
WFGUARD: an Effective Fuzzing-testing-based
Traffic Morphing Defense against Website

Fingerprinting
Zhen Ling†, Gui Xiao‡, Lan Luo§∗, Rong Wang†, Xiangyu Xu†, and Guangchi Liu†

†School of Computer Science and Engineering, Southeast University, China
‡School of Cyber Science and Engineering, Southeast University, China

Email: {zhenling, xiaogui, junowang, xy-xu, gc-liu}@seu.edu.cn
§School of Computer Science and Technology, Anhui University of Technology, China

Email: lluo@ahut.edu.cn

Abstract—Website fingerprinting (WF) attack is a type of
traffic analysis attack. It enables a local and passive eavesdropper
situated between the Tor client and the Tor entry node to deduce
which websites the client is visiting. Currently, deep learning
(DL) based WF attacks have overcome a number of proposed
WF defenses, demonstrating superior performance compared to
traditional machine learning (ML) based WF attacks. To mitigate
this threat, we present WFGUARD, a fuzzing-testing-based traffic
morphing WF defense technique. WFGUARD employs fine-
grained neuron information within WF classifiers to design a
joint optimization function and then applies gradient ascent to
maximize both neurons value and misclassification possibility in
DL-based WF classifiers. During each traffic mutation cycle, we
propose a gradient based dummy traffic injection pattern gener-
ation approach, continuously mutating the traffic until a pattern
emerges that can successfully deceive the classifier. Finally, the
pattern present in successful variant traces are extracted and
applied as defense strategies to Tor traffic. Extensive evaluations
reveal that WFGUARD can effectively decrease the accuracy
of DL-based WF classifiers (e.g., DF and Var-CNN) to a mere
4.43%, while only incurring an 11.04% bandwidth overhead. This
highlights the potential efficacy of our approach in mitigating WF
attacks.

Index Terms—Anonymous communication systems, Website
fingerprinting, Fuzzing testing

I. INTRODUCTION

Tor is one of the most widely used anonymous communi-
cation systems due to its outstanding anonymity protection
capability. According to Tor Metrics [32], there are about
three million active users utilize Tor to protect their privacy.
However, owing to its popularity, it attracts lots of researchers
to de-anonymize users’ privacy using various traffic analysis
techniques [18]–[20]. Website fingerprinting (WF) attack is
a traffic analysis attack that enables a local and passive
eavesdropper between the Tor client and the Tor entry node to
infer which websites the client is visiting. Figure 1 shows the
attack model. The local WF attackers (e.g., an Internet service
provider (ISP), or a local network administrator) passively
record and collect the Tor network traffic without modifying,
delaying or decrypting any packet of traces.

The WF attack can be modeled as a supervised classification
problem, in which the traces of each website are labeled

* Corresponding author: Dr. Lan Luo of Anhui University of Technology,
China.

Client Websites

Tor��network

Exit
(OR3)

Middle
(OR2)

Ent�Œ�Ç
(OR1)

Attacker

Fig. 1. Website fingerprinting attack

and used to train various WF classifiers. Traditional machine
learning (ML) based WF attacks, such as k-NN [33], CUMUL
[23] and k-FP [12], are studied to achieve about 90% accuracy.
However, the performance of ML-based attacks rely on the
selection of hand-crafted traffic features, such as traffic burst,
packet timing interval, packet direction and so on. To resolve
the problems, a large number of efficient deep learning (DL)
based WF attacks [1], [3], [27], [28], [30], [31] are proposed
to automatically extract the traffic features without any feature
engineering. What is more, the DL-based WF attacks show
better performance than ML-based WF attacks.

To mitigate the WF attacks, various WF defenses are
introduced to protect users privacy, such as BuFLO [8], WTF-
PAD [16], Walkie-Talkie [35], FRONT [9], Mockingbird [26],
Surakav [10] and so on. These defenses perturb the traffic
by injecting dummy packets and/or delaying packets so as to
eliminate the distinguishable traffic features of each website
and confuse the WF attackers.

However, the sophisticated architectures of DL-based WF
attacks pose challenges when designing effective defenses
to eliminate high-level traffic features. Consequently, many
existing defenses show poor performance against DL-based
WF attacks with unacceptably high bandwidth and/or la-
tency overhead. To address the issues, the design of more
efficient defense methods that effectively deceive DL-based
WF classifiers, leading to misclassifications on Tor traffic,
becomes necessary. One potential solution is to leverage
essential information of deep learning network to design
defense methods. Additionally, we notice that fuzzing testing
deep neural network (DNN) shows promise in improving WF
defenses. Fuzzing testing DNN aims to generate various inputs
to trigger the decision logic of DNN and identify a large
number of unexpected behaviors, such as misclassification.
This aligns with the goals of WF defenses. Nevertheless, none

of the existing defenses combine �ne-grained information of
deep learning network with fuzzing testing DNN technique to
create effective and ef�cient defenses against DL-based WF
classi�ers.

