliable if it satisfies one of the
following conditions:

(1) It fabricates its resource status information during task allocation, which can be
described as follows: Let there be an agent, ai; the real resources owned by ai are
Rai =

P
1≤k≤m nkrk. When the task allocation heuristic inquiries into the resource

status of ai and the reported resources status of ai is MRai =
P

1≤k≤m n
0

krk, ai is
unreliable for its k-type resource status information if n

0

k 6= nk.
(2) It does not contribute all its free resources during task execution if the allocated

task requires it to do so, which can be described as follows: Let task t require some
resources from ai, which are denoted as Rt

ai
=
P

1≤k≤m nt
krk. The set of resources

that ai really contributes to task t is Rt
0

ai
=
P

1≤k≤m nt
0

k rk. Let the real resources

owned by ai be Rai
=
P

1≤k≤m nkrk. If nt
0

k 6= nkt ∧ nt
0

k < nk, we can say that ai is
unreliable to contribute k-type resources during task execution.

5. TASK ALLOCATION MODEL
5.1. Resource Accessibility of Agents and Network Layers
As stated above, our task allocation objective is to guarantee reliable resource ac-
cess and minimize resource access time by considering the characteristics
of multiplex networks, which includes two aspects: 1) tasks can receive reliable
resources to be successfully executed in multiplex networks (i.e. the task’s required
resources can be satisfied reliably); and 2) tasks can receive necessary resources to
be efficiently executed in multiplex networks (i.e. the resource access time can be re-
duced). For the first aspect, the tasks should be allocated to the reliable network layers
and agents; for the second aspect, the tasks should be allocated to the network layers
and agents such that resources can be accessed with less time costs.

5.1.1. Negotiation Reputation. In this paper, we use the negotiation reputation to mea-
sure the reliability of an agent or network layer to contribute real resources for exe-
cuting allocated tasks.

Definition 5.1 (Negotiation reputation of an agent). In a multiplex network, each a-
gent is associated with a weight, w−ai(k), for k-type resources, which represents the
negotiation reputation of ai for accessing k-type resources. The initial negotiation
reputation can be set according to the proportourceshe proport251 9.ing to k
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owned by this agent to the average number of k-type resources of all agents in the
network:

w−ai(k) = ni(k)=

�P
∀aj∈A nj(k)

|A|

�
(9)

where ni(k) (or nj(k)) denotes the number of k-type resources of ai (or aj). In reality,
w−ai(k) should be adapted according to the execution results of tasks that require k-
type resources from ai ; e.g. if a task (needing k-type resources from ai ) is successfully
completed, w−ai(k) will be gained and vice versa. The detailed adaptation of w−ai(k)
is demonstrated by the reward mechanism in Section 5.3.

Definition 5.2 (Negotiation reputation of a network layer). The initial negotiation
reputation of a network layer is determined by the initial negotiation reputations of
all agents within the layer and its bias speed for communicating k-type resources, cxk.
Let the network layer be Nx =< Ax; Ex >; the initial negotiation reputation of Nx

for k-type resources is defined as follows:

w−Nx(k) = � ·
X
∀ai∈Ax

w−ai(k) + (1− �) · cxk

(
P
∀Ny∈N cyk)=�

(10)

where 0 ≤ � ≤ 1; � is the number of network link types, i.e. the number of network
layers in a multiplex network, N . Because the numbers of agents in different network
layers may significantly vary, the negotiation reputations of different network layer-
s may differ significantly from each other. Thus, we now present the standardized
w−Nx(k):

ws−Nx(k) = w−Nx(k)=

�P
∀Ny∈N w−Ny(k)

�

�
(11)

The ws−Nx(k) should also be adapted according to the execution results of tasks that
require k-type resources from Nx; e.g. if a task (needing k-type resources from Nx) is
successfully completed, ws−Nx(k) will be gained and vice versa. The detailed adapta-
tion of ws−Nx(k) is demonstrated by the reward mechanism in Section 5.3.

5.1.2. Resource Accessibility. To measure the probability of an agent or a network lay-
er that successfully and efficiently receives resources for allocated tasks in a multiplex
network, we now present the concept of resource accessibility, which includes two part-
s: 1) the reliability that true resources can be obtained, which can be measured by the
negotiation reputations of agents and network layers; 2) the extent that the commu-
nication time required to access resources can be reduced, which can be measured by
the time costs of resource negotiation paths. Moreover, because agents always negoti-
ate resources with other associative agents, the resource accessibility of an agent or a
network layer is also influenced by its associative agents or associative network layers.

Definition 5.3 (Resource accessibility of an agent). Let the multiplex social network
be N =< A;E >; the accessibility of agent ai for k-type resources is defined as follows:

<ai(k) =
X

∀aj∈AAai

�
w−aj(k)·

nj(k)

(
P
∀aj∈A nj(k))=|A|

· 1
Ck

ij

�
+w−ai(k)·

ni(k)

(
P
∀aj∈A nj(k))=|A|

· 1
C∗

(12)
where Ck

ij denotes the time cost for negotiating k-type resources between agent ai and
aj , which is calculated by Algorithm 1; ni(k) denotes the number of k-type resources of
ai; |A| denotes the number of all agents in A; AAai

denotes the all associated agents of
ai; C∗ is defined as C∗ < min∀aj∈AAai

(Ck
ij).
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Definition 5.4 (Resource accessibility of a network layer). Let the multiplex social
network be N =< A;E >; N = {Nx| 0 ≤ x ≤ 1}, where � is the number of network
layers; Nx =< Ax; Ex >. To reduce the communication time required by agents to ne-
gotiate resources in task execution within a network layer, we will select the agents
in this network layer that are more compact; thus, the compactness of agents in the
network layer positively correlates with the resource accessibility of the network layer.
Therefore, the resource accessibility of Nx is determined by the negotiation reputation
of Nx, the resource accessibilities of all agents within Nx, and the distribution of agent
localities in Nx:

