
I Know What You Enter on Gear VR
Zhen Ling�, Zupei Liy, Chen Chen�, Junzhou Luo�, Wei Yuz, and Xinwen Fux

�Southeast University, China, Email:{zhenling, cchen2016, jluo}@seu.edu.cn
yUniversity of Massachusetts Lowell, Email: zli1@cs.uml.edu

zTowson University, Email: wyu@towson.edu
xUniversity of Central Florida, Email: xinwenfu@ucf.edu

Abstract—Virtual reality (VR) techniques offer users immer-
sive experiences in a virtual environment (VE) where they can
enjoy gaming, training, shopping and social activities. However,
security and privacy issues of VR are rarely investigated. In
this paper, we introduce novel computer vision-based and motion
sensor-based side channel attacks to infer keystrokes in a virtual
environment. In the computer vision-based attack, a stereo cam-
era records a user maneuvering a pointing device and inputting
passwords. Various computer vision techniques are used to detect
the touching frames in which the user taps a touchpad to enter
keys on the virtual keyboard within the VE. We then estimate
the pose of the headset and derive the orientation of the virtual
pointing ray in each touching frame. In the motion sensor-based
attack, we exploit sensors including accelerometer, gyroscope
and magnetometer built inside the pointing device to retrieve
orientation angles of the pointing device. With orientation angles
of the pointing device, we can derive the empirical rotation angles
and infer the clicked keys by assessing the similarity between the
empirical rotation angles and the reference ones between keys.
Extensive real-world experiments are performed to demonstrate
the feasibility and effectiveness of these side channel attacks.

I. INTRODUCTION
Augmented reality (AR) and virtual reality (VR) technolo-

gies have been booming. AR and VR applications create an
immersive virtual environment (VE) for people to perform
various activities including gaming, training, shopping and
socializing. VR devices such as Samsung Gear VR often use
head-mounted displays (HMD). Ray pointing techniques are
commonly adopted for the human and VE interaction. A VR
headset or a VR controller can be employed as a pointing
device to cast a virtual laser ray and to select an object,
functioning like a laser pointer. To input, the user points the
ray to a key on a keyboard in the VE, and taps the touchpad
of the headset or controller.

In this paper, we explore the security of the human and VE
interface of AR and VR techniques. We will use VR in our
discussion while the results and observations from this research
can be extended to AR too. Intuitively, the movement of the
pointing device creates a side channel that may leak sensitive
information the user enters with the pointing device. We will
present novel computer vision-based and motion sensor-based
side channel attacks to infer the user’s password entered with a
VR headset and a controller of the HMD-based virtual reality
system. The attacks can also be extended to infer other inputs
with the pointing device. We choose Samsung Gear VR as an
example to demonstrate the security issues of a VR system
given its popularity. The observations and related techniques
can be extended to other VR devices since the underlying
inputting techniques are similar. To the best of our knowledge,
we are the first to explore such side channel attacks against
the HMD-based VR systems. George et al. [5] find that the
PIN and pattern-based authentication methods in VR can be
more resistant to shoulder surfing attacks than the methods

applied to the smartphone in the physical world. Our work
shows that these traditional mobile authentication techniques
are not secure under the side channel attacks in VR. and show
the necessity of securing the human and VR interface.

Major contributions of this paper are summarized as fol-
lows. We explore a stereo vision-based side channel to infer
user passwords entered with the Samsung Gear VR headset.
A stereo camera is leveraged to record the user operating a
VR headset. We use the optical flow to track the headset as
the user rotates it and controls a ray pointing at a virtual
keyboard to input. By analyzing the finger’s interaction with
the touchpad of the headset, we can automatically identify the
key click frames in which the finger taps the touchpad and
inputs. We estimate the headset’s pose in each key click frame
so as to calculate the virtual pointing ray’s orientation change,
denoted as empirical rotation angle, between two sequentially
tapped keys. We can then infer the clicked keys by assessing
the similarity between the empirical rotation angles and the
reference ones, which are derived by measuring the virtual
keyboard in the VE.

We also investigate side channel attacks in which a mali-
cious app exploits motion sensors in VR input devices. The
effectiveness of vision-based attacks is limited by computer
vision techniques and the capability of the stereo camera. It
is also hard to conduct vision side channel attacks against
the Gear VR controller since there is no salient feature to
track on the controller. However, in the case of a user using
a controller to input passwords, a malicious app can obtain
orientation sensor data from the controller through the Oculus
mobile SDK. Note that permissions are not needed to obtain
orientation sensor data on mobile devices. We can also identify
the key click events from the sensor data. Therefore, we can
compute the empirical rotation angles between two sequen-
tially pressed keys. A password inference method similar to
the one used in the vision attack can then be employed to infer
the clicked keys.

We perform extensive experiments to validate these side
channel attacks against Gear VR. Due to the limitations of
computer vision techniques, the stereo camera used in the
vision attack has to be deployed close to the victim. Our
attacks generate a list of password candidates. If the very top
candidate is the original password, we call it a top 1 success.
If any one of the top 3 candidates is the original password,
we call it a top 3 success. The vision attack’s top 3 success
rate for 8-character passwords is 63% at a distance of 1.5m
when the headset is used as the input device. The advance of
stereo cameras will improve the attack distance. In contrast,
the orientation sensor attacks are not limited by the distance,
and can achieve a success rate of around 90% for 8-character
passwords entered with both the headset and controller.