In this paper, we employ fuzzing testing DNN technique
to design a fuzzing-testing-based traf�c morphing defense
(WFGUARD) against WF attacks. The accuracy of DL-based
WF classi�ers is determined by their neurons values. These
values, susceptible to differences due to unique traf�c features
inherent to speci�c websites, play a crucial role in guiding
the decision-making process of the classi�er. Thus, we can
leverage these neurons values to construct a fuzzing objective
function and in�uence them by continuously mutating traf�c
patterns. Such traf�c manipulation can potentially change the
classi�er's decision logic, leading to possible misclassi�ca-
tions, thereby rendering the approach as a potent WF defense
strategy. Speci�cally, we �rst elaborately select representative
traf�c traces for each website and initiate a seed pool. Next,
we design a joint optimization function based on deliber-
ately selected neurons valuess and misclassi�cations of WF
classi�ers. For each trace from the pool, gradient ascent is
utilized to maximize the optimization function. The computed
gradient is then processed with trace mutation strategies so
as to obtain the injection pattern (i.e., the injection position
and direction) for the trace. In this way, the joint optimization
function guides the mutation on all traces of each website.
In addition, we propose two mutation strategies to generate
various injection patterns for comparison. We choose the more
superior injection patterns, which can successfully deceive the
attacker with the minimum bandwidth overhead and minimum
accuracy of DL-based WF classi�ers. Extensive evaluation
shows that WFGUARD reliably decreases the accuracy of
DL-based WF classi�ers (e.g., DF [31], Var-CNN [3]) to
4.43% with only 11.04% bandwidth overhead in the closed-
world scenario and 6% with only 11.22% bandwidth overhead
in the open-world scenario. It demonstrates that WFGUARD

outperforms the existing defense approaches [16], [22], [26].
In summary, our major contributions are as follows:
� To the best of our knowledge, we are the �rst to employ

the fuzzing testing DNN technique to design WFGUARD

method against DL-based WF attackers. We can �nd one
injection pattern for each website which minimize the
DL-based WF classi�cation accuracy. We utilize the �ne-
grained neuron information to design a joint optimization
function which incorporates two parts: maximizing the
neurons values and the number of the misclassi�cation
behaviors of DL-based WF classi�ers.

� We leverage the gradient ascent method to maximize the
joint optimization function. In particular, the dimension of
gradient vector is the same as the input trace. Therefore,
we obtain the injection positions and directions of dummy
cell according to the index and sign of the gradient vector.

� We evaluate the feasibility and ef�ciency of WFGUARD

against DL-based WF classi�ers through extensive exper-
iments including a series of mutation strategies employed
to generate various injection patterns for original traces.

The ef�ciency of the injection patterns are evaluated with
800 traces of each website. The experimental results
demonstrate that WFGUARD can signi�cantly decrease
the accuracy of the DL-based WF classi�ers to around
4.43% by only introducing less than 11.04% bandwidth
overhead, and can effectively defend against DL-based
traf�c analysis attacks to preserve the communication
privacy.

The rest of this paper is organized as follows. In Section II,
we give the background of WF attacks, WF defenses and
fuzzing testing deep neural networks which inspired us to
design the WFGUARD method. We introduce the threat model,
basic idea, motivation and the details of WFGUARD design
in Section III. Then we conduct extensive experiments to
evaluate the performance of WFGUARD method as well as
the existing WF defenses in Section IV. We review related
work in Section V and conclude this paper in Section VI.

II. BACKGROUND

This section covers necessary background. We brie�y in-
troduce the WF attack and defense techniques as well as the
fuzzing testing deep neural network.

A. Website Fingerprinting Attack

WF attacks aim to undermine anonymity protection in
anonymous communication systems, typically where users
employ networks like Tor for browsing. Attackers passively
gather raw network traf�c between the Tor client and entry
node, as depicted in Figure 1. They extract traf�c features
to form website �ngerprints, using these to train an of�ine
classi�er. This classi�er is then deployed at runtime to identify
the speci�c websites visited by the potential victim.

Existing WF attacks fall into two categories: ML-based
WF attacks [6], [12], [23], [24], [33], [34], [38] and DL-
based WF attacks [1], [3], [27], [28], [31]. The ML-based
WF attacks rely on expert knowledge to extract hand-crafted
traf�c features, such as traf�c burst, packet timing interval, and
packet direction, to train the classi�er and leverage the output
scores from the ML-based WF classi�ers to infer the visited
websites. However, the ef�cacy of ML-based WF classi�ers
heavily depends on the feature engineering.

To tackle this issue, since 2016, DL-based WF attacks
have been introduced to leverage deep learning models to
automatically extract high-dimensional traf�c features to train
the classi�er for identifying different websites. Before the
training process, raw traces are preprocessed to extract the
Tor cells using the method proposed by [34]. Moreover, the
preprocessed trace is padded into a �xed length for classi�er
input. This results in a trace sequence comprising +1, -1, and
0. +1 represents a Tor cell emitted from the Tor client to the
website, -1 signi�es a Tor cell sent in the opposite direction
and 0 pads the trace to the �xed length.

B. Website Fingerprinting Defense

To protect user communication privacy, a series of WF
defenses have been proposed. These defenses aim to hide

the patterns of the traffic and ensure the anonymity of user
communications. While existing defenses involve either inject-
ing dummy packets or delaying real packets, both methods
have their trade-offs. Injecting dummy packets alters the
traffic patterns by introducing additional packets. However,
this approach results in extra bandwidth overhead. On the other
hand, delaying real data packets has a significant impact on the
arrival time of the packets, which leads to additional latency
overhead. This delay reduces the loading speed of websites
and directly affects the overall browsing experience of users.
As a result, the central objective in designing WF defenses is
to strike a balance between the necessary overhead incurred
and the overall effectiveness.