<Nx(k) = ws−Nx(k) ·
P
∀ai∈Ax

�
<ai(k) · 1

Ck
ix�

�
(13)

where Ck
ix� denotes the time cost for negotiating k-type resources between agent ai and

ax� , and ax� is the center of network layer Nx for k-type resources:

ax� = argmin∀ai∈Ax(
P
∀aj∈(Ax−{ai}) C

k
ij) (14)

5.2. Task Allocation
5.2.1. Introduction of Allocation Architecture. In our previous work [Jiang and Jiang

2009; Jiang et al. 2013b], we presented a spectrum that ranged from a totally cen-
tralized approach to a totally decentralized approach to task allocation based on the
traditional manger/contractor allocation architecture of the Contract Net Protocol [Ak-
nine et al. 2004]: the centralized heuristic is utilized to control the overall status in-
formation, and the distributed heuristic is utilized to achieve the flexibility of task al-
location. The presented task allocation process in our previous work [Jiang and Jiang
2009; Jiang et al. 2013b] can be described as follows. A task may be first allocated to
one agent using a centralized heuristic. The agent then takes charge of the execution
of the task (we call this agent the manager). When the manager lacks the necessary
resources to execute the allocated task, it negotiates with other agents in the network
for resource assistance using a distributed heuristic; if other agents have the required
resources (we call the agents that provide resources to the manager contractors), the
manager and contractors will work together to execute the task.

In the above approach, the manager is fixed throughout the allocation process of a
task, which is called the fixed manager method; all contractors are selected by the man-
ager, thus it mainly optimizes the communication between the manger and contractors
and does not optimize the communication between all allocated agents.

We now substantially extend the architectures proposed in previous studies [Jiang
and Jiang 2009; Jiang et al. 2013b; Aknine et al. 2004] by presenting a new method
in which the manger is not fixed during the task allocation process. This approach is
called the alterable manger method and can be briefly explained as follows. At first, a
manager is selected for a task by using a centralized heuristic; this manager will then
seek another agent to act as a contractor to obtain the highest resource accessibility
that can satisfy the resource requirements of a task. Next, these two agents become
the already allocated agents. Each agent in the group of already allocated agents will
then act as a manager to seek the next contractor to obtain the highest resource ac-
cessibility that will satisfy the resource requirements of the task. Finally, the optimal
contractor can be allocated, and the new already allocated agents will seek the follow-
ing contractor again. This process will repeat until all resources required by the task
can be satisfied or all agents are allocated. Therefore, the main novelty of the alterable
manager method is that each agent among the already allocated agents for a task can
act as a manager. Thus, this model outperforms the traditional fixed manager method
by allowing agents to use the results of the previously allocated agents when seeking
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Fig. 1. Fixed manager method and alterable manager method in task allocation

an optimal result. Fig. 1 illustrates the difference between the fixed manager method
and the alterable manager method.

Moreover, to consider the characteristics of multiplex networks, the targets of task
allocation include network layers as well as agents, i.e. the managers and contractors
may be network layers or agents. Therefore, we now present two allocation models,
network layer-oriented allocation and agent-oriented allocation. In the network layer-
oriented allocation, the managers and contractors are all network layers; the network
layers satisfying the resource requirements of a task are first allocated, and the final
agents will then be selected from the allocated network layers. However, in the agent-
oriented allocation, the mangers and contractors are agents that are directly selected
from all of the agents in the whole network. These two mechanisms both consider the
link characteristics of multiplex networks.

5.2.2. Network Layer-Oriented Allocation for Multiplex Networks.

1) Allocation of Network Layers

Definition 5.5 (Distance between two network layers). Given a multiplex network,
N =< A;E >; ∃Nx, Ny ∈ N , the negotiation distance between Nx and Ny for k-type
resources is defined as follows:

Dk
xy = Ck

x�y� (15)

where Ck
x�y� denotes the communication time cost for k-type resource negotiation be-

tween agents ax� and ay� , which is calculated according to Algorithm 1; ax� and ay�

are the centers of network layers Nx and Ny, respectively, which can be determined
according to Equation (14).

Let Rt be the set of resources required by task t, Rt the set of resources for task t that
are currently lacking, and RNx the set of resources that owned by network layer Nx.
The resources that Nx may contribute to task t are then defined as Rt∩RNx

; |Rt∩RNx
|k

denotes the number of k-type resources in Rt∩RNx
. Let the manager network layer be

Nx, and let task t require mt types of resources. If Nx attempts to select the contractor
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from other network layers (e.g. Ny), Nx will observe the negotiation value of Ny:

V Ny(t) =
X

1≤k≤mt

(<Ny(k) · |Rt ∩RNx
|k=Dk

xy) (16)

The manager selects the contractor from the candidates according to their negotiation
values arranged in descending order.

Theorem 1. It is assumed that task is t and the negotiation values are correct. Let
the manager be Nx, and let the two contractor candidates be Ny and Nz; S(N) denotes
the degree that the task allocation objective can be satisfied by N . Therefore: V Ny(t) >
VNz(t)⇒ S({Nx} ∪ {Ny}) > S({Nx} ∪ {Nz}).