The rest of the paper is organized as follows. In Section
II, we introduce the Samsung Gear VR system and its input

2019 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-7117-7/19/$31.00 ©2019 IEEE 241

devices. Section III elaborates on the threat model and basic
idea of the side channel attacks against Gear VR. We then
present the the computer vision-based password inference
attack in Section IV and the motion senor-based attack in
Section V. Extensive experiments are performed to evaluate
the attacks and the results are presented in Section VI. We
review related work in Section VII and conclude the paper in
Section VIII.

II. INTRODUCTION TO GEAR VR
In this section, we introduce the Samsung Gear VR system

and its input devices including the headset and controller.

A. An Overview of Gear VR
A head-mounted display (HMD) based VR system consists

of a VR engine, input devices, and output devices as shown in
Fig. 1. The VR engine aligns coordinates between physical and
virtual worlds using motion sensor data from the HMD. Input
devices allow users to interact with the virtual environment,
including the manipulation interface, position tracker, and
gesture interface. The output devices are used for visual,
auditory, and haptic feedbacks.

Gear VR is one of the most popular smartphone-based
VR systems. It consists of three components: a Samsung
smartphone, a VR headset, and a controller. The VR software
is installed on the Android system of the Samsung smartphone.
The smartphone mounted to a Gear VR headset is the VR
engine, and uses its screen and speaker to generate the visual
and auditory feedbacks for users. The input devices, the
headset and the controller, leverage manipulation interfaces
such as the touchpad and buttons and position trackers (i.e.
motion sensors) to acquire the user input.

Fig. 1. Components of a virtual reality system

The VR engine builds virtual objects by using the geo-
metric modeling technology, and creates a virtual environment
upon a virtual world coordinate system as shown in Fig. 2. It
is assumed that the user’s eye is at the origin of the virtual
world coordinate system. When the user puts on the headset,
the virtual world coordinate system is aligned with the physical
world and its XZ-plane is set in parallel with the earth’s
horizon. When the user turns her head thus the headset around,
the virtual engine determines the orientation of the headset and
presents the corresponding virtual scene to the user.

B. Input Devices
Samsung Gear VR allows users to interact with virtual

objects through ray pointing techniques, which are commonly

Fig. 2. Virtual world coordinate system

used to control the cursor movement and point at objects in
a virtual environment. The intersection of a ray with a virtual
object can be used to show where a user is pointing to. The ray
pointing techniques are implemented for both the VR headset
and the controller.

1) Headset: A user can control a cursor in the virtual
environment by rotating the VR headset in three axes as shown
in Fig. 3. Motion sensors such as accelerometer, gyroscope,
and magnetometer are embedded into the Gear VR headset
to track the user’s head motion [17] while some lightweight
smartphone-based VR systems such as Google Cardboard only
rely on a smartphone’s motion sensors to track the head
motion. A user inputs using a touchpad, a home button and
a back button on the headset. A Samsung smartphone is
connected to the headset via a Micro USB or USB Type-C
port. In the virtual environment, the headset casts a virtual ray
along the user’s gaze direction (i.e., the opposite direction of
Zh axis of the headset) as illustrated in Fig. 4. The user can
control the orientation of the headset in only two axes, Yaw
(x axis) and Pitch (y axis), to move the cursor. The motion
sensors can be used to track the head motion in these two
dimensions and derive the orientation of the headset. To enter
a key in the virtual environment, the user controls the headset
to move the cursor to a target key on a keyboard as shown in
Fig. 5 and then taps the touchpad on the headset so as to input
the intended key.

2) Controller: A user can also control the cursor via a
VR controller. A VR controller contains motion sensors (i.e.
accelerometer, gyroscope, and magnetometer), a touchpad and
control buttons (i.e. a trigger, a home button, a back button, and
volume buttons). The controller is connected to the Samsung
smartphone via Bluetooth. Fig. 6 illustrates the VR controller
coordinate system. In the virtual environment, a ray is cast by
the controller along the opposite direction of the controller’s
Zc axis. The intersection of the ray with a virtual object is
the position of the cursor as illustrated in Fig. 7. The user can
adjust the orientation of the controller in only two axes, Yaw (x
axis) and Pitch (y axis), to control the cursor movement. When
the cursor is moved to an intended key on a virtual keyboard
as shown in Fig. 8, the user can click on the touchpad of the
controller and enter the key.

III. OVERVIEW OF SIDE CHANNEL ATTACKS
In this section, we present the threat model of our side

channel attacks and the basic idea of these attacks.

2019 IEEE Conference on Communications and Network Security (CNS)

242

Fig. 3. Gear VR headset coordinate system Fig. 4. Cursor control using a VR headset Fig. 5. A left-eye view created for headset input

Fig. 6. VR controller coordinate system Fig. 7. Cursor control using a VR controller Fig. 8. A left-eye view created for controller input

Fig. 9. Workflow of our attacks

A. Threat Model
We assume that VR devices will be ubiquitously used

[6], [13] Users will use those devices and perform daily
activities, such as entering passwords for the login of gaming,
emails, mobile banking accounts and other purposes. However,
attackers will be around. It is assumed that the virtual keyboard
layout can be learned in advance by reverse-engineering the
VR app and examining the keyboard layout.

