
CORE: Transaction Commit-Controlled Release of
Private Data over Blockchains

Shan Wang†§, Ming Yang†∗, Jiannong Cao§, Zhen Ling†, Qiang Tang‡, Xinwen Fu¶
† Southeast University. Email:{yangming2002, zhenling}@seu.edu.cn.

§The Hong Kong Polytechnic University. Email: {shan-cs.wang, jiannong.cao}@polyu.edu.hk.
‡The University of Sydney. Email: qiang.tang@sydney.edu.au.

¶University of Massachusetts Lowell. Email: Xinwen Fu@uml.edu.

Abstract—In blockchain applications such as digital goods
exchange, private data may be transmitted from a data owner
to a recipient through a transfer transaction. However, these
blockchain applications often assume the underlying blockchain
system is secure and reliable, and thus do not consider transaction
failures. We find that a failed transfer transaction may disclose
the private data to the recipient, but the data owner may not
receive tokens as payments or the ledger may not correctly record
the data trail. To handle transaction failures and protect private
data, we propose a novel transaction commit-controlled release
(CORE) protocol. With CORE, the private data can only be
obtained by an intended recipient after the transfer transaction
is committed, the data owner receives tokens, and the ledger
correctly records the data trail. We perform security analysis
of CORE, implement CORE and evaluate its performance over
representative public and permissioned blockchains. The results
of our extensive experiments show CORE introduces minor
overhead in terms of transaction latency and transaction fees.
We are the first to identify and address the generic private data
disclosure issues in both public and permissioned blockchains.

Index Terms—Blockchain, Data Transfer, Private Data Leak

I. INTRODUCTION

In blockchain applications such as digital goods exchange,
cryptocurrency swap and big data sharing, private data may
be transferred from a data owner to a recipient through
a transaction, which can verify the private data via smart
contracts, facilitate mandatory payment and document evi-
dence for purposes such as auditing. For instance, the digital
goods exchange protocol utilizes a hashed time-locked contract
(HTLC) [1] to fairly exchange a secret key s on-chain [2], [3].
The recipient uses a hash h and a time lock T to lock tokens
in the smart contract. Before time T , the owner can propose
a transfer transaction that carries the secret key s, i.e., the
preimage of the hash h, to withdraw the locked tokens. With
a successful transfer transaction, the data owner receives the
locked tokens as payment while the recipient receives s, i.e.,
private data owned by the owner. After time T , the HTLC does
not permit the owner to withdraw locked tokens through trans-
actions, and locked tokens can be refunded to the recipient.

Those blockchain applications for private data transfer often
assume that the underlying blockchain system is secure and
reliable, and thus do not consider transaction failures, which
may cause private data leaks. In practice, a transaction may
encounter failures due to various faults and vulnerabilities

* Corresponding author: Prof. Ming Yang of Southeast University, China.

in a blockchain system, such as message delivery delays in
an asynchronous network and execution faults at nodes. To
ensure fairness [4] for an honest data owner, the recipient
shall only learn the data when the corresponding transfer
transaction is successfully committed to the blockchain for
facilitating payment [3], [4] and documenting evidence [5].
However, in public blockchains, the private data within a
failed transfer transaction may be disclosed to the public
blockchain network. An adversary (including a malicious data
recipient) may learn the private data but does not pay tokens. In
particular, if a transfer transaction is delayed beyond the time
lock T , the owner cannot receive the payment through transfer
transactions any more. In permissioned blockchains, we find
that the original private data is prematurely delivered to a
recipient in a peer-to-peer fashion before transaction commit.
When a transfer transaction fails, the recipient still obtains the
private data, but the ledger fails to correctly document the trail.

In this paper, we systematically address the private
data leak issues caused by transaction failures. Our major
contributions are summarized as follows. We are the first to
identify the generic private data disclosure issues because of
failed transactions in existing applications and protocols over
both public and permissioned blockchains. We propose a
novel protocol named transaction commit-controlled release
(CORE) protocol, which can protect the confidentiality of
private data in case of transaction failures. CORE introduces
a group of n witnesses to attest transaction commit events
and employs bilinear pairing cryptography to keep the private
data confidential from witnesses while ensuring that the
private data can be obtained only by a specific recipient after
the transfer transaction is committed. CORE also introduces
threshold cryptography so as to tolerate a fraction of corrupted
witnesses. A witness attests a transaction commit event by
publishing a verifiable signature on the committed transaction.
With any t signatures from n witnesses, a recipient can use
its private key to derive the private data. In the case of
transaction failure, the recipient cannot recover the private
data, given well-studied cryptographic assumptions and a
maximum of t − 1 corrupted witnesses.

In CORE, witnesses do not have access to the private data,
and only provide publicly verifiable signatures on committed
transactions and control the timing of private data release to
a specific recipient. The private data is only shared within the

322

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00038

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

03
8

Authorized licensed use limited to: Southeast University. Downloaded on October 15,2024 at 05:02:21 UTC from IEEE Xplore. Restrictions apply.

owner and the recipient. This distinguishes CORE from secret
sharing [6] and threshold cryptosystems [7], [8], as well as
the witness encryption based on signatures [9]. In our context,
these existing techniques cannot ensure the confidentiality of
private data from witnesses and unintended parties.

We implement CORE in the representative public
blockchain—Ethereum and the representative permissioned
blockchain—Hyperledger Fabric [10], and evaluate its
performance. We deploy seven cloud servers across different
countries as witnesses with each running with limited compu-
tational resources. The overhead incurred by CORE is minor in
terms of transaction latency and fees. We also conduct a large-
scale analysis of the use of private data transfer transactions
in mainstream blockchains, demonstrating the generality of
private data transfer transactions and the need of CORE.

II. BACKGROUND

In this section, we introduce the private data transfer over
both public and permissioned blockchains.