Proof sketch. According to Equation (2), if we do not consider the task’s waiting
time for resources which is influenced by load balancing, S(N) is determined by two
factors: 1) the negotiation distance between the network layers in N; and 2) the reliabil-
ity that N can contribute real resources. In Equation (16), <Ny(k) includes the negoti-
ation reputation of the network layer that can measure the reliability of the contractor
candidate; |Rt∩RNx |k=Dk

xy is inversely proportional to the negotiation distance between
the allocated network layers. Therefore, V Ny(t) > VNz(t) denotes that the value of the
negotiation reputation divided by total communication time costs of Nx ∪ Ny is higher
than that of Nx ∪Nz . Thus, S(Nx ∪Ny) > S(Nx ∪Nz).

Therefore, the negotiation value in Equation (16) can be used to satisfy the
task allocation objectives in Equation (2) based on Theorem 1. We now use
the alterable manager method to implement network layer-oriented task allocation, as
shown in Algorithm 2.
———————————————————————————————————————–
Algorithm 2. Network layer-oriented task allocation.
———————————————————————————————————————–
1) N� = argmax8Nx2N (<Nx(k)); /*k-type resources are the ones that task t needs mostly*/
2) Rt = Rt �RN� ;N

0 = N � fN�g;Nt = fN�g; b1 = 0; b2 = 0; n = 0;
3) If Rt == ;, then: fb1 = 1g;
4) While ((b1 == 0 and b2 == 0)) do:

4.1) max = 0; b2 = 1;
4.2) 8Ny 2 N 0:

4.2.1) maxtemp = 0;
4.2.2) 8Nx 2 Nt;

4.2.2.1) V Ny(t) =
∑

1�k�mt
(<Ny(k) � jRt \RNx jk=Dk

xy);
4.2.2.2) If V Ny(t) > maxtemp, then:fmaxtemp = V Ny(t)g; /*Now Nx is the manager*/

4.2.3) If maxtemp > max, then:fmax = maxtemp; b2 = 0;Ntemp = Ny; g
4.3) If (b2 == 0), then:fNt = Nt [ fNtempg; Rt = Rt �RNtemp;

N 0 = N 0 � fNtempg; n++; Ntn = Ntemp;g
4.4) If Rt == ;, then: fb1 = 1g;

5) If (b1 == 1), then Return (Nt);
else Return (False);

6) End.
———————————————————————————————————————–

Algorithm 2 is O(|Rt| · �2), where � is the number of network layers.
Let there be a set of network layers N . The resource accessibility of N for k-type

resources can be defined as <N(k) = max∀Nx∈N (<Nx(k)). If the task is t; the set of
allocated network layers by using a network layer-oriented allocation mechanism with
alterable manager manner is Nt, Nt ⊆ N ; and the set of allocated network layers by
using the network layer-oriented allocation mechanism with fixed manager method is
N ′t , N ′t ⊆ N .Thus, the following theorem can be derived:
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Theorem 2. Let the multiplex social network be N = 〈A;E〉, N = {Nx| 1 ≤ x ≤ �},
where � is the number of network layers. If a task, t, needs k-type resources, <Nt(k) ≥
<N ′t(k).

Proof sketch. With the fixed manager method, the manager will seek the contractor
with the highest resource accessibility for k-type resources from the viewpoint of this
fixed manager in each allocation step. Thus, only the resource accessibility of the con-
tractor and the communication time cost between the manager and contractor can be
optimized. With the alterable manager method, each one in already allocated network
layers will act as a manager to seek the contractor with the highest resource accessi-
bility for k-type resources from the manager’s viewpoint. Finally, the contractor candi-
date with the highest negotiation value from all managers will be selected. Thus, the
resource accessibility of a contractor and the minimum communication time cost be-
tween the contractor and the already allocated network layers are optimized. Therefore,
<Nt(k) ≥ <N ′t(k). 2

Theorem 2 proves that our presented alterable manager allocation archi-
tecture outperforms the previous fixed manager allocation architecture by
improving the resource accessibility of allocated network layers.

Theorem 3. Let the set of allocated network layers using Algorithm 2 be Nt and the
first manager be N∗. Another set of network layers, N ′,is then assumed to include N∗
and satisfy all the resources in Rt:

(∀N ′ ∧ (N∗ ∈ N ′) ∧ (N ′ ⊆ N) ∧ (Rt ⊆ RN 0))

⇒
X

∀Ny∈(Nt−{N�})

V Ny(t) ≥
X

∀Ny∈(N 0−{N�})

V Ny(t)

Proof sketch. We can now use reductio ad absurdum to prove Theorem 3. Assume
a set of network layers N ′, N∗ ∈ N ′ ∧ N ′ 6= Nt, that can provide all the required re-
sources for executing task t, and the total negotiation values of N ′ − {N∗} by using
the alterable manager manner is

P
∀Ny∈(N 0−{N�}) V Ny(t); if

P
∀Ny∈(Nt−{N�}) V Ny(t) <P

∀Ny∈(N 0−{N�}) V Ny(t), there are network layers with lower negotiation values that
can provide the required resources in Rt and be selected by the already allocated net-
work layers in Algorithm 2. However, the higher negotiation-value network layers with
the required resources in Rt are not selected by the already allocated network layers.
In Algorithm 2, the selection is implemented by Step 4.2 and 4.2.2, which guarantees
that the selected network layer in each Step 4.2 has the maximum negotiation value
from the currently already allocated network layers. Therefore, a situation in whichP
∀Ny∈(Nt−{N�}) V Ny(t) <

P
∀Ny∈(N 0−{N�}) V Ny(t) cannot occur in Algorithm 3. Theo-

rem 3 addresses this issue. 2

Based on Theorem 3, Algorithm 2 can find the network layers with the max-
imum negotiation values, thus satisfying the objectives of task allocation in
Equation (2) according to Theorem 1.