The existing defenses can be divided into two categories:
feature-suppression-based WF defenses [4], [5], [7], [8], [13],
[16], [21], [33], [35] and feature-morphing-based WF defenses
[2], [9], [14], [17], [26], [29]. The feature-suppression-based
WF defenses involve using traffic obfuscation methods to
homogenize the traffic features of all websites. This approach
aims to prevent the classifier from accurately classifying
the websites. However, it takes a large overhead to achieve
homogenizing the traffic features of all websites. Therefore,
researchers propose the feature-morphing-based WF defenses,
which aim to reshape the source traffic feature of current
website into a different website by injecting dummy cells.
These methods can successfully mislead the state-of-the-art
DL-based WF classifiers with lower overhead.

C. Fuzzing Testing Deep Neural Networks

In traditional software testing domain, fuzzing testing is
leveraged to detect huge amount of software vulnerabilities.
The key idea of fuzzing testing is to generate random inputs to
detect lots of incorrect software behaviors and potential flaws.
The idea can be also employed for improving robustness of
DNN. Therefore, fuzzing testing is also used to explore the
decision boundaries of DNN and get more undesired behav-
iors, such as misclassification. In fuzzing testing DNN domain,
existing methods [11], [15], [25], [36], [37] concentrate on
generating various inputs by using different techniques to
maximize neuron coverage and detect incorrect behaviors at
the same time. Neuron coverage is a ratio of the number of
unique activated neurons for all test inputs to the total number
of neurons in the DNN. A neuron is activated if its output
value is higher than a threshold value (e.g., 0). As we can
see from the results of these methods, fuzzing testing DNN
is able to maximize both the number of observed differential
behaviors and the neuron coverage, which inspired us to apply
the technique of fuzzing testing DNN to WF defense.

III. FUZZING-TESTING-BASED TRAFFIC MORPHING
TECHNIQUE

In this section, we first introduce the threat model and
motivation of our defense. Then, we present the basic idea of
our fuzzing-testing-based traffic morphing technique. Finally,
we elaborate on the critical design of our method step by step.

Joint Optimistic Function

Class A

Class B

Class N

Classification

Magnifying

Fuzzing

+1
+1

-1
-1

+1
-1
-1

+1
+1

-1
+1
+1

-1
-1

+1
+1

-1
-1

-1
+1

-1
-1

+1
+1

-1
+1
+1

-1
-1

+1

-1

+1
Deep Learning Model

Fig. 2. Motivation

A. Threat model

The threat model of WF attacks is depicted in Figure 1.
We assume a local and passive attacker is capable of identi-
fying the individual website visited by a Tor user. A "local"
attacker is one positioned somewhere between the Tor client
and the Tor entry node. The term "passive" denotes that an
attacker is able to observe and record Tor network traffic
without the capacity to modify, delay, or drop packets. Such
potential attackers include Internet Service Providers (ISP),
Autonomous Systems (AS) and local network administrators
that are positioned between the Tor client and the entry node.
An attacker can collect labeled traffic and preprocess the traffic
using the method proposed by [34] to train an offline classifier.
Additionally, since the most sophisticated WF classifiers based
on the traffic preprocessed method [34] include DF [31] and
Var-CNN [3], we assume that the attacker deploys such WF
classifiers to inspect the traffic and performs the WF attacks
at runtime.

B. Motivation

The WF defense strategy is designed to create deceptive
traffic patterns by inserting dummy cells. Its primary goal is
to confuse DL-based WF classifiers while keeping overhead
at a minimum. Drawing inspiration from the fuzzing testing
approach, we utilize neuron information derived from DL-
based classifiers as feedback for the fuzzing process. This
feedback guides the mutation process, allowing us to identify
an optimal injecting pattern with the fewest possible injections
required to mislead the classifier.

It is crucial to highlight that the accuracy of DL-based
WF classifiers is susceptible to the neurons values present
within them. Due to the varying traffic features across different
websites, there are disparities in the neurons values within the
classifier. The decision-making mechanism of the classifier
heavily depends on these neurons values and the weights
among interconnected neurons. In light of this, we can leverage
the neurons values as fuzzing feedback by employing mutation
to the injection patterns. By doing so, we indirectly alter
specific neurons values, resulting in changes to the classifier’s
decision logic. This process has the potential to cause misclas-
sifications, making it an effective strategy for the WF defense.

representative traces act as the seeds for subsequent seed
mutation.

We take a seed pool of a website as an example to illustrate
the following steps. After constructing the initial seed pool
of the website, we retrieve a seedx from the pool without
repetition for trace mutation. For each seed in the seed pool,
an upper bound of the number of mutations is used to control
bandwidth overhead, namely the ratio of the number of the
injected dummy cells to the number of the cells in the original
trace. Denote the number of maximum mutations asM I , to be
the product of the number of cells in the original trace and a
prede�ned coef�cient� . In this way, we can effectively restrict
the bandwidth overhead from exceeding� . The optimal value
for � is determined through empirical experiments discussed
in Section IV.

E. Joint Optimization Function

For the trace retrieved from the seed pool, we use a joint
optimization function to guide effective mutations on the trace.
We utilize the neuron information of WF classi�er to design
joint optimization function. The joint optimization function
includes maximizing the values of selected activated neurons
and misclassi�cations. If a mutated input is found to increase
the values of activated neurons, it can cause the classi�er to
identify the input as a wrong label [11], [25]. Hence, we design
a joint optimization function to assist WFGUARD to �nd the
effective injection pattern. The function, also referred to as the
objective function, is de�ned as

obj(x) = � 1

mX

i

ni (x) + � 2(c1(x) � c0(x)) (1)

where ni (x) is the value of a selected neuron of which the
value is intended to be increased, andm is the number of
the selected neurons. The optimal value form is determined
through empirical experiments discussed in Section IV.