A. Private Data Transfer in Public Blockchains
Hashed time-locked contracts (HTLCs) [1] are commonly

used for conditional payments in public blockchains, and
serve as building blocks of protocols for fair exchange of
digital goods and HTLC-based atomic swap. A withdrawal
transaction related to a HTLC involves transferring private
data of high value.

Fair Exchange of Digital Goods. In a digital goods fair
exchange protocol over blockchains, the private data trans-
ferred in a transaction is an encryption key s. In ZKCP [2]
and ZKCPlus [3], a seller Alice first sends the ciphertext of
digital goods off chain only to a buyer Bob, and uses zero
knowledge proof (ZKP) to prove to Bob that h is the hash
of the correct encryption key s without revealing s. Next,
Bob and Alice follow the HTLC workflow as shown in Fig.
1 to finish the exchange of s on chain. Bob uses the hash h
and a specific time T to deposit v tokens in the smart con-
tract through a transaction T Xdep(h, T, v, pkA, sigB), which
specifies Alice as the intended recipient of v tokens via her
public key pkA and Bob as the sender via his signature sigB .
Before time T , Alice can propose a withdrawal transaction
T Xwdr(pre, sigA), where the preimage pre is the key s, to
withdraw the locked v tokens as the payment. The HTLC smart
contract verifies if the preimage is consistent with hash h and
whether the current time is prior to time T . If both conditions
are met, the HTLC smart contract sends v tokens to Alice.
Everyone including Bob can obtain s from the withdrawal
transaction in the public blockchain. Bob can use s to recover
the digital goods from the previously received ciphertext. If
Alice fails to deliver a valid T Xwdr before T

ref [if submit Tx]alt

client peer1 peer2 peer3 orderer

4: original results

16: update
world state

15:
update
world
state

14: update
world state

5: TX generation

7: block
generation

12: Tx
validation

13: Tx
validation

11: Tx
validation

10: block
distribution

9: block
distribution

8: block
distribution

6: TX

3: proposal response
and endorsement
(hash of results)

2: chaincode
execution

1: Transaction proposal

Powered By�Visual Paradigm Community Edition

Fig. 2. Private Transaction Lifecycle in Fabric

Steps 11-16. Each peer validates transactions in the new block.
Only the transaction which passes the validations, including
the endorsement policy check and version check, is marked
as valid [19]. Only the execution results of a valid transaction
are updated to the world state database. Peer 2 updates the
original private data (that is stored locally) to its world state.
Other PDC non-member peer nodes only update the hash of
the private data in the transaction to their world states.

Another permissioned blockchain Enterprise Ethereum

previously received ciphertext, but not pay tokens to the seller.
This is unfair for the seller who does not get the payment.
Delivering the ciphertext of the secret key s in a transaction
[11] cannot tolerate the transaction failures either, since a
buyer can obtain the ciphertext from the failed transaction and
use the pre-shared symmetric key to recover the secret key s
without pay. (ii) In the HTLC-based atomic swap protocol,
if Alice’s withdrawal transaction fails, Alice cannot withdraw
the Ethers locked by Bob in Ethereum after time t2. But Bob
may learn the preimage from the failed withdrawal transaction,
and use the learned preimage to withdraw the BTC locked by
Alice in Bitcoin. As a result, Alice loses money.

2) Private Data Disclosure in Permissioned Blockchains:
The big data sharing protocol [5] in Section II-B assumes
the underlying permissioned blockchain system and its private
data mechanism are secure, and does not consider transaction
failures either. According to the private data transaction work-
flow in Hyperledger Fabric in Fig. 2, the owner’s peer 1 sends
the original private data to the recipient peer in a peer-to-peer
way in Step 4 before generation of the transaction. We find that
the transaction may fail in multiple cases. (i) Message delivery
delay. During Step 3, if the proposal response is delayed and
not received within the timeout of 30 seconds by default, the
client will not proceed with generating and submitting the
transaction to orderers in Step 5. (ii) Node execution faults. In
Steps 11-13, the transaction may be marked as invalid by peer
nodes due to endorsement policy check errors or version check
errors before updating the execution results to the ledger. For
example, an endorsement policy may not permit the transfer
transaction with only one endorsement [32].

The private data transaction in an Enterprise Ethereum
network has the similar private data disclosure problem as
Fabric, since the private data is also delivered to the recipient
in a peer-to-peer way before the transaction commit.

Implication. In all these transaction failure cases in the
permissioned blockchains, the private data is prematurely
disclosed to the recipient, but the transaction is not committed
to the blockchain. That is, the recipient obtains the private data
but the blockchain fails to correctly document the trail. The
big data sharing protocol [5] does not handle such transaction
failures, which will lead to improper chain of custody and
owner unfairness.

C. Security Goals
To handle the transaction failure cases and enforce owner

fairness, we propose a transaction commit controlled release
(CORE) protocol, which ensures that private data m is ob-
tained by a specific recipient only after T Xp is committed.

Security Assumption. We assume an asynchronous commu-
nication model, where the message delivery time is uncertain.
Our protocol, unlike existing ones, does not rely on a determin-
istic message delivery bound for its execution. Transactions
may fail due to message delivery delays and execution errors in
a blockchain network. The data owner honestly transfers a cor-
rect data, since the data correctness can be verified by the re-
cipient before the protocol execution as discussed in Sec. VII.

The ideal functionality F interacts with a private data
owner O identified by a blockchain address idO, a
blockchain network B running an arbiter smart contract
L, a private data recipient R, and a simulator Sim.

• Propose Transaction T Xp. On receiving
(send, T Xp(m, R)) from O, where T Xp(m, R)
is a transaction for transferring private data m to R,
leak (send, R, idO) to Sim.

• Validate Transaction T Xp. Send T Xp(m, R) to
blockchain network B for validating T Xp, and obtain
an boolean indicator Itx that indicates the validity of
T Xp. Output Itx and leak T Xp(R) to Sim.

• Reveal Private Data. If T Xp is committed to
Blockchain B as a valid transaction, i.e., Itx = 1, re-
veal m only to the recipient R. Otherwise, withhold m.