2) Select Final Agents from Allocated Network Layers

After the network layers are allocated by using Algorithm 2 for a task, the real agents
within the allocated network layers will be selected to execute the task. In each allo-
cated network layer, an initiator agent with the highest resource accessibility is first
selected, and this agent will then negotiate with other agents from near to far within
the network layer until all required resources are satisfied or all agents within the
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network layer are considered. The selection of agents within allocated network layers
is demonstrated by Algorithm 3.
———————————————————————————————————————–
Algorithm 3. Selecting final agents from allocated network layers.
/*Nt = {Ntx|Ntx = 〈Atx; Etx〉; 1 ≤ x ≤ n}, are the allocated network layers resulted
from Algorithm 2 */
———————————————————————————————————————–
1) x = 1; b = 0;Rt = Rt;
2) While((x � n) and b == 0) do:

2.1) Set the tags for all agents in Atx to 0 initially;
2.2) ax� = argmax8ai2Atx(<ai(k));
2.3) Create Queue (Qx); Insert Queue (Qx; ax�); Set the tag of ax� to 1;
2.4) At = fax�g;Rt = Rt �Rax� ;
2.5) If Rt == ;, then: fb = 1g;
2.6) While ((!EmptyQueue(Qx))and (b == 0)) do:

2.6.1) aout =Out Queue(Qx);R0 = Rt �Raout;
2.6.2) If R0 6= Rt, then:fRt = Rt �Raout; At = At [ faoutgg;
2.6.3) If Rt == ;, then:fb = 1g;
2.6.4) 8alocal 2 Laout: /*Laout is the set of neighbors of aout in Ntx*/

If the tag of alocal is 0, then:fInsert Queue(Qx; alocal); Set the tag of alocal to 1g;
2.7) x++;

3) Return (At);
4) End.
———————————————————————————————————————–

Algorithm 3 is O(|Nt| · |Atx|), where |Nt| is the number of network layers in Nt, Nt =
{Ntx| Ntx =< Atx; Etx >}. Therefore, the total time complexity of algorithms for
network layer-oriented task allocation (Algorithm 2+Algorithm 3) is O(|Rt| ·
�2).

Lemma 1. Let the set of allocated agents in network layer Ntx using Algorithm 3 be
A∗tx, and let the initiator agent be ax� ; the set of lacking resources of ax� to implement t
is Rt

ax�
. It is, then, assumed that there is another set of agents in Ntx, A′tx, that includes

ax� and can also satisfy the resource requirements of t in Ntx; Comx(ai; aj) denotes the
communication time between ai and aj within Ntx. Thus,

(∀A′tx ∧ (A′tx ⊆ Atx) ∧ (Rt
ax�
∩RA0tx

= Rt
ax�
∩RA�tx

))

⇒
X

∀ai∈(A0tx−{ax�})

Comx(ax� ; ai) ≥
X

∀ai∈(A�tx−{ax�})

Comx(ax� ; ai)

Proof. If Algorithm 3 is used, the set of allocated agents in an allocated net-
work layer Ntx is A∗tx, and the total communication costs between ax� and other a-
gents in A∗tx − {ax�} within Ntx are

P
∀ai∈(A�tx−{ax�}) Comx(ax� ; ai). Now, if there is

a set of agents A′tx, A′tx 6= A∗tx, which can provide the same set of resources to t as
A∗tx, and the total communication cost between ax� and other agents in A′tx − {ax�}
is
P
∀ai∈(A0tx−{ax�}) Comx(ax� ; ai); if

P
∀ai∈(A0tx−{ax�}) Comx(ax� ; ai) <

P
∀ai∈(A�tx−{ax�})

Comx(ax� ; ai), it denotes that there are any agents with farther distance that provide the
required resources in Rt

ax�
, but the nearer agents with required resources do not provide

the resources in Rt
ax�

. Obviously, such situation cannot take place in Algorithm 3 where
ax� negotiates with other agents from near to far within the network layer as Step 2.6.
Therefore, we have Lemma 1. 2

Therefore, Algorithm 3 can provide the initiator agent with the highest resource
accessibility and the minimum communication time cost between this initiator agent
and other allocated agents within the same network layer based on Lemma 1.
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5.2.3. Agent-Oriented Allocation for Multiplex Networks. In agent-oriented allocation,
the agents are allocated directly from the whole network. We also use the alterable
manager method to allocate agents. Let ai be the manager agent, and let task t re-
quire mt types of resources. The negotiation value of aj by ai for task t can then be
defined as follows:

V aj(t) =
X

1≤k≤mt

(<aj(k) · |Rt ∩Raj |k=Ck
ij) (17)

where |Rt ∩Raj |k denotes the number of k-type resources in Rt ∩Raj .
Theorem 4.The task is assumed to be t, and the negotiation values are assumed

correct. Let the manager be ai, and let the two contractor candidates be aj and ak; S(A)
denotes the degree that the task allocation objective can be satisfied by agent set A. Thus,
Vaj

(t) > Vak
(t)⇒ S({ai} ∪ {aj}) > S({ai} ∪ {ak}).