In the vision-based side channel attack, we assume that
an attacker is able to use a stereo camera to take videos of a
user inputting, for example her password, on a Samsung Gear
VR through the headset. Since the view of the victim in the
physical world is completely blocked by the headset, the attack
can be stealthily conducted at a close distance.

In the motion sensor-based side channel attack, it is as-
sumed that the victim has been tricked to install a malicious
app on her smartphone. Then the malware can obtain data
from motion sensors such as accelerometer, gyroscope, and
magnetometer. Actually any app can perform the attack since
accessing such senor data does not require extra permission
on the Android system.

B. Basic Idea
Fig. 9 illustrates the workflow of the side channel attacks.

Without loss of generality, we take the popular Gear VR as
an example to present our attacks in this paper. To control
the cursor movement in the virtual world, a user rotates input
devices such as the headset and the controller in the yaw and
pitch dimensions as shown in Fig. 3 and Fig. 6. The built-
in senors (accelerometer, gyroscope, and magnetometer) are
leveraged to perform rotational tracking so as to retrieve the
pose of these input devices. The motion of the input devices
in the yaw and pitch dimensions creates side channels. In the
vision-based side channel attack, we exploit a stereo camera
to record the rotation of the headset and use various stereo

Fig. 10. Workflow of computer vision-based attack

computer vision techniques to estimate the pose of the headset.
In the motion sensor-based side channel attack, we leverage a
malicious app installed inside on the smartphone to read the
orientation angles from the built-in senors of the headset and
the controller. From the sequence of orientation angles, we can
determine where a key click occurs and thus know the index of
the clicked key in terms of the orientation angle time series.
We find that the rotation angle from a key to another one
is fixed. Therefore, we can measure orientation angles of all
the keys on a reference keyboard and further derive rotation
angles between keys. Since the last key is often the go key
as shown in Fig. 5 in the virtual environment of Gear VR,
we can calculate the rotation angles between the clicked key
and the go key using the orientation angles. Finally, we can
infer each key in the password by comparing the similarity
between the empirical rotation angles derived from the side
channel attacks and the reference rotation angles derived from
the reference keyboard. If there is no go key or the user does
not use the go key, we design a brute force attack in which the
trajectory of the ray is fit onto the keyboard from upper left
to low right. The trajectory within the region of the keyboard
creates a password candidate.

IV. COMPUTER VISION-BASED ATTACK
In this section, we first present the workflow of our vision

attack against Gear VR and then details of each step.

A. Workflow of Computer Vision-based Attack
Fig. 10 shows the workflow of the computer vision-based

attack.
Step 1: Calibrating the stereo camera system. We

calibrate a stereo camera system and derive its parameters.
These parameters are the key specification of the camera and
are used to build a 3D coordinate system for the stereo camera.
These parameters are also used to compute the real-world
coordinates of the points in a video.

2019 IEEE Conference on Communications and Network Security (CNS)

243

of the optical flow technique and cannot use the remaining few
feature points for later estimation of the headset’s pose. In our
experiments, we find that it needs at least four feature points
distributed around the four corners of the smartphone. Su;l,
Su;r, Sl;l and Sl;r are the sets of upper-left corner, upper-
right corner, lower-left and lower-right corner feature points.
A threshold is used to determine if a feature point is around
a corner. If any of the four corner feature point sets has no
feature point any more in a frame during the headset tracking
process, we restart the feature point tracking process discussed
above from that specific frame.

3) Locating touching frames: To determine the occurrence
of a key click, we analyze the touching finger movement
pattern and then locate the touching frames in which the
victim taps the touchpad on the right side of the headset. To
enter a key, the inputting finger moves towards the touchpad,
taps it and then moves back. At this point, the headset is
relatively still. We define the movement direction toward the
headset as positive and the opposite direction as negative.
Thus, a touching frame is the one where the inputting finger’s
movement direction changes from positive to negative.

We track the touching finger using the optical flow in the
2D video frames of left camera during the inputting process.
We track multiple points on the inputting finger and calculate
their average speed vector Vf to enhance robustness. We also
derive the speed vector Vh of a feature point (derived in
Section IV-D2) on the headset. We then derive the relative
movement vector Vr = Vf − Vh of the touching finger.
Since the finger touches the headset almost in the horizontal
direction in 2D video frames, we choose a touching frame by
the following rule: in a specific frame, if Vr changes from
positive to negative in the x axis and the headset movement
speed |Vh| is below its average movement speed through the
inputting process, that frame is a touching frame.

E. Step 4: Estimating Rotation Angles
In this step, we calculate 3D coordinates of feature points

of the VR headset, and estimate the headset’s pose in ev-
ery touching frame. The pose includes 6 degrees-of-freedom
(DOF), including rotation and translation along three axes.