Fig. 3. Ideal Functionality F of CORE

Security Definition. We define the security of CORE follow-
ing the simulation-based formulation paradigm [21], designing
a real-world protocol Π to achieve an ideal functionality F ,
i.e., the security goals. In the real world, parties who interact
with Π may be corrupted by a probabilistic polynomial-time
(P.P.T.) adversary A. In the ideal world, an ideal protocol inter-
acts with honest parties and a P.P.T. simulator Sim. If the sim-
ulator Sim in the ideal world can simulate a view that is com-
putationally indistinguishable from the view in the real world
for A, it is said that Π securely realizes the security goals F .

As shown in Fig. 3, we define the ideal functionality F
for CORE. On receiving a (send, TXp(m, R)) message from
owner O, send the transaction T Xp(m, R) to blockchain
network B. Only the event (send, R, idO) is revealed to Sim,
and m is kept confidential; Then, B runs a consensus protocol
to include T Xp into a block, and runs an arbiter smart contract
L to validate the data in T Xp. A transaction validity indicator
Itx is output. The data m is kept confidential to Sim; Finally,
if Itx = 1, m is revealed only to the recipient R. If Itx = 0,
other parties including R cannot obtain the data m of owner
O, even when T Xp is sent out but is delayed and fails.

Based on the ideal functionality F , the security of a real-
world protocol Π of CORE is defined as follows.
Definition 1. (Security of Π) Let IDEALL

F,Sim denote
the execution of functionality F , and REALL

Π,A denote the
execution of protocol Π. Π is said to securely realize F if ∃ a
P.P.T. Sim, s.t. the following holds for ∀ P.P.T. adversary A,

IDEALL
F,Sim ≈ REALL

Π,A. (1)
According to the functionalities in F , a real-world protocol

Π that securely realizes F can rigorously guarantee that the
private data m remains confidential in case of transaction fail-
ures, and is only obtained by a specific recipient when transac-
tion T Xp is committed, thereby ensuring the owner fairness.

IV. REAL-WORLD PROTOCOL OF CORE
In this section, we introduce a real-world protocol Π that im-

plements the ideal functionality F of CORE. We first present

325

Authorized licensed use limited to: Southeast University. Downloaded on October 15,2024 at 05:02:21 UTC from IEEE Xplore. Restrictions apply.

the basic idea and then introduce cryptographic preliminaries.
Finally, we present the protocol Π in detail.
A. Basic Idea

We design a transaction commit-controlled release (CORE)
protocol Π, in which the release of private data is controlled
by a transaction commit event. CORE employs a group of
n blockchain witnesses to attest transaction commit events,
adopts bilinear pairing cryptography to control the timing of
releasing private data to only an intended recipient while keep-
ing the private data confidential from all witnesses, and utilizes
threshold cryptography to tolerate t − 1 malicious witnesses.

As shown in Fig. 4, in Steps 1-2, an owner O first generates
a random number r, uses bilinear pairing to create a symmetric
key K as a function of the random number, the recipient’s
public key and the owner’s blockchain address, and encrypts
the private data m with the generated symmetric key K.
The owner then creates a private data transfer transaction
T Xcore

p (r, c, R) with r and the ciphertext c as its fields. At
this point, the recipient R cannot derive the key K and cannot
recover private data m even though R already gets c in the
transaction. Step 3. The blockchain witnesses monitor the
blockchain continuously. When a witness finds that transaction
T Xcore

p (r, c, R) is committed, the witness signs the random
number r and the owner’s blockchain address in the transaction
and publishes the signature as a commit confirmation key (CK),
which is publicly verifiable. If T Xcore

p fails, a witness will
not generate a signature on this transaction. Step 4. Once the
recipient observes a number of t or more CKs, the recipient
can use its private key and any t published CKs to derive the
symmetric key K and thus recover the private data m from
ciphertT2419.275 Tm
[(not)-354.004(generate)-353.994(a)-35350 0 1 4865 3997(Tm
[c 642l(e)92799enerate)-353.9257.97nerifiable. If

T X

CORE protocol Π runs over a blockchain net-
work B with an arbiter smart contract L and
n witnesses. Π interacts with a data owner
O identified by idO, and a data recipient R.
The generator P of G1 is a public parameter.

Initiate Keys
• Witness Wi, i = 1, 2, ..., n runs algorithm

(SKi
w, PKi

w) ← WitnessKeyGen(G1,Z∗
p) to derive

its key pair.
• Recipient R runs algorithm (SKu, PKu) ←
UserKeyGen(PK1

w, PK2
w, ..., PKn

w,Z∗
p) to initiate

its key pair.
Propose Transaction T Xcore

p

• Owner O generates a transaction reference as r ←
ReferGen(λ).

• Owner O encrypts private data m, and gets
its ciphertext by running the algorithm c ←
Enc(m, PKu, r, idO). O puts c and r as parameters
of transaction T Xcore

p (r, c, R). Then owner O sends
a request (send, TXcore

p (r, c, R)) to Π.
• On receiving (send, T Xcore

p (r, c, R)), send
T Xcore

p (r, c, R) to the blockchain network B.
Validate Transaction T Xcore

p

• B orders transaction T Xcore
p following a consensus

protocol. An arbiter smart contract L verifies data
in the transaction and/or manages tokens. B outputs
Itx which indicates the validity of T Xcore

p .
• Each witness Wi, i = 1, 2, ..., n continually

monitors and confirms committed transactions.
Only if the transaction T Xcore

p is committed,
Wi publishes a commit confirmation key as
CKi ← CmtConfirm(T Xcore

p , SKiw).
Reveal Private Data

• Recipient R obtains c from a valid transaction
T Xcore

p , and gets the published CKi from Wi. When
R obtains t or more commit confirmation keys, R
recovers the private data by running algorithm m ←
Dec(c, SKu, CK1,w, CK2,w, ..., CKt,w). With in-
sufficient CKs, R cannot derive the private data.