Proof. The proof is similar to that of Theorem 1.Thus, we omit the proof in the interest
of brevity. 2

Therefore, the negotiation value in Equation (17) can be used to satisfy the
task allocation objectives in Equation (2) from Theorem 4. In agent-oriented
task allocation, the agent with the highest resource accessibility in the whole network
is first allocated. The alterable manager method is then used to seek other agents to
allocate; the task allocation process can be demonstrated by Algorithm 4.
———————————————————————————————————————–
Algorithm 4. Agent-oriented task allocation.
/*Let k-type resources be the ones that the task needs mostly */
———————————————————————————————————————–
1) Rt = Rt;
2) a�=argmax8ai2A(<ai(k));
3) Rt = Rt �Ra� ;A

0
= A� fa�g;At = fa�g;b1 = 0; b2 = 0;

4) If Rt == ;, then:fb1 = 1g;
5) While ((b1 == 0) and (b2 == 0)) do:

5.1) max = 0; b2 = 1;
5.2) 8aj 2 A

0
:

5.2.1) maxtemp = 0;
5.2.2) 8ai 2 At:

5.2.2.1) V aj(t) =
∑

1�k�mt
(<aj(k) � jRt \Raj jk=Ck

ij);
5.2.2.2) If V aj(t) > maxtemp, then:fmaxtemp = V aj(t)g;

/*Now ai is the manager agent*/
5.2.3) If maxtemp > max, then: fmax = maxtemp; b2 = 0; atemp = aj ; g

5.3) If (b2 == 0), then: fAt = At [ fatempg;Rt = Rt �Ratemp ;A
0
= A� fatempg; g

5.4) If Rt == ;, then:fb1 = 1g;
6) If (b1 == 0), then Return(At);

else Return(False);
7) End.
———————————————————————————————————————–

Algorithm 4 is O(|Rt| · |A|2). In real multiplex networks, |A| >> �; thus, the real
time cost of agent-oriented task allocation, O(|Rt| · |A|2), may often be higher
than that of network layer-oriented task allocation, O(|Rt| · �2).

Theorem 5. Let there be a set of agents A. The resource accessibility of A to k-type re-
sources can be defined as: <A(k) = max∀ai∈A(<ai

(k)). If the task is t, the set of allocated
agents by using the agent-oriented allocation mechanism with the alterable manager
method is At, At ⊆ A, and the set of allocated agents by using the agent-oriented alloca-
tion mechanism with the fixed manager method is A

0

t, A
0

t ⊆ A. Thus,<At(k) ≥ <A
0

t(k).
Proof. The proof is similar to that of Theorem 2. Thus, we omit the proof in the

interest of brevity. 2

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Yichuan Jiang et al.

Theorem 6. Let the set of allocated agents using Algorithm 4 be At and let the first
manager be a∗. It is, then, assumed that there is another set of agents, A

0

t, that includes
a∗ and can also satisfy all the resources in Rt. Thus,

(∀A′t ∧ (a∗ ∈ A′t) ∧ (A′t ⊆ A) ∧ (Rt ⊆ RA0t
))⇒

X
∀aj∈(At−{a�})

V aj(t) ≥
X

∀aj∈(A
0
t−{a�})

V aj(t)

Proof. The proof is similar to that of Theorem 3. Thus, we omit the proof in the interest
of brevity. 2

Based on Theorem 6, Algorithm 4 can find the set of agents with the max-
imum negotiation values, which satisfies the objectives of task allocation in
Equation (2) according to Theorem 4.

5.3. Reward Mechanism
To encourage network layers and agents in multiplex networks to provide reliable
resources, we now present the reward mechanism.

5.3.1. Reward in Network Layer-Oriented Allocation. Each task is associated with a value;
if the task can be successfully executed, the allocated network layers and agents will
be rewarded with this value, or else they will be punished with this value. Let the
associated value for task t be �t (0 ≤ �t ≤ 1), let Nt be the network layers allocated to
t, and At be the set of agents that are really allocated to t. �t will then be divided into
three parts: 1) reward to the allocated network layers (�); 2) reward to the allocated
agents within the allocated network layers (�); and 3) reward to the involved agents
that are out of allocated network layers but provide communication relay services for
the resource negotiations between allocated network layers (). We can define �+ � +
 = 1, where  � �+ �. The allocated network layers and agents will be rewarded (or
punished) according to their real resource contributions.

The reward mechanism can then be defined as follows when the task is executed
successfully:

∀rk ∈ Rt : ∀Nx ∈ Nt ⇒ ws Nx(k) = ws Nx(k) · (1 + � · �t · (|Rt
Nx

(k)|=|Rt|)) (18)

where Rt
Nx

(k) is the set of k-type resources that Nx really contributes to task t in the
execution.

∀rk ∈ Rt : ∀ai ∈ At ⇒ w ai(k) = w ai(k) · (1 + � · �t · (|Rt
ai
(k)|=|Rt|)) (19)

where Rt
ai
(k) is the set of k-type resources that ai really contributes to task t in the

execution.

∀rk ∈ Rt : (∀am =∈ ∪Nx∈NtAx) ∧ (∃ai; aj ∈ At ∧ am is in P k
ij)

⇒ w am(k) = w am(k) · (1 +  · �t)
(20)

Furthermore, the penalty mechanism can be defined as follows if the task is unsuc-
cessfully executed. A new allocation should now be implemented.

∀rk ∈ Rt : ∀Nx ∈ Nt ⇒ ws Nx(k) = ws Nx(k) · (1− � · �t · (1− |Rt
Nx

(k)|=|Rt|)) (21)

∀rk ∈ Rt : ∀ai ∈ At ⇒ w ai(k) = w ai(k) · (1− � · �t · (1− |Rt
ai
(k)|=|Rt|)) (22)

∀rk ∈ Rt : (∀am =∈ ∪Nx∈Nt
Ax) ∧ (∃ai; aj ∈ At ∧ am is in P k

ij)

⇒ w am(k) = w am(k) · (1−  · �t)
(23)
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5.3.2. Reward in Agent-Oriented Allocation. Let the associated value for task t be �t (0 ≤
�t ≤ 1), and At be the set of agents that are really allocated to t. �t will then be divided
into two parts: 1) reward to the allocated agents (�); and 2) reward to the agents that
provide communication relay services for the resource negotiations between allocated
agents (�). We can define �+ � = 1;� << �.