Since increasing the values of neurons during mutation can
mislead the classi�er, the �rst part of the expression

P m
i ni (x)

in Equation (1) is designed in an attempt to maximize the
sum values of all pre-selected neurons so as to cause the
misclassi�cations. In order to maximize the neurons values,
we propose two heuristic neuron selection strategies based
on the activation count for each neuron. The activation count
(denoted asC) for each neuron is obtained in advance by
feeding p traces of each website into a WF classi�er and
count the number of activation for each neuron, namely
C 2 [0; p]. We consider both most and least frequently
activated neurons represent the features of the website. They
can potentially stimulate misclassi�cations in DL-based WF
classi�ers. Hence, we propose the following two selection
strategies and compare their effectiveness in experiments:

� Strategy 0: Select neurons that have been most frequently
activated in the past.

� Strategy 1: Select neurons that have been least frequently
activated in the past.

Since we need to increase the con�dence of the mutated
variant traf�c, the second part of the expressionc1(x) � c0(x)

is designed to maximize the gap between the probability of
being classi�ed as the correct class label and the highest
probability of being misclassi�ed.c0(x) signi�es the prob-
ability of the seedx being classi�ed as the correct class label,
while c1(x) denotes the highest probability value among all
incorrect class labels predicted by WF classi�ers. Ifc1(x) is
greater thanc0(x), it indicates that a successful variant trace
is found, which can mislead WF classi�ers. Therefore, we try
to maximize the second part in the joint optimization function
to further increase the con�dence. The variables� 1 and� 2 are
used to balance these two parts. The values for these variables
are determined through empirical experiments discussed in
Section IV.

F. Trace Mutation

Trace mutation involves obtaining the gradients by comput-
ing the partial derivative of the objective function in terms of
the input variablex (i.e., seed), and determining the injection
positions and directions of dummy cells in each representative
trace of a website based on the gradients. The gradient is in
the form of a gradient vector, of which the dimension aligns
with that of the input seed, as de�ned in the following:

� =
@odj(x)

@x
(2)

We employ the gradient ascent technique to maximize the
objective function for increasing the neurons values and max-
imizing the con�dence of the misclassi�cations of the DL-
based WF classi�ers.

WFGUARD adopts two mutation strategies, de�ned as
f (�) : (1) only injecting a dummy Tor cell from the Tor client
to the exit node (i.e., inserting +1 into the trace), and (2)
injecting a dummy Tor cell in either direction (i.e., inserting
+1 or -1 into the trace). When only inserting +1, the index
with the maximum value in the gradient vector is selected as
the injection position. The processing of the gradient when
only injecting +1 is de�ned as follows:

f +1 (�) = f sign(� j); j jMax (� j)g (3)

The sign(� j) pertains to extracting the sign of thej th (0 �
j � d) element of the gradient vector, whered represents the
dimension of the gradient, which is the same as the dimension
of the input trace.

In the second mutation strategy, WFGUARD can inject
either +1 or -1. In such case, the index with the maximum
absolute value in the gradient vector is chosen as the injection
position. We insert +1/-1 if the gradient is positive/negative in
the injection position. The processing of gradient is de�ned as
follows:

f +1 =� 1(�) = f sign(� j); j jMax (abs(� j))g (4)

where abs() represents the function to obtain the absolute
value of the gradient. As a result, the functionf (�) gen-
erates the injection patterns, encompassing both the injection
positions and the injection directions.

G. Dummy Cell Injection

After obtaining the injection patterns, a mutated trace (de-
noted asx + f (�)) is generated by injecting dummy cell
following the injection patterns as shown in Equation (5). It
is essential to ensure that the injected cells comply with the
constraint of traf�c trace. That is, dummy cells should not be
injected into the part of the padded cells in the current trace.
By carefully handling the injection process while adhering to
the constraint mentioned above, WFGUARD ensures that the
generated mutated trace samplex aligns with the features of
traf�c trace, thereby effectively increasing the neurons values
and misclassi�cations of the DL-based WF classi�ers.

x = inject (x; f (�)) (5)

H. Variant Trace Veri�cation

The mutated trace samplex is fed into the WF classi�ers
for classi�cation prediction. If x successfully misleads the
WF classi�ers, x is a favorable mutation sample. However,
if it fails to deceive classi�ers and the maximum number of
mutations for the trace is not reached, we update the objective
function with x and continue mutating the trace following the
same procedure. Otherwise, if it reaches the maximum number
of mutations, we discard the trace and select a new seed from
the seed pool for mutation.

IV. EXPERIMENTAL EVALUATION

We evaluate the effectiveness and ef�ciency of our WF-
GUARD with extensive experiments. We implement WF-
GUARD using TensorFlow-GPU 1.15.0 and Keras 2.3.1 frame-
works. All experiments are conducted on Ubuntu 18.04 system
and 6 various NVIDIA GPU cards, including 2 Tesla K80 and
4 1080Ti cards.

A. Dataset

We validate the effectiveness of WFGUARD with a dataset
collected by Sirinam et al. [31]. This dataset is commonly
utilized to evaluate the ef�ciency of DL-based WF attacks and
defenses. For the closed-world scenario, the dataset includes
the most popular 95 websites from Alexa, each consisting
of 1000 traces. It is used to train the DF [31] and Var-
CNN [3] classi�ers, where the ratio of training, validation,
and test sets is 8:1:1. The open-world dataset is composed
of an unmonitored dataset and the monitored dataset used
in closed-world scenario. The unmonitored dataset includes
40,000 websites, each with one trace. We �x the length of
input trace as 5000 in all experiments.

