
Do Not Give A Dog Bread Every Time He Wags
His Tail: Stealing Passwords through Content

Queries (CONQUER) Attack

Chongqing Leiy, Zhen Lingy� , Yue Zhangz, Kai Dongy, Kaizheng Liuy, Junzhou Luoy, and Xinwen Fux
ySoutheast University, Email:f leicq, zhenling, dk, kzliu18, jluog@seu.edu.cn

zJinan University, Email: zyueinfosec@gmail.com
xUniversity of Massachusetts Lowell, Email: xinwenfu@uml.edu

Abstract—Android accessibility service was designed to assist
individuals with disabilities in using Android devices. However,
it has been exploited by attackers to steal user passwords
due to design shortcomings. Google has implemented various
countermeasures to make it dif�cult for these types of attacks
to be successful on modern Android devices. In this paper, we
present a new type of side channel attack called content queries
(CONQUER) that can bypass these defenses. We discovered that
Android does not prevent the content of passwords from being
queried by the accessibility service, allowing malware with this
service enabled to enumerate the combinations of content to brute
force the password. While this attack seems simple to execute,
there are several challenges that must be addressed in order to
successfully launch it against real-world apps. These include the
use of lazy query to differentiate targeted password strings, active
query to determine the right timing for the attack, and timing-
and state-based side channels to infer case-sensitive passwords.
Our evaluation results demonstrate that the CONQUER attack is
effective at stealing passwords, with an average one-time success
rate of 64.91%. This attack also poses a threat to all Android
versions from 4.1 to 12, and can be used against tens of thousands
of apps. In addition, we analyzed the root cause of the CONQUER
attack and discussed several countermeasures to mitigate the
potential security risks it poses.

I. I NTRODUCTION

Even with the adoption of biometric authentication meth-
ods such as �ngerprint scanning and facial recognition, as well
as additional hardware authentication methods like USB keys
and IC cards, passwords remain an important means of authen-
ticating a user in mobile security. As the �rst line of defense
against unauthorized access, passwords protect valuable user
data, making them an attractive target for attackers. While
traditional attacks like brute-force attempts are not impossible,
they often come with signi�cant drawbacks, like a high time
cost. As a result, attackers are seeking more practical methods
to obtain user passwords, such as distributing malware (e.g.,
keyloggers) onto mobile devices, or guessing passwords based
on personal information [34].

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

On Android devices, malware often uses the accessibility
service to steal user passwords. The accessibility service was
originally designed to assist users with disabilities in using
Android apps, but it can be easily exploited by malware
to collect sensitive information such as passwords. This is
because the accessibility service has the ability to interact
with victim apps and obtain information such as the content of
foreground windows and app life cycles without involving the
user. Attackers can use the accessibility service to passively
collect user credentials through accessibility events or actively
hijack input or output channels to intercept user credentials.
Previous research has demonstrated the potential of abusing
the accessibility service for malicious purposes, including the
collection of user credentials (e.g., [11], [18], [8]) and the
interception of user input (e.g., [21], [17], [11], [18]).

Google is aware of the risks posed by accessibility-
service-based attacks and has implemented various defenses
to mitigate them. One defense strategy is to remove passwords
from accessibility events (e.g., [18]). Other defenses aim to
increase user awareness by sending warning messages or
requiring user con�rmation before allowing the accessibility
service to access certain information (e.g., [35]). These
measures make it dif�cult to exploit the accessibility service
to steal passwords on newer versions of Android.

However, in this paper, we show that existing defenses
against password stealing attacks can be bypassed and
passwords can still be stolen by exploiting a new query-based
side channel — usingfindAccessibilityNodeInfos-
ByText(text) to query the content of the foregrounds.
Particularly, this allows users to locate user interface (UI)
elements containing speci�c text by returning a list of such
elements. For example, consider an Android app that has a
login button with the text “Login”. Using this API, an assistive
app can quickly identify the login button and automatically
click it for the user. While it is intended to help users navigate
and use apps more easily, we have found that it can also
be exploited to steal passwords: password �elds are also UI
elements that can be located by searching for a string that
exists within the password. Surprisingly, Android neither
prevents searches of password �elds (it returns the password
input box as usual if the searched string hits the real password)
nor alerts users to this potential security risk. To make matters
worse, even if only bullet points are displayed in the password
�eld (which is a type of defense enabled by Android), this
API can still searches the given text in the real password.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24005
www.ndss-symposium.org

Based on this observation, we introduce theContent
Queries (CONQUER) attack, a new query-based side channel
method for stealing passwords. CONQUER exploits the side
channel by repeatedly querying the latest password character
entered using the API as the users types their passwords, by
setting the parameter to all possible characters. If the API
returns results indicating that the queried string is in the
password �eld, we can determine what the user has just entered
and update our collected password accordingly (essentially,
we are performing a brute-force attack to query each newly
entered password character).

While CONQUER may seem straightforward to launch,
there are three challenges that must be addressed in order to
make it practical. First, query results can be ambiguous due to
the existence of content descriptions (which are con�gured by
the developers) and do not necessarily indicate the presence
of speci�c strings or characters in a password. Second, some
apps have implemented defenses to mitigate previous attacks
(e.g., [18], [8]). As a side effect, these defenses may hinder an
attacker's ability to determine when to perform queries. For
instance, these defenses may block outgoing password-related
accessibility events (through which the malware can determine
when to launch the queries), and malware can no longer receive
them. Third, the API being exploited does not require the
speci�ed text to be case-sensitive. As such, the malware can
only collect a case-insensitive password by default.