The reward mechanism can then be defined as follows when the task is executed
successfully:

∀rk ∈ Rt : ∀ai ∈ At ⇒ w ai(k) = w ai(k) · (1 + � · �t · (|Rt
ai
(k)|=|Rt|)) (24)

where Rt
ai
(k) is the set of k-type resources that ai really contributes to task t in the

execution.

∀rk ∈ Rt : (∀am ∈ A) ∧ (∃ai; aj ∈ At ∧ am is in P k
ij)

⇒ w am(k) = w am(k) · (1 + � · �t)
(25)

The punishment mechanism can be defined as follows if the task is unsuccessfully
executed. A new allocation should now be implemented.

∀rk ∈ Rt : ∀ai ∈ At ⇒ w ai(k) = w ai(k) · (1− � · �t · (1− |Rt
ai
(k)|=|Rt|)) (26)

∀rk ∈ Rt : (∀am ∈ A) ∧ (∃ai; aj ∈ At ∧ am is in P k
ij)

⇒ w am(k) = w am(k) · (1− � · �t)
(27)

5.4. Load Balancing in Task Allocation
As noted above, a network layer or agent may act as the manager or contractor for more
tasks if it has a higher negotiation reputation or negotiation value. However, the tasks
will wait significantly longer for the necessary resources if too many tasks are crowded
on certain network layers or agents with high negotiation reputations or negotiation
values [Liu et al. 2005; Jiang and Huang 2012; Jiang and Jiang 2009]. Moreover, the
problem of waiting time may outweigh the advantage of the time saved by accessing
resources at the allocated network layers and agents; therefore, we should now apply
load balancing to the task allocation.

In previous related studies [Liu et al. 2005; Jiang and Huang 2012; Jiang and Jiang
2009; Jiang et al. 2013b], load balancing for an agent was implemented only based on
the own load status of this agent, i.e. some tasks of an agent will be switched to other
agents only when this agent’s queuing tasks are large; this type of load balancing
can be called direct load balancing. However, in multiplex networks, each agent or
network layer is associated with other agents and network layers, and agents often
negotiate with each other for resources to execute tasks. Therefore, the contextual
load status (i.e. the load status of associated agents or network layers) needs to also be
considered when we implement load balancing for an agent or network layer, which is
called contextual load balancing.

Let the set of final allocated agents for task t be At. The team of tasks that queue
for resource rk of agent ai can be denoted as Qik; the processing rate of ai is vi and the
size of Qik is sik;  1(x) and  2(x) are two attenuation functions, 0 ≤  1(x);  2(x) ≤ 1,
the values of  1(x) and  2(x) decrease monotonically from 1 to 0 as x increases.

For multiplex networks, we should perform load balancing respectively for the net-
work layers and agents. First, we present the contextual load balancing for the net-
work layers. Let the multiplex social network be N =< A;E >,N = {Nx|1 ≤ x ≤ �}.
L Nk

x and CL Nk
x denote the own load status and contextual load status of the network

layer Nx on resource rk. We can balance the load for Nx by adjusting Nx’s resource ac-
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cessibility to rk, <Nx(k), as follows:

L Nk
x = max

∀ai∈At∧∀ai∈Ax

(sik=vi) (28)

CL Nk
x =

P
Ny∈{N−Nx}(max∀aj∈At∧∀aj∈Ay

(sjk=vj)=D
k
xy)

|N | − 1
(29)

<Nx(k)
′ =  1(L Nk

x + CL Nk
x ) · <Nx(k) (30)

where Dk
xy is the distance between network layers Nx and Ny for negotiating rk, which

is calculated according to Equation (15).
Let there be an agent, ai; L ak

i and CL ak
i denote the own load status and contextual

load status of agent ai on resource rk. The contextual load balancing for agent ai is
then implemented by adjusting ai’s resource accessibility to rk, <ai(k) as follows:

L ak
i = sik=vi (31)

CL ak
i =

P
aj∈(A−{ai})(sjk=(vj · Ck

ij))

|A| − 1
(32)

<ai(k)
′ =  2(L ak

i + CL ak
i ) · <ai(k) (33)

where Ck
ij denotes the negotiation distance between ai and aj for k-type resources,

which is calculated according to Algorithm 1.

6. EXPERIMENTAL VALIDATION AND ANALYSES
6.1. Experimental Settings
The performance indices used in the experiments are presented as follows:

— Success rate (sr). The success rate demonstrates the reliability of task allocation:

sr = (

nX
i=1

(1=�ti
))=n (34)

where n is the number of total tasks; �ti indicates that the first (�ti − 1) attempts to
allocate task ti are unsuccessful and only the �ti

th allocation of ti is successful.
— Time costs: 1) the total time costs (T ), which are the sum of all time costs of all tasks

and are measured from the initiation of the first task until the completion of the
last task; 2) the communication time costs of all tasks (Tc), which are the sum of the
communication time costs of all tasks for resource access that are influenced by both
the distance between agents and the link types; 3) the waiting time costs of all tasks
(Tw), which are the sum of the waiting time costs of all tasks that are determined by
the waiting queue of the tasks on network layers and agents and their processing
rates.

To validate the effectiveness of our models, we compare our presented multiplex
network-adapted models, network layer-oriented model and agent-oriented model,
with the following benchmark approaches:

— Traditional resource-based task allocation model for simplex networks (Traditional
simplex network-adapted model): the task will be allocated to the agents with a
larger amount of the resources required by the task [Liu et al. 2005; Jiang and
Huang 2012; An et al. 2011; Weerdt et al. 2012; Jiang and Jiang 2009]. This model
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ignores the network link types and does not consider the biases of network links for
communicating different types of resources.