B. Metrics

The metrics used to evaluate WFGUARD include theband-
width overhead (BWO), and detection rate (DR). We do not
evaluate time overhead since WFGUARD solely performs
dummy cell injection on traces, resulting in no time overhead.

� BWO represents the ratio of the number of dummy Tor
cells injected into the trace to the number of actual total
Tor cells of the original trace. It is used to measure

the defense overhead in both closed-world scenario and
open-world scenario. The larger BWO introduced by the
defense, the less ef�cient the defense is.

� DR is utilized to evaluate the effectiveness of the WF
classi�ers in correctly classifying traf�c traces. A lower
DR indicates higher defense effectiveness. DR is de�ned
as the ratio of the number of traces correctly classi�ed
by attackers to the total number of traces.

C. Experimental Setup

The seed pool initialization, as described in Section III,
involves experimentally selectingq representative traces that
are accurately recognized by DL-based WF classi�ers with a
detection rate exceeding 95% for each website. Therefore, for
all seeds in the seed pool, applying WFGUARD can result in
at mostq effective injection patterns for each website. The
optimal value ofq are determined through experiments.

As for the joint optimization function, we propose two
neuron selection strategies: select neurons that have been
activated the most in the past (Strategy 0) and select neurons
that have been least frequently activated in the past (Strategy
1). To obtain the activation count of each neuron, WFGUARD

feeds 100 traces of each website into DL-based WF classi�ers
and count the number of activation for each neuron, thus we
have the activation countC 2 [0; 100].

The parameters, i.e.,� 1 and � 2, in the joint optimization
are weight coef�cients that measure the importance of each
objective, as shown in Equation (1). In order to balance the
importance of neurons values and misclassi�cation possibility
in the joint optimization function, we set� 1 = 1

m � � and� 2 =
1, wherem represents the number of selected neurons, and�
is the threshold for activating neurons. The optimal value for
� is determined through empirical experiments.

WFGUARD aims to �nd an effective injection pattern for
each of the 95 websites. Thus, for each website, we conduct
experiments to further evaluate the effectiveness of some
combinations of theseq injection patterns, each of which
derives from a single trace of the website. We �rst apply
q injection patterns to the training dataset (800 traces). For
each injection pattern, we feed the corresponding 800 injected
traces into the DL-based WF classi�ers to obtain detection
rates. Since we haveq injection patterns,q detection rates are
obtained in total. In the �rst case denoted as WFGUARD-light,
we combine the two injection patterns with top-2 smallest
detection rates. In the second case denoted as WFGUARD-
heavy, we combine the three patterns with top-3 smallest
detection rates, which generates more bandwidth overhead and
lower detection rate. We do not include the experiment results
of only applying one injection pattern since it apparently
results in high classi�cation accuracy.

D. Experimental results

Baseline: WFGUARD �rst evaluates performance of the two
WF classi�ers, DF [31] and Var-CNN [3], in both the closed-
world and open-world scenarios on the undefended dataset.
The evaluation serves as the baseline for comparing with the

TABLE I
CLASSIFIERS RESULTS ON THE NO -DEFENDED DATASET IN THE

CLOSED-WORLD (CW) AND OPEN-WORLD (OW) SETTINGS

Models DF Var-CNN
CW 98.35% 98.40%
OW 96.80% 97.23%

proposed defense in this paper. The results are presented in
Table I. As we can see from Table I, in the closed-world
scenario, DF and Var-CNN achieve high detection rate of
98.35% and 98.40% respectively. However, compared with
that in the closed-world scenario, the DR decreases in the
open-world scenario due to the signi�cantly increased data
size. Though the DR of two classi�ers are still above 96%.
Parameters Tuning: A large number of experiments are con-
ducted to tune the parameters used in WFGUARD, including
� , � , andq. � is a threshold used to measure whether a neuron
is activated.� is a coef�cient, which is utilized to control the
bandwidth overhead.q is the number of seeds for each website,
which also determines the number of injection patterns that we
can obtain from different mutation strategies.

The relationship between different� and detection rate
of DL-based WF classi�ers is shown in Figure 4, in which
the neuron selection strategy is Strategy 0 and the mutation
strategy is "+1". Note that these strategies are also adopted in
experiments corresponding to Figure 5 and Figure 6. Figure 4
illustrates that setting� to 0.2 within the range of[0:1; 0:5] in
the closed-world scenario results in the minimum DR for the
DF model, while setting� to 0.3 in the open-world scenario
also leads to the minimum DR. According to the results,
� is set to 0.2 in the closed-world scenario and 0.3 in the
open-world scenario in the subsequent experiments. Figure 5
shows that within the range of� 2 [5%; 25%], setting � to
20% results in the minimum DR for the DF model. Figure 6
illustrates that within the range of2 [5; 25], settingq to 20
results in the minimum DR for the DF model results in the
optimal performance.
Closed-world experiment results analysis:After determining
the optimal threshold� = 0 :2, we �rst explore the impact of
selecting different numbers of neurons on the detection rate of
the DF and Var-CNN models under different neuron selection
strategies. As shown in Figure 7, when using neuron selection
Strategy 0, WFGUARD shows better defense performance
on the DF and Var-CNN models compared to Strategy 1.
Therefore, we determine Strategy 0 as our neuron selection
strategy.