1) Calculating 3D coordinates of the VR headset: We
calculate the 3D coordinates of feature points of the VR
headset in the stereo camera coordinate system as shown in
Fig. 11 for every touching frame. To this end, we need to derive
the 2D coordinates of the corresponding points in DeviceL

and DeviceR and their disparity d, where d is the horizontal
coordinate difference of corresponding points. Recall that we
derive feature points in DeviceL. Then the corresponding
points in DeviceR can be located by a sub-pixel accuracy
template matching algorithm [12].

After obtaining a pair of corresponding points in the left
and right images, we can derive the disparity d. According to
the 2D coordinates of the feature points in the left frame and
the reprojection matrix Q in Section IV-D, we can calculate
the 3D coordinates of the feature points as follows,

Q

xyd
1

 =

XYZ
W

 ; (2)

where (x, y) is the 2D coordinate of the point in DeviceL,
and d = x − xR is the disparity of this point and its

Fig. 12. Converting camera coordinate system to headset coordinate system

corresponding point (xR; yR) in DeviceR. W is the scale
factor. Then the 3D coordinate of the point can be calculated
by (X=W;Y=W;Z=W). In this way, we can derive the 3D
coordinates of all the feature points in the attacking camera’s
coordinate system. Denote Fi as a set of 3D coordinates of all
the feature points in the ith touching frame.

2) Converting coordinate system: To estimate the pose of
the head, we first establish a coordinate system for the headset
and then convert the 3D coordinates of feature points from the
camera coordinate system to the headset coordinate system. As
shown in the newly designed headset coordinate system in Fig.
12, we set the origin point of the new coordinate system at the
intersection of the lower and left edge of the smartphone in the
first touching frame, with the x axis aligning with the lower
edge of the phone and the y axis aligning with the left edge of
the phone. We convert all 3D coordinates of the feature points
in every touching frame to this headset coordinate system.
Denote F ′i as the converted 3D coordinate of a feature point
Fi in the ith touching frame in the headset coordinate system.
The spatial relationship of the headset in different frames can
be presented as follows,

F ′1 = R ∗ F ′i + t; (3)

where F ′1 is a feature point in the first frame, R and t are the
rotation and translation relationship between F ′i and F ′1.

Since the attacker’s camera is mounted on a fixed tripod,
the camera does not move during the video recording process.
We use the camera to take a photo of a chessboard placed
on the horizontal plane. Note that a digital protractor is
used to ensure that the chessboard is horizontally placed,
thus the chessboard can represent the horizontal plane in
this case. Then, by analyzing this photo, we can calculate a
rotation matrix between the headset coordinate system and the
horizontal plane, denoting it as RH .

3) Estimating rotation angles of the VR headset: After the
coordinate system conversion, we estimate the rotation angles
between the first clicked key and any other clicked key by
calculating the spatial relationship between F ′1 and F ′i . The
pose difference between F ′1 and F ′i can be represented by
a rotation matrix R and a translation vector t, as shown in
Equation (3). In our context, we just need the rotation matrix
R. Denote CF 0

1
and CF 0

i
as the centroid of all feature points in

the first and the ith frames. We can derive the CF 0
i

as follows,

F ′i [j] =

[
xj

yj

zj

z0
i

as follows,F

Fig. 13. Keyboard’s layout in Oculus Browser

After we acquire the centroid of both sets of feature points,
we calculate the rotation matrix R between these two poses.
The singular value decomposition (SVD) is used to obtain the
rotation matrix. We put both CF 0

i
and CF 0

1
at the origin point

so as to remove the translation component t. Then the rotation
matrix can be solved as follows [4], [2],

H =
n∑

j=1

(F ′1[j]− CF 0
1
)(F ′i [j]− CF 0

i
)T

[U; S; V] = SV D(H)

R = UT

: (5)

In this way, we can derive a sequence of rotation matrices in
the headset coordinate system. We then use RH to calculate
the rotation matrix between headset coordinate system to the
horizontal plane RP . By multiplying RP to R, we align all
rotation matrices to the horizontal plane.

Denote N as the number of clicks on the keyboard and
(P1; P2; : : : ; PN) as the sequence of key click events that
corresponds to the touching frames, where PN is the go key.
Then we can derive the rotation angles between P1 and Pi in
the pitch and yaw by

Ri ⇒ (��i;��i); (6)

where Ri is the rotation matrix calculated using Fi and F1,
and ��i and ��i are rotation angles of the pitch and yaw in
the x and y axes between Pi and P1. Then the rotation angles
between Pk and PN can be computed by{

�Dx(Pk; PN) = ��k −��N

�Dy(Pk; PN) = ��k −��N
(7)

In this way, we can derive the rotation angles between the go
key and the other clicked keys.

F. Step 5. Recovering Passwords
We propose a password inference method to recover the

user’s password using the rotation angles of the clicked keys.
Fig. 13 illustrates the keyboard in the Oculus Browser. Since
the layout of the virtual keyboard can be learned in advance,
we first measure the reference rotation angles between the go
key and any other key. Denote Ki and Ke as the ith key and
the go key. Denote �Dx(Ki;Kg) and �Dy(Ki;Kg) as the
reference rotation angles between Ki and Kg along the x and
y axes of the input device.