Fig. 5. A Real-World Protocol Π of CORE

Ai0 is a part of PKi
w. Please note that others such as an

owner can verify whether the recipient’s public key PKu is
derived based on the witnesses’ public keys by checking

if
n∏

i=1

e(uP, Ai0) = e(P, u
n∑

i=1

Ai0) holds. A correct PKu

ensures that the recipient has to obtain signatures, i.e., commit
confirmation keys, of witnesses to perform decryption.

2) Propose Transaction T Xcore
p : When a private data

owner O, who is identified by a blockchain address idO, wants
to transfer the private data m to a recipient R through a trans-
action, the owner first derives a transaction reference r and
runs algorithm r ← ReferGen(λ). Reference r is generated

by a random number generator PRNG(·), and r = {0, 1}λ.

Then the owner encrypts the private data m using the
transaction reference r, its identifier idO and the public key
PKu of a specific recipient, and obtains the ciphertext c. The
encryption algorithm c ← Enc(m, PKu, r, idO) has four main
steps. (i) The owner verifies the correctness of the recipient’s
public key PKu, as introduced previously. If it is correct,
the encryption continues. (ii) The owner randomly selects
k ∈ Z∗

p, and calculates kP . (iii) The owner concatenates idO

after the reference r and gets σ = r||idO, where || denotes
the concatenation of two strings. Then the owner derives a

symmetric key as K = e(ku
n∑

i=1

Ai0, H1(σ)); (iv) The owner

uses the symmetric key K to encrypt private data m, and ob-
tains the ciphertext c = ⟨kP, Cm⟩, where Cm = m ⊕ H2(K).
As a result, the decryption of such a ciphertext will require
both the witnesses’ signatures on r||idO and the recipient’s
private key u. Now, the owner can use r and ciphertext c as
two parameters to create a transaction T Xcore

p (r, c, R), and
trustingly broadcast this enforced transaction to the blockchain
network. Please note that, the owner’s address idO is assigned
by the blockchain system to the initiator address field of
T Xcore

p such as the From field in an Ethereum transaction.

Choice of transaction reference r. Transaction hash cannot
perform as r since the owner needs r for encryption before a
transaction is created. The T imestamp field in a transaction
cannot work as r since two transactions may have the same
T imestamp. We use a strong random number generator
PRNG(·) to generate the transaction reference r which
negligibly repeats itself. A random number as r is generic
and applicable to mainstream blockchains such as Ethereum,
Hyperledger Fabric and so on.

3) Validate Transaction T Xcore
p : The blockchain network

B follows a consensus protocol to bundle the transaction into
a new block, and runs an arbiter smart contract L to verify
data in T Xcore

p and manage tokens. The time it takes to
commit a transaction to the ledger is undeterministic, and the
transaction may fail due to faults and vulnerabilities in the
blockchain system as analyzed in Section III-B.

The witness Wi, i = 1, 2, ..., n keeps monitoring
the blockchain network, and periodically (one period is
one block) confirms the commit of new transactions in
a new block. After the private data transfer transaction
T Xcore

p (r, c, R) is committed, witness Wi runs algorithm
CKi ← CmtConfirm(TXcore

p , SKi
w) to attest to the commit, re-

gardless of how long the commit process takes. Wi parses the
reference r and the transaction initiator (the owner) identifier
idO in the fields of committed T Xcore

p , and gets σ = r||idO.
Wi uses its private key SKiw to sign σ, obtains a commit
confirmation key as CKi = siH1(σ), and publishes the CKi on
any public bulletin board (or the internet). CKi is publicly veri-
fiable. Anyone can verify CKi by checking if e(siP, H1(σ)) =
e(P, CKi) holds. An honest witness does not sign a transaction
that fails or has not passed the validation, e.g., a failed HTLC
withdrawal transaction that has surpassed the time lock T .

327

Authorized licensed use limited to: Southeast University. Downloaded on October 15,2024 at 05:02:21 UTC from IEEE Xplore. Restrictions apply.

4) Reveal Private Data: If T Xcore
p is successfully com-

mitted and t (or more) witnesses publish CKi,w, i =
1, 2, ..., t and w ∈ {1, 2, ..., n}, the recipient can re-
cover the private data by running the algorithm m ←
Dec(c, SKu, CK1,w, CK2,w, ..., CKt,w). CKi,w = (xi, yi)
where xi = w and yi = CKw, and CKi,w is from the
w-th witness. Recipient R obtains the ciphertext c from a
committed T Xcore

p (r, c, R) in the ledger, and obtains commit
confirmation keys from a public bulletin board or directly from
witnesses. The recipient first uses its private key SKu and any
t published commit confirmation keys {CKi,w, i = 1, 2, ..., t}
to recover the symmetric key, i.e.,

K
′

= e(kP,
t∑

i=1

yi

t∏
j=1,j ̸=i

xj

xj − xi
)SKu . (2)

K
′

is actually equal to the owner generated symmetric key K.
Then the recipient can obtain the private data by calculating
m = Cm ⊕ H2(K

′
). With less than t commit confirmation

keys, recipient R cannot recover the private data m.
Correctness Analysis. We now analyze the correctness of

the algorithm Dec. Assume f(x) =
n∑

i=1

fi(x). Then the Wi’s

secret key si = f(i) and f(0) =
n∑

i=1

ai0. According to

Lagrange Interpolation Theorem, f(0) can be obtained by t
points on polynomial f(x) of degree t − 1. We have

K
′

= e(kP, H1(σ)
t∑

i=1

f(xi)
t∏

j=1,j ̸=i

xj

xj − xi
)u

= e(P, H1(σ))kuf(0).

(3)

Similarly, we have

K = e(ku
n∑

i=1

(ai0P), H1(σ)) = e(P, H1(σ))
ku

n∑
i=1

ai0

.

(4)
Therefore, we have K

′
= K, and Cm ⊕ H2(K

′
) = m ⊕

H2(K) ⊕ H2(K
′
) = m. The decryption algorithm is correct.