Then, further exploration of the defense effectiveness with
different mutation strategies is conducted. Figure 8 shows the
impact of two different mutation strategies on the detection
rate of DF and Var-CNN models. In both situations, only
injecting +1 outperforms the other strategy.

Figure 9 illustrates the generalization of WFGUARD, which
is re�ected by its ability to reduce the detection rate of an
unknown model when injecting the injection patterns derived
from attacking the known model with known structure. Then
the patterns are injected the patterns into the original traf�c

and fed into the unknown classi�er. To validate the gener-
alization of WFGUARD, the injection patterns obtained from
experiments on DF model, where the neuron selection strategy
is Strategy 0 and the number of neurons is 50 according to
Figure 7, are used to defend the Var-CNN model. As shown in
Figure 9, the results demonstrate that WFGUARD effectively
reduces the detection rate of the Var-CNN model, regardless of
whether the mutation strategy is only +1 or +1/-1. Particularly,
in the case of +1/-1 injection, the injection patterns generated
from the DF model prove to be more effective to the DF model
than to the Var-CNN model.

Table II presents a comparison of defense effectiveness and
overhead among different defense methods in the closed-world
scenario. The results in the table indicate that WFGUARD-
light achieves a bandwidth overhead of 14.18% to reduce
the detection rate of DF and Var-CNN to below 8.8%. This
is approximately 14% lower in bandwidth overhead com-
pared to the BAND defense method, with a similar defense
effectiveness to BAND. On the other hand, WFGUARD-
heavy outperforms BAND with over 4% lower bandwidth
overhead while achieving better defense effectiveness. Further-
more, when compared to Mockingbird and WTF-PAD, both
WFGUARD-light and WFGUARD-heavy achieve signi�cantly
lower DRs with bandwidth overhead reduced by 10% to 40%.
The reduction in DRs ranges from around 30% to 82%,
demonstrating the superiority of WFGUARD over existing
defense methods.

TABLE II
COMPARISON OF WFGUARD WITH OTHER DEFENSE METHODS IN THE

CLOSED-WORLD SCENARIO .

Models
Methods WFGUARD-

light
WFGUARD-

heavy BAND
Mocking

Bird
WTF-
PAD

DF BWO 14.18% 21.43% 25.02% 58.02% 63.23%
DR 8.80% 5.62% 5.12% 38.11% 90.85%

Var-CNN BWO 11.04% 15.32% 25.07% 58.12% 63.12%
DR 4.43% 2.15% 1.51% 35.21% 94.02%

Open-world experiment results analysis:We examine the
impact of different neuron selection strategies on the detection
rate of the DF and Var-CNN models in the open-world
scenario. As shown in Figure 10, when neuron selection
Strategy 0 is adopted, the defensive effect of WFGUARD on
both the DF and Var-CNN models is superior to when Strategy
1 is used. The WFGUARD, when using Strategy 0, effectively
reduces the detection rate of both DL-based WF classi�ers to
their minimum values. By setting the number of neurons to
30 and 50 respectively, WFGUARD reduces the detection rate
of the DF and Var-CNN attack models to their lowest values
of 10.73% and 6.00% respectively.

The aforementioned results assume that the mutation op-
eration is only injecting +1. To fully validate the WFGUARD

defense method, it is necessary to further explore the defensive
effects of different mutation strategies. Figure 11 shows the
impact of two different mutation strategies on the detection
rate of the DF and Var-CNN models under neuron selection
Strategy 0 in the open-world scenario. The results indicate

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

0.25

0.30
D

R
 o

f W
F

G
U

A
R

D
 Closed-world Open-world

Fig. 4. Different selection of τ

0 5 10 15 20 25 30
(%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
R

 o
f W

FG
U

A
R

D

Closed-world Open-world

Fig. 5. Different selection of α

5 10 15 20 25 30 35
q

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
R

 o
f W

FG
U

A
R

D

 Closed-world Open-world

Fig. 6. Different selection of q

�0 �1�0 �2�0 �3�0 �4�0 �5�0 �6�0
�N�u�m�b�e�r� �o�f� �S�e�l�e�c�t�e�d� �N�e�u�r�o�n�s

�0�.�0�0

�0�.�0�5

�0�.�1�0

�0�.�1�5

�0�.�2�0

�0�.�2�5

�0�.�3�0

�D
�R

� �
o�

f�
�C

�l�
a�

s�
s�

i�f
�i�

e�
r�s

� � � � � � � � �D�F� � � � � � � � � � � � � �V�a�r�-�C�N�N
�S�t�r�a�t�e�g�y�= �0

�S�t�r�a�t�e�g�y�= �1

�S�t�r�a�t�e�g�y�= �0

�S�t�r�a�t�e�g�y�= �1

Fig. 7. Different neuron selection strategies
in the closed-world scenario.

�0 �1�0 �2�0 �3�0 �4�0 �5�0 �6�0
�N�u�m�b�e�r� �o�f� �S�e�l�e�c�t�e�d� �N�e�u�r�o�n�s

�0�.�0�0

�0�.�0�5

�0�.�1�0

�0�.�1�5

�0�.�2�0

�0�.�2�5

�0�.�3�0

�0�.�3�5

�0�.�4�0

�0�.�4�5

�0�.�5�0

�D
�R

� �
o�

f�
�C

�l�
a�

s�
s�

i�f
�i�

e�
r�s

� � � � � � �D�F� � � � � � � � � � � � � � � � � �V�a�r�-�C�N�N
�I�n�j�e�c�t�i�n�g� � �+�1�
�I�n�j�e�c�t�i�n�g� � �+�1�/�-�1

�I�n�j�e�c�t�i�n�g� � �+�1
�I�n�j�e�c�t�i�n�g� � �+�1�/�-�1

Fig. 8. Different mutation operations in the
closed-world scenario.