After deriving the empirical rotation angles between the
go key and the other clicked keys (i.e., Pk and PN) using the
rotation data, we infer the key Pk by comparing the reference
rotation angles between the go key and any key Ki with
the empirical ones between PN and Pk. Since the last key
(i.e., PN) is always the go key for completing the password
input, we infer the previous tapped keys in terms of calculated
rotation angles. We define the similarity between Pk and any
reference key Ki as follows,

S(Pk;Ki) = |�Dx(Pk; PN)−�Dx(Ki;Ke)|
+|�Dy(Pk; PN)−�Dy(Ki;Ke)| : (8)

Fig. 14. Workflow of motion sensor-based attack

Then we can derive a candidate key list for each key click Pk

based on the similarity score. We choose the top 3 candidates
for each Pk and derive 3N−1 candidate passwords. We accu-
mulate the similarity of each key in every candidate password
and sort the accumulated similarity scores in an ascending
order. Therefore, the smallest similarity score corresponds to
the best candidate password.

The success rate is defined as the probability of recovering
entered passwords. Since our attacks produce multiple candi-
dates for a password, we define two kinds of success rate:
Top 1 success rate is the probability that the best password
candidate is the entered password; Top 3 success rate is the
probability that one of the top 3 best password candidates is
the user entered password. Top 3 success rate is a reasonable
metric because most of the password systems allow a user to
input a password 3 times before locking the account.

G. Brute Force Attack
We can perform a brute force password enumeration attack

in the case that a go key is not clicked. For example, a user may
input her password and then click a login button in an app.
We consider a sequence of rotation angles between clicked
keys as a key clicking trajectory. A brute force attack can
be performed by fitting trajectory onto the virtual keyboard.
Since the starting position of the trajectory, i.e., the first key
of the password, is unknown, we try to fit the trajectory onto
the keyboard from upper left to low right of the keyboard so
as to derive all possible password candidates. If the password
candidate list contains the correct password, this trajectory is
referred to as a hit trajectory. To evaluate the brute force attack,
we define two metrics, i.e., the hit rate and the average number
of candidates generated by a hit trajectory. The hit rate is
the number of hit trajectories divided by the total number of
trajectories.

V. MOTION SENSOR-BASED ATTACK
In this section, we first briefly introduce the workflow of

the motion sensor-based attack and then provide more details.

A. Workflow of Motion Sensor-based Attack
Fig. 14 illustrates the workflow of the smartphone sensor-

based attack. The attack workflow consists of four steps as
follows.

Step 1: Obtaining sensor data. A malware is installed on
the user’s smartphone to record the motion sensor data points
(i.e., the orientation data of the headset or the controller in the
yaw and pitch dimensions).

Step 2: Detecting click points. We study the user’s input
pattern and then analyze the orientation data of the headset or
the controller so as to detect the key clicks in the orientation
data time series. Therefore, we can obtain the orientation
angles of clicked keys in the yaw and pitch dimensions.

Step 3. Calculating rotation angles: After deriving the
orientation data of the key click points, we obtain the rotation
angles by computing the changes of orientation angles between
the go key and the other clicked keys. The process is similar
to estimating rotation angles of the VR headset in the vision
attack introduced in Section IV-E.

2019 IEEE Conference on Communications and Network Security (CNS)

246

Fig. 15. Smartphone coordinate system

Step 4. Recovering passwords: We exploit the key click
points and rotation angles to infer the clicked keys. The
strategies used for recovering passwords are similar to those
in Step 5 of the vision attack and please refer to Section IV-F.

We introduce Steps 1 to 2 in detail below.

B. Step 1. Obtaining Sensor Data
1) Obtaining sensor data from the VR headset: We exploit

the Oculus mobile SDK to read the orientation angles of the
Gear VR headset in the yaw and pitch dimensions respectively.
The orientation angles are calculated using the data from
motion sensors including the accelerometer, gyroscope, and
magnetometer in the headset. Fig. 3 illustrates the sensor
coordinate system of the headset. When the user opens a VR
app and inputs her password, the malware on the smartphone
continuously records the orientation angles along the Xh and
Yh axes. Since the virtual ray is cast along the reverse direction
of the Zh axis, the rotation of the Zh axis cannot change the
ray direction. The user can rotate the headset along the Xh

and/or Yh axes of the headset to control the cursor movement
on the keyboard. Therefore, we record the yaw, pitch and
timestamp of such sensor data. Fig. 15 shows the smartphone’s
sensor coordinate system.

2) Obtaining sensor data from the VR controller: The
malicious app on the smartphone continuously records orien-
tation sensor data from the controller when the user enters her
password. Since the virtual ray is along the direction of Zc

axis of the controller as shown in Fig. 6, the user can move
the cursor by rotating the controller along the Xc and/or Yc

axes. Therefore, the cursor’s positions can be inferred by using
the pitch and yaw. Accordingly, we record the yaw, pitch and
timestamp of such sensor data, which can be obtained through
the Oculus mobile SDK.