According to equations (3) and (4), σ = r||idO in algo-
rithms Enc and CmtConfirm ensures that the ciphertext c can
only be decrypted through a transfer transaction T Xcore

p (r, c)
initiated by the owner O with the identifier idO. Please note
that a blockchain system does not allow other entities than the
owner O to use idO in the initiator field of a transaction.

D. Witnesses Selection and Incentive

Several properties of CORE allow the blockchain commu-
nity to construct witness services by majority-honest com-
mittees, to ensure the data security of the special type of
private data transfer transactions with a profit motive. First,
private data remains confidential to all witnesses, and CORE
can tolerate a fraction of malicious witnesses. Second, commit
confirmation keys from witnesses are publicly verifiable with
witnesses’ public keys and the reference and initiator address
of a committed transaction, making it easy to audit witness
behaviors. Third, the role of a witness is limited to signing

the reference of a committed transaction. Its workload is
minor as demonstrated in Section VI. In public blockchains
like Ethereum, existing RPC service [33] providers such as
Infura could further integrate the witness services to expand
business and attract more users. Recipients could subscribe
the witness service for querying the commit confirmation keys
like subscribing RPC services for querying blockchain states.
Organizations involved in a permissioned blockchain could
perform as witnesses, such as hospitals and research institu-
tions in a Fabric-based healthcare data sharing system [5].

V. SECURITY ANALYSIS

In this section, we first formally prove that the real-world
protocol Π of CORE is secure, and then analyse that CORE
can resist faults and failures in a blockchain system.

A. Security Proof

Theorem 1. The real-world CORE protocol Π securely real-
izes the ideal functionality F and is secure under Definition
1, given secure cryptographic primitives and a maximum of
t − 1 malicious witnesses.

Proof. We show that the ideal world and the real world are
computationally indistinguishable for adversary A which runs
P.P.T. algorithms. Adversary A can get the inputs and outputs
of the corrupted parties. The owner is honest as discussed in
Sec. III-C. The adversary can corrupt at most t − 1 witnesses
and/or the recipient. We consider private keys of honest
parties are secure because of the DL assumption. To formally
prove Theorem 1, we construct simulators for each possible
corruption case and prove that Sim can simulate views where
A cannot distinguish the real world from the ideal world.

Case 1. t−1 Malicious Witnesses and Malicious Recipient.
There exists a P.P.T. simulator SimWR such that for adversary
A that corrupts both the recipient and at most t−1 witnesses,
it holds that the view of Π in the presence of adversary A
is computationally distinguishable from the view in the ideal
world with SimWR. SimWR works as follows.

1) SimWR invokes F and obtains the outputs of F including
the transaction validity indicator Itx, data m and idO.

2) SimWR samples the random keys for witness Wi,
i = 1, 2, ..., n by running algorithm (S̃K␣555.081␣327.75␣ETΩa337.998(0␣0␣1␣507.063␣251.512␣TmΩ[(i)]␣TJ␣0␣1␣311.956␣TLΩ10␣0␣1␣5070␣0␣4␣303.839␣itness)]␣TJΩETΩBTΩ/T1_2␣9.963␣TfΩ1␣2␣0␣194.84356␣251.512␣TmΩ[(;)]␣TJΩETΩBTΩ/T1_11␣9.963␣TfΩ1␣260␣16507.304␣253.311␣TmΩ[(f)]␣TJΩETΩBTΩ/T1_7␣9.963␣TfΩ1␣2601474.84356␣251.51P␣TmΩ[(SK␣555.081␣327.75␣ETΩa337.998(036.60707.063␣251.512␣TmΩ[(i)]␣TJ337.998(036.607070␣0␣4␣303.839␣itness)]␣TJΩETΩBTΩ/T1_4␣9.963␣TfΩ1␣ain1␣503.181␣251.512TmΩ[(2))]␣TJΩETΩBTΩ/T1_5␣9.963␣TfΩ1␣03.07␣343.724␣251.51␣␣TmΩ[(f)]␣TJΩETΩBTΩ/T1_7␣9.963␣TfΩ1␣0␣0␣1␣332.359␣287.4579.002(KeyGe66.001(n)]␣TJΩETΩBTΩ/T1_4␣9.963␣TfΩ1␣0␣09llo7332.359␣287.452␣TmΩ[(()]␣TJΩETΩB8TΩ/T1_1␣9.963␣TfΩ1␣0␣077509332.359␣287.45GTmΩ[(()]␣TJΩETΩ9TΩ/T1_3␣6.974␣TfΩ1␣0.721␣373␣0␣6␣251.5141.999(1)]␣TJΩETΩBTΩ/T1_2␣9.963␣TfΩ1␣0␣099332.359␣287.452␣TmΩ[(;)]␣TJΩETΩB8TΩ/T1_1␣9.963␣TfΩ1␣n)441␣552.359␣287.45Z␣TmΩ[(;)]␣TJΩETΩB2TΩ/T1_3␣6.974␣TfΩ1␣5.005070␣0␣7␣251.512003␣TmΩ[(;)]␣TJ::;1␣311.ΩETΩBTΩ/T1_3␣6.974␣TfΩ1␣5.005073.009␣263.24p6.001(n)]␣TJΩETΩBTΩ/T1_4␣9.963␣TfΩ140␣0665332.359␣287.452TmΩ[(2))]␣TJΩETΩBTΩ/T1_4␣9.963␣TfΩ140␣0␣1␣402.359␣287.451␣TmΩmΩ[(,)-3send9.999(as)-309.sTmΩ[(the)-30.005(ok)0.007(e)14.999(as)-30omΩ[(2))]␣TJΩETΩBTΩ/T1_5␣9.963␣TfΩ1␣2.322402.359␣287.45A␣TmΩ[(i)]␣TJΩETΩBTΩ/T1_1␣9.963␣TfΩ1␣0␣0175332.359␣287.456␣TmΩ[(.)]␣TJΩETΩBTΩ1␣0␣0␣1␣315.029␣303.833␣TmΩ[(2))]␣TJΩETΩBTΩ/T1_17␣9.963␣TfΩ1␣0␣0␣1␣335.029␣303.838␣TmΩ[(Sim)]␣TJΩETΩBTΩ/T1_3␣6.974␣TfΩ1␣0␣0␣1␣340␣080␣302.345␣TmΩ[(W)-154.005(R)]␣TJΩETΩBTΩ/T1_1␣9.963␣TfΩ1378.9␣235.029␣303.838␣TmΩ[(sa1432as)-309.sa143[(W)3709.002(r1432as)-30.005(ok)0.folle)14.9143[(W)3741.a1432as)-309.sluding