Fig. 9. The generalization of WFGUARD
in the closed-world scenario.

�0 �1�0 �2�0 �3�0 �4�0 �5�0 �6�0
�N�u�m�b�e�r� �o�f� �S�e�l�e�c�t�e�d� �N�e�u�r�o�n�s

�0�.�0�0

�0�.�0�5

�0�.�1�0

�0�.�1�5

�0�.�2�0

�0�.�2�5

�0�.�3�0

�D
�R

� �
o�

f�
�C

�l�
a�

s�
s�

i�f
�i�

e�
r�s

� � � � � � � � �D�F� � � � � � � � � � � �V�a�r�-�C�N�N
�S�t�r�a�t�e�g�y�= �0

�S�t�r�a�t�e�g�y�= �1

�S�t�r�a�t�e�g�y�= �0

�S�t�r�a�t�e�g�y�= �1

Fig. 10. Different neuron selection strategies
in the open-world scenario.

0 10 20 30 40 50 60
Number of Selected Neurons

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

DR
 o

f C
la

ss
ifi

er
s

 DF Var-CNN
Injecting +1
Injecting +1/-1

Injecting +1
Injecting +1/-1

Fig. 11. Different mutation operations in the
open-world scenario.

Fig. 12. The generalization of WFGUARD
in the open-world scenario.

that WFGUARD shows better performance on both the DF
and Var-CNN models when only injecting +1, as compared
to injecting +1/-1 . Furthermore, the detection rate of the DF
model can be reduced to the lowest level when the number of
neurons is 50 and only +1 is injected.

Similar to the closed-world scenario, we also validated the
generalization of WFGUARD in the open-world scenario, and
the results are depicted in Figure 12. No matter only injecting
+1 or injecting +1/-1 is used as the mutation strategy, WF-
GUARD can effectively reduce the detection rate of the Var-
CNN model, especially when injecting +1/-1 is adopted, and
the injection pattern generated from the DF model effectively
reduces the detection rate of the Var-CNN model to 10.7%.
The results indicate that in both open-world and closed-world
scenarios, the WFGUARD defense method is generalized and
deceive unknown models.

Table III summarizes the comparison between WFGUARD
and other existing defense methods in terms of BWO and
DR in the open-world scenario. The results indicate that
WFGUARD-light can reduce the detection rate of DF and Var-
CNN to below 10.73% with a BWO of 14.18%, which is 40%
and 30% lower in BWO and DR respectively than Surakav-
light. Compared with Surakav-heavy, WFGUARD-heavy can
achieve better defense effects with about 55% less bandwidth
overhead. Compared with WTF-PAD, the WFGUARD defense
method even achieves a lower detection rate of about 81%
with 13% less bandwidth overhead. All the results show that
WFGUARD is superior to existing defense methods.

V. RELATED WORK

This section provides an overview and brief analysis of
current WF attacks and WF defenses.

TABLE III
C

REFERENCES

[1] K. Abe and S. Goto. Fingerprinting attack on Tor anonymity using deep
learning. Proceedings of the Asia Pacific Advanced Network (APAN),
42:15–20, 2016.

[2] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen. DFD:
Adversarial Learning-based Approach to Defend Against Website Fin-
gerprinting . In Proceedings of the 39th IEEE International Conference
on Computer Communications (INFOCOM), pages 2459–2468, 2020.

[3] S. Bhat, D. Lu, A. Kwon, and S. Devadas. Var-CNN: A Data-Efficient
Website Fingerprinting Attack Based on Deep Learning. In Proceedings
on Privacy Enhancing Technologies (PET), volume 2019, pages 292–
310, 2019.

[4] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A Congestion Sen-
sitive Website Fingerprinting Defense. In Proceedings of the Workshop
on Privacy in the Electronic Society (WPES), pages 121–130, 2014.

[5] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A
systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pages 227–238, 2014.

[6] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a
Distance: Website Fingerprinting Attacks and Defenses. In Proceedings
of the ACM Conference on Computer and Communications Security
(CCS), pages 605–616, 2012.

[7] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter, J. Filter,
T. Engel, K. Wehrle, and A. Panchenko. Trafficsliver: Fighting website
fingerprinting attacks with traffic splitting. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security,
pages 1971–1985, 2020.

[8] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo,
I still see you: Why efficient traffic analysis countermeasures fail. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P),
pages 332–346, 2012.

[9] J. Gong and T. Wang. Zero-delay Lightweight Defenses against Website
Fingerprinting. In Proceedings of the USENIX Security Symposium
(Security), pages 717–734, 2020.

[10] J. Gong, W. Zhang, C. Zhang, and T. Wang. Surakav: generating
realistic traces for a strong website fingerprinting defense. In 2022
IEEE Symposium on Security and Privacy (SP), pages 1558–1573. IEEE,
2022.

[11] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun. Dlfuzz: Differential
fuzzing testing of deep learning systems. In proceedings of the 26th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE/ESEC),
pages 739–743, 2018.