C. Step 2. Detecting Click Points
We analyze a user’s input patterns and process the orienta-

tion data to detect the key click points in the sequence of sensor
data. To click a key on the virtual keyboard, the user should
first rotate the input device (i.e., the headset or the controller)
to move the cursor towards the intended key. Once the cursor is
on the key, the user stops moving the input device and presses
the touchpad on the input device to enter the key. During the
key clicking process, the user keeps the input device steady.
As a result, the orientation angular changes of the input device
in the yaw and pitch dimensions are almost zero when the user
clicks. Based on such observation, we design a sliding time
window strategy to detect the key click points. The empirical
size of the time window is 400 ms. Denote W as the sliding
window, and �i and �i as the ith readings of pitch and yaw in
the sliding window respectively, where i ∈ W . We aggregate
the orientation angular changes in the sliding window by

A(W) =
∑

i∈W

(|�i+1 − �i|+ |�i+1 − �i|) : (9)

If A(W) is less than a threshold TA, the window contains a
clicking action. The central point of the window is chosen as
the click point.

We process the orientation data in yaw and pitch dimen-
sions of the input device in reverse order in order to discover
all the key click points. Denote N as the number of clicks
on the keyboard and (P1; P2; : : : ; PN) as the sequence of the
click points, where PN is the click position of the go key. If
the last clicked key is the go key on the virtual keyboard, we
can process the sensor data in reverse order to locate the first
key click, i.e., PN−1, in terms of Equation (9). According to
our empirical data, the time interval between two sequential
key clicks is at least 1.2 seconds. Therefore, we skip the sensor
readings within this time interval and move on to detect the
next click points until we find all the click points.

VI. EVALUATION
In this section, we introduce the experimental design and

results to evaluate our attacks against Gear VR. We also
discuss limitations of the side channel attacks at the end of
this section.

A. Experimental Design
We attempt to recover random passwords that contain

letters and numbers. The password length can be 4, 6 or 8.
A Samsung Galaxy S8 is attached to the Gear VR headset.
In the computer vision-based attack, a ZED camera is used to
record a 3D video of a victim inputting passwords on the Gear
VR headset. We do not use the ZED camera against the VR
controller since we find it very hard to derive feature points
of the controller, let alone track the controller.

In the motion sensor-based attacks, a Gear VR controller
is connected to the smartphone by Bluetooth. We develop a
VR app to run in the background of the Android system. The
orientation data can be directly derived from the headset and
the controller using the Oculus mobile SDK [10] and Android
SDK, respectively. Recall the accelerometer, gyroscope, and
magnetometer are installed in the headset and the controller.
The orientation angles retrieved via the SDKs are deliberately
calculated using the fused data from these three sensors in
the headset and the controller as the VR system requires
the accurate and stable tracking of the head or the hand
movement via the headset or the controller [7], respectively.
For comparison, we also employ the sensors on the smartphone
to retrieve the orientation angles using the Android SDK.

We consider the following factors that may affect the
success rates of our attacks: users, distance between the camera
and victim, and sampling rate of the sensors.

Users: Since different people have different body size,
head movement patterns and inputting habits, it is necessary to
evaluate the robustness of our attacks in terms of users. In our
experiments, two groups of 10 users respectively conducted
inputting for vision-based or motion sensor-based attacks.
Users were told to use a Gear VR in their preferred way. For
the vision-based attack, there were 3 females and 7 males and
their average age is 28. For the motion-based attacks, there
were 4 females and 6 males and their average age is 23. We
asked each user to input 10 random passwords. For each kind
of attack, we have 100 password inputs.

Distance: The distance between the stereo camera and the
user is taken into account as it affects the vision-based attack.
In order to evaluate the impact of the distance on the success

2019 IEEE Conference on Communications and Network Security (CNS)

247

rate of attacks, we position the camera in front of the user at
a distance from 1 meter to 2 meters.

Sampling rate: This affects motion sensor-based attacks.
Sampling rates of the Oculus mobile SDK and Android SDK
are different. For the Oculus mobile SDK, the sampling rate
is around 60 Hz. We use a sampling rate of 100 Hz on the
Samsung smartphone through the Android SDK.

B. Computer Vision-based Attack

TABLE I. SUCCESS RATES OF THE COMPUTER VISION-BASED ATTACK

Password Length 4 6 8
Headset (Top1) 58% 52% 46%
Headset (Top3) 72% 67% 63%

Table I shows the success rates of the computer vision-
based attack against Gear VR. To set our baseline, we perform
attacks against 10 different users at a distance of 1.5 meters.
As shown in the results, the top 3 success rate for 4-character
passwords is 72% and the top 3 success rate for 8-character
passwords is 63%. The short distance of 1.5m shows the
limitation of the vision-based attack.

We also perform attacks at different distances for 8-
character passwords, and Fig. 16 shows the results. It can
be observed that the success rate drops when the distance in-
creases. This is because as the distance increases, the headset’s
image size in the frame decreases, and the performance of
feature point extraction and object tracking drops.