If A generates and sends out t−1 corrupted commit con-
firmation keys, SimWR emulates its behavior by sending
t−1 corrupted commit confirmation keys to the recipient.

We now prove that A cannot distinguish the view in the
ideal world from the real-world Π executions. Due to the DDH
and DBDH assumptions, the simulated keys and ciphertext c′

in the ideal world and the keys and ciphertext c in the real
world are computationally indistinguishable for adversary A.

In case of Itx = 1, A can recover m from the ciphertext in
both the ideal and real worlds.

In case of Itx = 0 and A does not generate commit
confirmation keys, A will not obtain keys and cannot derive
m in both ideal and real worlds.

In case of Itx = 0 and A sends t − 1 commit confirmation
keys to the recipient, A cannot derive m in both ideal and real
worlds. Recall that H1(σ) ∈ G1, and assume H1(σ) = yP .

The key K = e(P, H1(σ))kuf(0), where f(0) =
n∑

i=1

ai0.

f(0) is unknown since t − 1 witnesses cannot recover f(0)
or f(0)P according to Lagrange interpolation theorem.
It is computationally hard to find e(P, P)ykf(0) without
knowing y, k and f(0) according to the BDH assumption.
Consequently, A cannot find e(P, P)ykuf(0) or recover m,
even if A has S̃Ku. IDEALL

F,Sim ≈ REALL
Π,A holds.

Case 2. t−1 Malicious Witnesses. Adversary A corrupts at
most t−1 witnesses and the recipient is honest. The simulation
and the proof are similar to those in Case 1. A simulator
SimW generates a transaction T̃ X

core

p (r′, c′, R) and sends it
to A. IDEALL

F,Sim ≈ REALL
Π,A holds due to DBDH.

Specially, when Itx = 1, A can get t − 1 commit
confirmation keys from corrupted witnesses, and may also
get one or more valid commit confirmation keys from
honest witnesses since they are publicly verifiable. SimW

sends t or more C̃K
i,w

to A. We prove that even A gets
t or more C̃K

i,w
, A cannot obtain m in both the real

and ideal worlds. K = e(P,
t∑

i=1

yi
t∏

j=1,j ̸=i

xj

xj−xi
)ku, where

yi = C̃Kw = swH1(σ). Assume
t∑

i=1

yi
t∏

j=1,j ̸=i

xj

xj−xi
= xP .

Without knowing x, k and S̃Ku, it is computationally hard to
find e(P, P)xku given P , kP , xP and uP . That is, it is com-
putationally hard for A to obtain symmetric key K or recover
m, though A knows t or more commit confirmation keys.

Case 3. Malicious Recipient. Adversary A only corrupts
the recipient, and witnesses are honest. The simulation and the
proof are similar to those in Case 1 about simulating messages
to the recipient. If Itx = 1, a simulator SimR generates
{C̃K

i,w
, i = 1, 2, ..., t} and T̃ X

core

TABLE II
Distribution of Witnesses and the Corresponding

RPC Services in Ethereum

Witness Num 1 2 3 4

Location New Jersey California London Seoul

RPC Service Infura BlockPI Alchemy Ankr

Witness Num 5 6 7

Location Singapore Sydney Toronto

RPC Service Blast OnFinality Omnia

64 128 256 512 1024
Data Size (Byte)

0.0
0.5
1.0
1.5
2.0
2.5

Fig. 6. Performance of Six Algorithms

2 3 4 5 6
Required Witness Number

0
1
2
3
4
5

Ti
m

e
(s

)

Ethereum
Fabric

Fig. 7. Time of Getting Data vs.
Number of Required Witnesses

witness server can be queried with a HTTP Get request with
a transaction hash for the corresponding CK.

Hyperledger Fabric. We work on Hyperledger Fabric v2.3.3,
and build a test network with 7 nodes on multiple Vultr
cloud servers with Ubuntu 18.04 and 8GB memory. The block
generation period is set as 10s. A witness is developed in
Golang with a CouchDB database, and interacts with the test
network with the Golang Fabric SDK. The Fabric witness
queries the latest block every 5 seconds, then parses the block
and derives and stores CKs. It also provides a HTTP service
for users querying the published CKs.

B. Performance
We use the same test data set that contains private data

of different sizes to evaluate the performance of CORE in
different blockchains, and run each case 20 times.

Algorithms Performance. The boxplots in Fig. 6 shows
the performance of the developed six algorithms of a (4, 7)-
threshold CORE written in Golang on a computer running
Ubuntu 18.04 with 32 GB memory. It takes less than 3.5 ms
for each algorithm to perform their work efficiently.

Performance in Public Blockchain. In Ethereum’s Goerli
test network, we deploy a HTLC smart contract in Solidity.
We apply a (4, 7)-threshold CORE to its withdrawal trans-
action, i.e., a private data transfer transaction. Fig. 8 shows
that CORE incurs negligible transaction latency overhead.
When a recipient attempts to obtain private data once the
transaction is committed, CORE incurs some overhead due
to time cost of collecting sufficient CKs from witnesses,
although the overhead amount is relatively small. Fig. 9
illustrates that the withdrawal transactions with CORE incur
more gas cost, because we deliver additional data such as
the transaction reference in the transaction. Assuming the
gas price is 50 gwei, we calculate the cost in terms of
Ether. It can be observed that the monetary cost overhead
is acceptable. Our HTLC contract and the related with-
drawal transactions can be found via the contract address
0x4D46599A814bfd8fBE629F969a115F0104bcfb9C through
the Goerli EtherScan explorer.