[12] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable Website
Fingerprinting Technique. In Proceedings of the USENIX Security
Symposium (Security), pages 1187–1203, 2016.

[13] S. Henri, G. García, P. Serrano, A. Banchs, P. Thiran, et al. Protect-
ing against website fingerprinting with multihoming. Proceedings on
Privacy Enhancing Technologies, 2020(2):89–110, 2020.

[14] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong. Wf-gan: Fighting back
against website fingerprinting attack using adversarial learning. In 2020
IEEE Symposium on Computers and Communications (ISCC), pages 1–
7. IEEE, 2020.

[15] N. Humbatova, G. Jahangirova, and P. Tonella. Deepcrime: Mutation
testing of deep learning systems based on real faults. In Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 67–78, 2021.

[16] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright. Toward
an Efficient Website Fingerprinting Defense. In Proceedings of the
European Symposium on Research in Computer Security (ESORICS),
volume 9878, pages 27–46, 2016.

[17] D. Li, Y. Zhu, M. Chen, and J. Wang. Minipatch: Undermining dnn-
based website fingerprinting with adversarial patches. IEEE Transactions
on Information Forensics and Security (TIFS), 17:2437–2451, 2022.

[18] Z. Ling, J. Luo, K. Wu, W. Yu, and X. Fu. TorWard: Discovery
of Malicious Traffic over Tor. In Proceedings of the 33rd IEEE
International Conference on Computer Communications (INFOCOM),
2014.

[19] Z. Ling, J. Luo, D. Xu, M. Yang, and X. Fu. Novel and Practical
SDN-based Traceback Technique for Malicious Traffic over Anonymous
Networks. In Proceedings of the 38th IEEE International Conference
on Computer Communications (INFOCOM), pages 1180–1188, 2019.

[20] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A New Cell
Counting Based Attack Against Tor. In Proceedings of the ACMConfer-
ence on Computer and Communications Security (CCS), pages 578–589,
November 2009.

[21] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, R. Perdisci,
et al. Httpos: Sealing information leaks with browser-side obfuscation
of encrypted flows. In NDSS, volume 11, 2011.

[22] M. Nasr, A. Bahramali, and A. Houmansadr. Defeating {DNN-Based}
traffic analysis systems in {Real-Time} with blind adversarial pertur-
bations. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2705–2722, 2021.

[23] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pennekamp, K. Wehrle,
and T. Engel. Website Fingerprinting at Internet Scale. In Proceedings
of the Network Distributed System Security Symposium (NDSS), 2016.

[24] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website Fingerprint-
ing in Onion Routing based Anonymization Networks. In Proceedings
of the ACM Workshop on Privacy in the Electronic Society (WPES),
pages 103–114, 2011.

[25] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In proceedings of the 26th Symposium
on Operating Systems Principles, pages 1–18, 2017.

[26] M. S. Rahman, M. Imani, N. Mathews, and M. Wright. Mockingbird:
Defending Against Deep-LearningBased Website Fingerprinting Attacks
With Adversarial Traces. IEEE Transactions on Information Forensics
and Security (TIFS), pages 1594–1609, 2020.

[27] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright. Tik-Tok: The Utility of Packet Timing in Website Finger-
printing Attacks. In Proceedings on Privacy Enhancing Technologies
(PET), pages 5–24, 2020.

[28] V. Rimmer, D. Preuveneers, M. Juarez, T. V. Goethem, and W. Joosen.
Automated Website Fingerprinting through Deep Learning. In Proceed-
ings of the Network Distributed System Security Symposium (NDSS),
2018.

[29] A. M. Sadeghzadeh, B. Tajali, and R. Jalili. Awa: Adversarial website
adaptation. IEEE Transactions on Information Forensics and Security
(TIFS), 16:3019–3122, 2021.

[30] M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu. Subverting website
fingerprinting defenses with robust traffic representation.

[31] P. Sirinam, M. Juarez, M. Imani, and M. Wright. Deep Fingerprinting:
Undermining Website Fingerprinting Defenses with Deep Learning. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), pages 1928–1943, 2018.

[32] The Tor Project, Inc. Tor: Anonymity Online. https://www.torproject.
org/, 2023.

[33] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Ef-
fective Attacks and Provable Defenses for Website Fingerprinting. In
Proceedings of the USENIX Security Symposium (Security), pages 143–
157, 2014.

[34] T. Wang and I. Goldberg. Improved Website Fingerprinting on Tor. In
Proceedings of the ACM Workshop on Privacy in the Electronic Society
(WPES), pages 201–212, 2013.

[35] T. Wang and I. Goldberg. Walkie-talkie: An efficient defense against
passive website fingerprinting attacks. In Proceedings of the USENIX
Security Symposium (Security), pages 1375–1390, 2017.

[36] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, and et.al. Deephunter: A coverage-
guided fuzz testing framework for deep neural networks. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), pages 146–157, 2019.

[37] P. Zhang and a. Q. D. Bin Renand Hai Dong. Cagfuzz: Coverage-
guided adversarial generative fuzzing testing for image-based deep
learning systems. IEEE Transactions on Software Engineering (TSE),
48(11):4630–4646, 2021.

[38] Z. Zhuo, Y. Zhang, Z.-l. Zhang, X. Zhang, and J. Zhang. Website
fingerprinting attack on anonymity networks based on profile hidden
markov model. IEEE Transactions on Information Forensics and
Security (TIFS), 13(5):1081–1095, 2017.