Fig. 16. Success rates of the computer vision-based attack v.s. distance

C. Motion Sensor-based Attacks
Table II gives the top 1 and top 3 success rates of our

motion sensor-based attacks using the orientation data from the
Oculus mobile SDK. It can be observed that the motion sensor-
based attack is effective. The top 3 success rate can reach
around 90% for 8-character passwords. The reason why the
success rate cannot reach 100% is given as follows. During the
key clicking process, a user normally tries to keep the headset
static before clicking a key. This is helpful for the detection of
a key click point. However, a user may click a key when the
controller is moving. This negatively affects the detection of
key click points. In our experiments, the success rates of key
click detection in the attack against the headset for passwords
with length 4, 6, and 8 are 95%, 93%, and 92% respectively.
The success rates of key click detection in the attack against
the controller are 91%, 90%, and 89% respectively.

Table II also shows the results of the attack using the
senors of the smartphone to derive the orientation angles of
the smartphone so as to infer the password. Recalled the
smartphone is attached to the Gear VR headset. We use the
Android SDK to read these orientation angles [1]. However,

TABLE II. SUCCESS RATES OF THE MOTION SENSOR-BASED ATTACKS

Password Length 4 6 8

Headset sensors Headset (Top 1) 92% 89% 85%
Headset (Top 3) 95% 93% 92%

Controller sensors Controller (Top 1) 84% 80% 71%
Controller (Top 3) 91% 90% 89%

Smartphone sensors Headset (Top 1) 42% 36% 30%
Headset (Top 3) 67% 62% 56%

the well-known gyroscope drift issue of the sensor significantly
affects the accuracy of the orientation angle estimation. Since
no drift correction algorithm is applied in the Android SDK,
the top 1 success rate for 8-character passwords is 30%, while
the top 3 success rate is 56%.

Table III gives the experimental results of the brute force
attack introduced in Section IV-G. The hit rate of the brute
force attack is around 90% in the case of 8-character passwords
while the attacker may have to try around 10 times. The attack
against the Gear VR headset performs better than the attack
against the controller. Due to the errors introduced by the key
click point detection, the hit rate cannot reach 100% as we
discussed before. Moreover, the average number of password
candidates per trajectory in the attack against the headset is
less than that of the attack against the controller.

TABLE III. HIT RATES AND AVERAGE NUMBER OF CANDIDATES OF
THE BRUTE FORCE ATTACK

Password Length 4 6 8

Headset Hit rate 95% 93% 91%
Candidates 16.55 11.65 9.87

Controller Hit rate 91% 90% 89%
Candidates 20.91 14.58 11.63

D. Limitations of Side Channel Attacks
We now discuss limitations of the side channel attacks in

this paper. We assume a known and fixed keyboard layout in
both vision-based and motion sensor-based attacks and infer a
clicked key from the rotation angle of the virtual ray between
two keys. For mobile banking web pages, the position of
username and password input boxes is fixed and the keyboard
layout is fixed too. Some apps such as Samsung explorer use
a fixed keyboard layout. The attacks in this paper can be
directly applied. However, VR apps may relocate the keyboard
based on the input box’s position and the keyboard’s layout
changes too while the change might be subtle. Therefore, the
rotation angle between two keys changes. If the input box’s
position and the keyboard layout are unknown, this will affect
the accuracy of the key inference if a wrong keyboard layout
is used as the reference keyboard in the attacks. For such apps,
we may learn how the keyboard’s layout changes as its position
changes and the person moves the HMD.

VII. RELATED WORK
Given the page limit, we only review papers closely related

to VR security. To the best of our knowledge, we are the
first to explore side channel attacks against the head-mounted
displays (HMD) based VR systems. We exploit the 3D stereo
vision-based attack and motion sensor-based attack to derive
the orientation of the pointing ray of the VR headset or VR
controller so that the orientation can be utilized to infer the
clicked keys.

New emerging VR techniques have gradually attracted the
attention of attackers. For example, an attacker can exploit the

2019 IEEE Conference on Communications and Network Security (CNS)

248

network traffic emitted from the VR system [19] to infer the
victim’s activities in social applications. However, few research
efforts have been made to investigate side channel attacks
against VR. Among them, George et al. [5] study the security
of authentication methods in HMD-based VR systems by
evaluating the resistance to shoulder surfing attacks via human
eyes, and find that the PIN and pattern-based authentication
methods in VR can be more resistant to the attacker than
the methods applied to the smartphone in the physical world.
Our work shows that these traditional mobile authentication
techniques are not secure under the side channel attacks in
VR. The VR technique can also be utilized as a tool to hack
the face authentication system [18].

Li et al. present a 3D vision attack against smartphones and
tablets [8] while there are various 2D vision attacks [15], [20].
They track feature points on a touching hand and infer touched
keys by fitting the hand movement topology onto a keyboard.
The work in this paper is very different from the techniques in
[8] because of the dynamics and properties of the VR headset
or VR controller during an the inputting process.

Our motion sensor-based attack is also different from the
existing ones [11] because our goal is to infer the orientation
of the virtual pointing ray in the virtual environment of VR.