Performance in Permissioned Blockchain. In the
Hyperledger Fabric test network, we deploy an official
smart contract example in Golang which involves private data
transfer transactions. Fig. 10 shows that CORE has negligible
overhead in the private transactions latency in Hyperledger

Fabric. Please note that a transaction in Fabric does not have

64 128 256 512 1024
Message Size (Byte)

0

20

40

60

80

100

120
Ti

m
e

(s
)

TX Latency (CORE)
TX Latency (Original)
Get Data (CORE)
Get Data (Original)

Fig. 8. Transaction Latency in Ethereum.

64 128 256 512 1024
Data Size (Byte)

0.2

0.4

0.6

0.8

1.0

G
as

1e6
Transaction Cost (CORE)
Transaction Cost (Original)

0.01

0.02

0.03

0.04

0.05

Et
he

r

Fig. 9. Transaction Gas Cost in Ethereum.

64 128 256 512 1024
Message Size (Byte)

0

5

10

15

20

Ti
m

e
(s

)

TX Latency (CORE)
TX Latency (Original)

Get Data (CORE)
Get Data (Original)

Fig. 10. Transaction Latency in Fabric.

0
200
400
600
800
1000

1
10

100
1000

10000
100000

2018
2019

2020
2021

2022

Et
he

r

Tx
N

um
be

r

Year
TX Error TX Withdraw Tx Ether

Fig. 11. HTLCs in Ethereum

0 500 1000 1500

2018

2020

2022

Number

Ye
ar

All projects PDC projects

Fig. 12. Hyperledger Fabric Projects
with private data

following techniques like zero knowledge proof (ZKP) used by
existing protocols outlined in Section II. Prior to transferring
the data, the data owner can utilize ZKP [2] to prove to the
recipient that h is the hash of the ciphtertext c, as well as
c is derived from the correct private data m using CORE,
without disclosing either the private data or the ciphtertext.
The proof can be completed off-chain and will not interfere
with our CORE protocol. Subsequently, the recipient can use h
to lock tokens and utilize an arbiter smart contract to validate
weather the delivered data matches the hash h. A successfully
committed CORE-enforced transfer transaction indicates that
the owner has disclosed the correct c matching with hash h,
allowing for the recovery of the correct m from c.

VIII. RELATED WORK

We now compare CORE with related work that shares some
similarities but cannot address the private data leak issues.

Timed Release Encryption (TRE) solves the problem
of sending information into the future. Witness encryption
[34] based TRE requires several hours for encryption and
decryption [35]. A trusted time server based TRE [36] is
efficient, but cannot tolerate a single-point failure. It can send
a message to a future time like 11:59PM EDT, August 1, 2024,
but is not well-suited for the blockchain context because the
commit time of a transaction is unpredictable.

Threshold Cryptosystem. In secret sharing [6], a secret
is divided into multiple shares. A predetermined number of
participants with shares can reconstruct the original secret.
In a threshold cryptosystem [7], [8], the decryption key of
a ciphertext is shared among n parties. Any t out of n parties
can work together to recover the plaintext. With these typical
constructions, private data cannot be kept invisible to witnesses
as our CORE does. In addition, these constructions do not
have an appropriate parameter to perform as the transaction

introduced to monitor the blockchain network and generate
commit confirmation keys for a committed transaction. A
recipient has to obtain t out of n commit confirmation keys to
recover the private data from the ciphertext transferred in trans-
actions and can only derive the private data when the transfer
transaction does not fail and is committed. In CORE, witnesses
cannot derive the private data. Our extensive analysis and
experiments validate the security and performance of CORE.

ACKNOWLEDGMENT
This research was supported in part by National Key R&D

Program of China (No. 2023YFC3605804), National Natural
Science Foundation of China (Nos. 62072103, 622322004),
Jiangsu Provincial Key R&D Programs (Nos. BE2021729,
BE2022680, BE2022065-5), HK RGC Collaborative Research
Fund (No. C2004-12GF), HK RGC Research Impact Fund
(No. R5034-18), US National Science Foundation Awards
(Nos. 2325451, 1931871, 1915780), and Research Institute for
Artificial Intelligence of Things, The Hong Kong Polytechnic
University. Any opinions, findings, conclusions, and recom-
mendations in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] S. Wadhwa, J. Stoeter, F. Zhang, and K. Nayak, “He-htlc: Revisiting
incentives in htlc,” Cryptology ePrint Archive, 2022.

[2] Wiki, “Zero knowledge contingent payment,” 2020. [Online]. Available:
https://en.bitcoin.it/wiki/Zero Knowledge Contingent Payment

[3] Y. Li, C. Ye, Y. Hu, I. Morpheus, Y. Guo, C. Zhang, Y. Zhang,
Z. Sun, Y. Lu, and H. Wang, “Zkcplus: Optimized fair-exchange protocol
supporting practical and flexible data exchange,” in Proceedings of ACM
SIGSAC Conference on Computer and Communications Security, 2021.

[4] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018.

[5] S. Wang, M. Yang, T. Ge, Y. Luo, and X. Fu, “Bbs: A blockchain big-
data sharing system,” in ICC 2022-IEEE International Conference on
Communications. IEEE, 2022, pp. 1–6.

[6] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” Journal of Cryp-
tology, vol. 20, pp. 51–83, 2007.

[7] J. Baek and Y. Zheng, “Simple and efficient threshold cryptosystem
from the gap diffie-hellman group,” in GLOBECOM’03. IEEE Global
Telecommunications Conference (IEEE Cat. No. 03CH37489), vol. 3.
IEEE, 2003, pp. 1491–1495.