— Transparent task allocation model (Transparent model): the model can detect all
deceptive agents in the network, and can also negotiate with the truthful agents
through the reliable path with the lowest communication costs [Jiang et al. 2013b].
Although this model is not practical in real-world scenarios, it can be used as a
benchmark to evaluate the task allocation performance in unreliable situations for
multiplex networks.

Each experiment comprises 100 runs to obtain the average results. The simulation
platform for experiments is developed in Java using the Eclipse IDE. The initial net-
work is constructed by a random network model, in which 100 agents are included.
The connection probability for any two randomly selected agents is set to 0.05. The
initial network is then divided into 10 network layers with different communication
speeds for different resources, and the ratio of the maximum speed to the minimum
speed is 10. Each agent can be included in a network layer with a probability of 60
percent. There are eight types of resources to be available to the agents and tasks;
each agent or task can only have four types of resources; the number of each type of
resources of agents is set randomly, ranging from 1 to 9 with an average of 5, and the
number of each type of resources of tasks is set randomly, ranging from 5 to 20 with
an average of 12.5 [Jiang et al. 2013b]. For each run of the experiments, we set a total
number of 500 tasks to be allocated by the system. (Note that there is one exception:
in the robustness test, in order to show the properties of our models clearly, the total
number of tasks is set to 2000.)

6.2. Results and Analyses
We analyze our models via the tests from the following three perspectives:

(1) The effectiveness of our models (the network layer-oriented model and the agent-
oriented model for multiplex networks), which can be evaluated by comparing our
model with several benchmark models introduced in Section 6.1.

(2) The effects of the following key components in our models: a) the reputation and
reward mechanism; b) the consideration of multiple network link types in resource
negotiation; and c) the contextual load balancing mechanism.

(3) The performance comparison between our presented two task allocation models
for multiplex networks (the network layer-oriented model vs. the agent-oriented
model) and several important properties of our models.

6.2.1. The Effectiveness of Our Models. In this section, we show the experimental result-
s of the four indices (sr, T , Tc and Tw) by comparing our multiplex network-adapted
models (network layer-oriented model and agent-oriented model) with the benchmark
models (traditional simplex network-adapted model and transparent model). The ef-
fectiveness of our models can be validated from these tests.

Fig. 2(a) reports the results of the total time costs of the four models. The total time
cost can reflect the effectiveness of the model to allocate tasks in the system; the total
time cost for the same number of tasks negatively correlates with the effectiveness of
the model for allocating tasks. This plot indicates that the transparent model has the
best performance during the task allocation process; the performance of the network
layer-oriented model and agent-oriented model proposed in this paper are close to that
of the transparent model; and the traditional simplex network-adapted model perform-
s the worst. Therefore, our models can be validated as effective for task allocation in
unreliable multiplex networks.
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Fig. 2. The effectiveness tests

Fig. 2(b), (c), and (d) show the test results of the success rate, the communication
time costs, and the waiting time costs, respectively. They can indicate the extent to
which the models can satisfy the three objectives for task allocation described in E-
quation (2) for multiplex networks.

Fig. 2(b) shows that the success rate of our models can nearly continuously increase
throughout the entire task allocation processes to finally achieve a good performance
level close to that of the transparent model. This trend reveals that the reliability of
our model can evolve as the size of tasks increases. In the very early stage (approxi-
mately 5 tasks) of task allocation, the success rate of our models shows a nearly 5%
decrease. In this stage, the reputation and reward mechanisms of our models are still
at the initializing state; after some tasks have been executed, they will play a more
effective role. Thus, the success rate can then continuously increase for the following
tasks. Additionally, the network layer-oriented model shows a better evolution proper-
ty compared with the agent-oriented model, which will be analyzed in Section 6.2.3. It
notes that the transparent model can detect all the unreliable agents, but its success
rate cannot reach 100%; this phenomenon is caused by the network loss rate during
resource communication, which may lead to unsuccessful resource access.

Fig. 2(c) and (d) show the test results of the communication time costs and the wait-
ing time costs, respectively. In Fig. 2(c) and (d), the transparent model also perform-
s the best; our models perform much better than the traditional simplex network-
adapted model and a little worse than the transparent model. The potential reason
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Fig. 3. The effect of the reputation and reward mechanism in our models

for this difference is that the transparent model can directly allocate the tasks to the
truthful agents with a relatively lower communication cost and shorter waiting queues
of tasks; thus, it can have the best performance on the two indices. Specifically, the per-
formance of the agent-oriented model is very close to that of the transparent model in
terms of the communication time costs; while its performance is closer to that of the
network layer-oriented model in terms of the waiting time costs.

The results in the four plots of Fig. 2 indicate that our models can effectively
allocate tasks in unreliable multiplex Im7 Do
m- which can satisfy the ob-
jectives of task allocation with load balancing in Equation (2). Their perfor-
mance can be close to that of the transparent task allocation model and much
better than the traditional simplex Im7 Do
-adapted task allocation model.

6.2.2. The Effects of the Key Components in Our Models. In this section, we aim to confirm
the effects of the following key components in our models: 1) the reputation and reward
mechanism; 2) considering multiple link types in resource negotiation; and 3) the con-
textual load balancing mechanism. To evaluate the effects of these components, we re-
move each component from our models and then use these modified models to perform
the same tests as those used for the original models. By comparing the corresponding
test results, the effect of each component can be investigated.