VIII. CONCLUSION
In this paper, we introduce novel computer vision-based

and motion sensor-based side channel attacks to infer the
user input such as passwords via a pointing device such as a
Samsung Gear VR headset and controller. In the vision attack,
a stereo camera is used to record a video of the user inputting
with a VR headset and derive the orientation angles of the
virtual ray in the virtual environment. Because of the limits
of the stereo camera and computer vision techniques, we also
introduce the motion sensor-based attack, in which the senors
built in the pointing devices and smartphones are exploited to
obtain the orientation angles of the virtual ray in the virtual
environment. With the orientation angle time series, we can
derive the empirical rotation angles and compare them with
the reference ones to infer the clicked keys. Extensive real-
world experiments were conducted. We can achieve a top 3
success rate of around 90% in motion senor-based attacks
while the computer vision-based attack has a top 3 success
rate of 63% at 1.5m for 8-character passwords. The advance
of stereos cameras will improve the attack distance.

The usability issue often prevents the use of new authen-
tication methods. For example, while a randomized keyboard
may defeat the side channel attacks in this paper, we didn’t
find any apps equipped with a randomized keyboard in the VR
environment because of its poor usability. Most bank apps in
US use a conventional keyboard. The attacks in the paper will
have a long-term impact and usable authentication methods for
VR are desired meanwhile.

ACKNOWLEDGEMENT
This material is based partially upon work supported by

National Key R&D Program of China 2018YFB0803400 and
2017YFB1003000, by the US National Science Foundation
(NSF) under Grants 1642124, 1547428 and 1350145, and by
the National Natural Science Foundation of China (NSFC)
under Grants 61572130, 61532013, and 61632008, by Jiangsu
Provincial Key Laboratory of Network and Information Secu-
rity under grants BM2003201, by Key Laboratory of Computer

Network and Information Integration of Ministry of Education
of China under grants 93K-9 and by Collaborative Innovation
Center of Novel Software Technology and Industrialization.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF or NSFC.

REFERENCES
[1] Android Open Source Project. Sensor types. https://source.android.

com/devices/sensors/sensor-types, 2017.
[2] P. J. Besl and N. D. McKay. A method for registration of 3-d shapes.

IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–256, Feb 1992.

[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision in
C++ with the OpenCV Library. O’Reilly Media, Inc., 2nd edition,
2013.

[4] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body
transformations: A comparison of four major algorithms. Mach. Vision
Appl., 9(5-6):272–290, Mar. 1997.

[5] C. George, M. Khamis, E. von Zezschwitz, M. Burger, H. Schmidt,
F. Alt, and H. Hussmann. Seamless and secure vr: Adapting and
evaluating established authentication systems for virtual reality. In
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2017.

[6] A. Kharpal. VR will be ḿore ubiquitoust́han smartphones: Ocu-
lus. https://www.cnbc.com/2015/11/03/virtual-reality-will-be-more-
ubiquitous-than-smartphones-oculus.html, Nov 2015.

[7] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking
for the oculus rift. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2014.

[8] Z. Li, Q. Yue, C. Sano, W. Yu, and X. Fu. 3d vision attack against
authentication. In Proceedings of IEEE International Conference on
Communications (ICC), 2017.

[9] Z. Ling, J. Luo, Q. Chen, Q. Yue, M. Yang, W. Yu, and X. Fu. Secure
fingertip mouse for mobile devices. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
pages 1–9, April 2016.

[10] Oculus. Mobile SDK Getting Started Guide. https://developer.oculus.
com/documentation/mobilesdk/latest/concepts/book-intro/, 2018.

[11] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory:
Keystroke inference using accelerometers on smartphones. In Proceed-
ings of The Thirteenth Workshop on Mobile Computing Systems and
Applications (HotMobile). ACM, February 2012.

[12] E. Z. Psarakis and G. D. Evangelidis. An enhanced correlation-
based method for stereo correspondence with sub-pixel accuracy. In
Proceedings of IEEE ICCV, 2005.

[13] T. Simonite. Intel and Microsoft are teaming up to make virtual
reality ubiquitous. https://www.technologyreview.com/s/602189/intel-
and-microsoft-are-teaming-up-to-make-virtual-reality-ubiquitous/, Au-
gust 2016.

[14] Stereolabs. ZED - depth sensing and camera tracking. https://www.
stereolabs.com/zed/specs/, 2017.

[15] J. Sun, X. Jin, Y. Chen, J. Zhang, R. Zhang, and Y. Zhang. Visible:
Video-assisted keystroke inference from tablet backside motion. In
Proceedings of the 23rd ISOC Network and Distributed System Security
Symposium (NDSS), 2016.

[16] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-
Verlag New York, Inc., New York, NY, USA, 1st edition, 2010.

[17] Wikipedia. Samsung Gear VR. https://en.wikipedia.org/wiki/Samsung
Gear VR, 2018.

[18] Y. Xu, J.-M. Frahm, and F. Monrose. Virtual u: Defeating face liveness
detection by building virtual models from your public photos. In
Proceedings of the 25th USENIX Security Symposium (Security), 2016.

[19] A. Yarramreddy, P. Gromkowski, and I. Baggili. Forensic analysis
of immersive virtual reality social applications: A primary account.
In Proceedings of the 12th International Workshop on Systematic
Approaches to Digital Forensic Engineering (SADFE), 2018.

[20] Q. Yue, Z. Ling, X. Fu, B. Liu, K. Ren, and W. Zhao. Blind recognition
of touched keys on mobile devices. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages
1403–1414, 2014.

2019 IEEE Conference on Communications and Network Security (CNS)

249