[8] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” Journal of Cryptology, vol. 15, no. 2, 2002.

[9] V. Madathil, S. A. Thyagarajan, D. Vasilopoulos, L. Fournier, G. Mala-
volta, and P. Moreno-Sanchez, “Cryptographic oracle-based conditional
payments,” in NDSS, 2023.

[10] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the 13th EuroSys Conference, 2018.

[11] R. Song, S. Gao, Y. Song, and B. Xiao, “Zkdet: A traceable and privacy-
preserving data exchange scheme based on non-fungible token and zero-
knowledge,” in 2022 IEEE 42st International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2022.

[12] F. Chen, J. Wang, C. Jiang, T. Xiang, and Y. Yang, “Blockchain based
non-repudiable iot data trading: Simpler, faster, and cheaper,” in IEEE
Conference on Computer Communications (INFOCOM). IEEE, 2022.

[13] S. He, Y. Lu, Q. Tang, G. Wang, and C. Q. Wu, “Blockchain-based p2p
content delivery with monetary incentivization and fairness guarantee,”
IEEE Transactions on Parallel and Distributed Systems, vol. 34, 2022.

[14] Y. Lu, Q. Tang, and G. Wang, “Zebralancer: Private and anonymous
crowdsourcing system atop open blockchain,” in IEEE International
Conference on Distributed Computing Systems (ICDCS), 2018.

[15] ——, “Dragoon: Private decentralized hits made practical,” in IEEE
International Conference on Distributed Computing Systems, 2020.

[16] M. Herlihy, “Atomic cross-chain swaps,” in Proceedings of the 2018
ACM symposium on principles of distributed computing, 2018.

[17] R. van der Meyden, “On the specification and verification of atomic swap
smart contracts,” in 2019 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, 2019, pp. 176–179.

[18] J.-Y. Zie, J.-C. Deneuville, J. Briffaut, and B. Nguyen, “Extending
atomic cross-chain swaps,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2019, pp. 219–229.

[19] S. Wang, M. Yang, Y. Zhang, Y. Luo, T. Ge, X. Fu, and W. Zhao, “On
private data collection of hyperledger fabric,” in IEEE 41st International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2021.

[20] Ethereum, “Ethereum mainnet for enterprise,” 2021, [Online]. (Accessed
13 June 2021). [Online]. Available: https://ethereum.org/en/enterprise/

[21] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, pp. 277–346, 2017.

[22] L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor, “On power
splitting games in distributed computation: The case of bitcoin pooled
mining,” in IEEE Computer Security Foundations Symposium, 2015.

[23] Y. Kwon, D. Kim, Y. Son, E. Vasserman, and Y. Kim, “Be selfish and
avoid dilemmas: Fork after withholding (faw) attacks on bitcoin,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 195–209.

[24] S. Gao, Z. Li, Z. Peng, and B. Xiao, “Power adjusting and bribery
racing: Novel mining attacks in the bitcoin system,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 833–850.

[25] M. Saad, A. Anwar, S. Ravi, and D. Mohaisen, “Revisiting nakamoto
consensus in asynchronous networks: A comprehensive analysis of
bitcoin safety and chainquality,” in Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security, 2021.

[26] A. Lewis-Pye and T. Roughgarden, “How does blockchain security
dictate blockchain implementation?” in Proceedings of ACM SIGSAC
Conference on Computer and Communications Security, 2021.

[27] Alchemy, “Ethereum transactions - pending, mined, dropped &
replaced,” 2023. [Online]. Available: https://docs.alchemy.com/docs/et
hereum-transactions-pending-mined-dropped-replaced

[28] F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in the
presence of rational miners,” in 2019 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 2019.

[29] T. Nadahalli, M. Khabbazian, and R. Wattenhofer, “Timelocked brib-
ing,” in International Conference on Financial Cryptography and Data
Security. Springer, 2021, pp. 53–72.

[30] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 129–144.

[31] M. Tran, I. Choi, G. J. Moon, A. V. Vu, and M. S. Kang, “A stealthier
partitioning attack against bitcoin peer-to-peer network,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 894–909.

[32] S. Wang, M. Yang, B. Pearson, T. Ge, X. Fu, and W. Zhao, “On se-
curity of proof-of-policy (pop) in the execute-order-validate blockchain
paradigm,” in 2022 IEEE Conference on Communications and Network
Security (CNS). IEEE, 2022, pp. 317–325.

[33] K. Li, J. Chen, X. Liu, Y. R. Tang, X. Wang, and X. Luo, “As strong
as its weakest link: How to break blockchain dapps at rpc service.” in
NDSS, 2021.

[34] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and its
applications,” in Proceedings of the forty-fifth annual ACM symposium
on Theory of computing, 2013, pp. 467–476.

[35] G. Uberti, K. Luo, O. Cheng, and W. Goh, “Building usable witness
encryption,” arXiv preprint arXiv:2112.04581, 2021.

[36] A.-F. Chan and I. F. Blake, “Scalable, server-passive, user-anonymous
timed release cryptography,” in 25th IEEE International Conference on
Distributed Computing Systems (ICDCS’05). IEEE, 2005, pp. 504–513.

[37] D. Nunez, “Umbral: a threshold proxy re-encryption scheme,” NuCypher
Inc and NICS Lab, University of Malaga, Spain, 2018.

[38] P. Zhang, J. Wei, Y. Liu, and H. Liu, “Proxy re-encryption based fair
trade protocol for digital goods transactions via smart contracts,” arXiv
preprint arXiv:2306.01299, 2023.

[39] Y. Xiao, N. Zhang, J. Li, W. Lou, and Y. T. Hou, “Privacyguard:
Enforcing private data usage control with blockchain and attested off-
chain contract execution,” in The 25th European Symposium on Research
in Computer Security (ESORICS), 2020.

332

Authorized licensed use limited to: Southeast University. Downloaded on October 15,2024 at 05:02:21 UTC from IEEE Xplore. Restrictions apply.