� The Effect of The Reputation and Reward Mechanism

Fig. 3 shows the test results of the Im7work layer-oriented model, the agent-oriented
model, and their modified models without the reputation and reward mechanism. In
this test, we concentrate on the indices of the total time costs and the success rate by
considering the main effect of the reputation and reward mechanism.

Fig. 3 indicates that the reputation and reward mechanism can not only improve
the performance of our models on the success rate but also further improve the perfor-
mance on the total time costs. This finding proves that the reputation and reward
mechanism positively affects the task allocation in unreliable multiplex Im7-
 Do
m.

Moreover, the reputation and reward mechanism plays a more important role in the
network layer-oriented model than in the agent-oriented model. This finding can be
attributed to the network layer-oriented model, which not only implements the repu-
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Fig. 4. The effect of considering multiple link types in resource negotiation in our models

tation and reward mechanism to the selection of agents but also to the allocation of
network layers.

� The Effect of Considering Multiple Link Types

The novelty of our models consists of considering multiple link types in the resource
negotiation of agents. Fig. 4 reports the test results of the network layer-oriented mod-
el, the agent-oriented model, and their modified models without considering multiple
link types in resource negotiation. In this test, we mainly focus on the performance of
the total time costs and the communication time costs. The test results of the total time
costs shown in Fig. 4(a) indicate that the modified models without the aforementioned
consideration perform much worse than the original models; therefore, the considera-
tion of link types in resource negotiation significantly positively affects both our two
models. Fig. 4(b) provides a similar conclusion. In conclusion, our models can ef-
fectively address multiple link types in multiplex networks.

� The Effect of The Contextual Load Balancing Mechanism

In this paper, we propose the contextual load balancing mechanism in Section 5.4
mainly to decrease the waiting time costs of tasks in multiplex networks. Moreover,
implementing contextual load balancing mechanism is expected to positively affect
the overall success rate and the communication time costs.

The results in Fig. 5 confirm that the contextual load balancing mechanism reaches
the expected aims. From Fig. 5(d), we can first confirm the positive effect of the
contextual load balancing mechanism on decreasing the waiting time costs
of tasks. The waiting time costs of the modified models without the contextual load
balancing mechanism are much higher than those of the original models. Fig. 5(a) and
(b) indicate that the total time costs of the modified models are much higher
than those of the original models, and the success rate of task allocation is
lower. Finally, Fig. 5(c) shows that the communication time costs only slightly increase
after implementing the contextual load balancing mechanism.

6.2.3. Comparison between Our Two Models and Several Key Properties. In this section, we
compare our presented network layer-oriented model with the agent-oriented model in
multiplex networks. In addition to the four indices (sr, T , Tc, Tw), we also compare the
algorithm complexity and the allocation time of the two models. We then test several
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Fig. 5. The effect of the contextual load balancing mechanism in our models

Table I. COMPARISON OF THE PROPOSED TWO MODELS FOR MULTIPLEX
NETWORKS (NETWORK LAYER-ORIENTED VS. AGENT-ORIENTED)

Our proposed models

Network layer-oriented Agent-oriented

Allocation algorithm complexity O(|Rt| · �2) O(|Rt| · |A|2)

Allocation time 33.45 26462.64

Total time costs (T ) 38446.31 28316.86

Success rate (sr) 86% 76%

Communication time costs (TC) 16225.43 4912.43

Waiting time costs (TW ) 20189.53 19579.20

key properties of our models, such as the robustness for dynamic unreliable environ-
ments, the evolution property, and the adaptability to varying situations.

Table 1 shows that the network layer-oriented model outperforms the agent-oriented
model in terms of the algorithm complexity, the allocation time, and the success rate;
but the agent-oriented model outperforms the network layer-oriented model in terms
of the communication time costs. We introduce this result in detail as follows.

Generally, the agent number in the entire network is much larger than the number
of network layers; thus, the algorithm complexity of the network layer-oriented model
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is much smaller than that of the agent-oriented model. The allocation time reflects the
allocation algorithm complexity. Based on the results of the allocation time, we can
conclude that the ratio of the allocation time of the network layer-oriented model to
that of the agent-oriented model coincides with the ratio of their algorithm complexi-
ties.

In addition to the reputation and reward mechanism for the agents, the network
layer-oriented model also implements a reputation and reward mechanism for the
network layers. As such, a task is allocated through reputation filtering twice in the
network-oriented model. Thus, the network layer-oriented model can perform better
with respect to the success rate of task allocation.

However, even if the success rate of the network layer-oriented model is higher than
that of the agent-oriented model, the agent-oriented model performs better with re-
spect to the total time costs and communication time costs. This difference can pri-
marily be attributed to the agent-oriented model, which can select the path with the
lowest communication costs between agents to negotiate resources from the entire net-
work when allocating tasks. Thus, it can significantly reduce the communication time
costs for task allocation in multiplex networks.

In conclusion, the network layer-oriented model can achieve a higher suc-
cess rate and significantly lower allocation time compared to the agent-
oriented model; the agent-oriented model can achieve lower communication
time costs than the network layer-oriented model. Therefore, we can say that
the advantage of network layer-oriented model is that it is good at improving
the success rate with a significantly lower allocation time, and the advantage
of agent-oriented model is that it is good at reducing the communication time
costs.

� Robustness for Dynamic Environments

In this section, we test the robustness of our models in two typical types of dynamic
environments: i) the dynamic unreliable environment where agents may dynamically
change their identities, and ii) the dynamic environment with unstable services where
the resources of agents may be out of service and recovered dynamically. We show the
environment settings and the test results as follows.

The dynamic unreliable environments in experiments can be set as follows: the un-
reliable agents in the network will be reset dynamically when the num