Fortunately, we have addressed these challenges and suc-
cessfully implemented CONQUER. To address the �rst chal-
lenge, we propose a lazy query algorithm: we can combine
and query the characters not in the content description but
in the password (i.e., lazy queries) to eliminate side effects
caused by the text in the content description. To deal with the
second challenge, we actively query the password length, and
whenever it changes, we know that the user has entered a new
character. For the third challenge, we use the time and typing
speed as side channels (i.e., pressing the case-switch button
will cause more time to enter a character) and set up a state
machine that tracks the input state of the user (e.g., pressing
the case-switch button) to recover case-sensitive passwords.

We evaluated the effectiveness of CONQUERby conducting
extensive experiments. The experimental results on 108 real-
world passwords show that CONQUERcan recover the original
passwords based on the collected case-insensitive passwords
and input timing information with an average one-time suc-
cess rate of 64.91%. We show that CONQUER works against
all popular Android versions (ranging from Android 4.1 to
Android 12), and all apps that use system-provided password
input boxes are therefore vulnerable to our attack. Through our
large-scale analysis on 13,786 Android apps that use custom
password input boxes, we also identi�ed 13,001 (94.30%)
apps that are subject to our attack. We responsibly disclosed
our �ndings to Google, who acknowledged our �ndings but
decided not to �x the issue at this time because the accessibility
service requires this behavior to function as intended. We
therefore believe that there is no easy �x for CONQUER.

Our major contributions are summarized as follows.

� New Findings.We are the �rst to propose CONQUER,
a novel password-stealing attack that exploits the
content query side channel in the Android accessibility

service. Though Android currently has multiple coun-
termeasures in place to defend against accessibility-
service-based attacks, CONQUER can go around them
and steal user passwords.

� New Techniques.To ensure the practicality of CON-
QUER, we have introduced several new techniques:
the lazy query technique eliminates the side effects
caused by content descriptions, the length-based side
channel allows us to determine if the user is entering
the password, and the temporal side channel and state
machine enable us to handle case-sensitive passwords.

� Extensive Experiments.We evaluate the performance
and security implications of CONQUER through real-
world experiments. Our results show that CONQUER
can recover case-sensitive passwords with an average
one-time success rate of 64.91%. In addition, CON-
QUER affects system-provided password input boxes
on all popular Android versions, and our large-scale
analysis of Android apps revealed that 13,001 out of
13,786 (94.3%) apps using customized password input
boxes are also vulnerable to our attack.

II. BACKGROUND

In this section, we �rst introduce the Android accessibil-
ity service in §II-A. Next, we discuss existing accessibility-
service-based attacks as well as the defenses in §II-B.

A. Android Accessibility Service

The Android accessibility service provides user interface
enhancements in assisting users with disabilities (e.g., visual or
hearing impairment) [12]. The accessibility service allows apps
to be noti�ed of accessibility events triggered by UI actions,
such as clicking buttons or scrolling the screen. For example,
TalkBack [14] can provide real-time spoken feedback to
users while they are interacting with their devices. In order to
use the accessibility service, app developers must con�gure
the service to tell the system when and how accessibility
service should be invoked, and which event types (e.g.,
clicking a button or scrolling the screen) the service should
respond to. To achieve this, developers need to extend the
AccessibilityService class and override the callback
method onAccessibilityEvent(event) to handle
received accessibility events and take corresponding actions
(i.e., specifying how the app deals with accessibility events).

Being an important service that is open to all developers,
the Android accessibility service has offered various APIs.
One such API is findAccessibilityNodeInfos-
ByText(text) . The API takes a speci�c text as input
and returns a list ofAccessibilityNodeInfo objects,
each representing a foreground UI component containing
the speci�ed text. Therefore, this API is typically used to
automatically locate UI components that have speci�c names
or contain speci�c texts. For example, an assistive Android app
might use this API to facilitate automatic login. To this end, the
app can �rst get the root node of the currently active window
in its target viagetRootInActiveWindow() (Android
organizes UI components in a tree structure, with each active
window having a root node [13]). The app can then invoke
findAccessibilityNodeInfosByText("login")

2

A
n

d
ro

id
 A

cc
es

si
b

il
it

y
 S

er
v
ic

e

② input password② input password

Password

Input?

Query Password

&

Log Time Intervals

③.a get password③.a get password

③.c password③.c password

⑥ submit password⑥ submit password

Password

Submission?

Case-insensitive Password

&

Typing Intervals

Challenge II

Solution II: Active Query Content description: "enter"

 Password: "tenDollar"

Challenge I

Challenge III

Lazy Query Algorithm

Solution I

Lazy Query Algorithm

Solution I

YES

B
o

o
st

Y
E

S

③.1 send events③.1 send events

⑤.3 query results⑤.3 query results

⑤.2 case-insensitive query⑤.2 case-insensitive query

③.2 receive events③.2 receive events

③.d pwd & pwd len③.d pwd & pwd len

③.b get password③.b get password

⑤.1 call the API⑤.1 call the API

⑤.4 query results⑤.4 query results

① register① register

⑦ send events⑦ send events
⑧ receive events⑧ receive events

Solution III:

Side-channel-based

Password Resolution

Case

State Machine

Temporal

Side Channel

Case Switches

Recovered

Passwords

Recovered

Passwords

④

⑤

Fig. 1: Overall design of the CONQUER attack

“a”, “b”, “1”). Consequently, when the attacker feeds the
character “p” intofindAccessibilityNodeInfosBy-
Text(text) , the function returns a list of UI components
including the input box. The attacker then knows “p” is the
�rst character of the user's password. Similarly, when the user
enters the second character of the password, the password
text becomes “pa”. If the attacker feeds this string (i.e., “pa”)
into findAccessibilityNodeInfosByText(text) ,
the input box will be returned. Please note that before this
round of enumeration, the attacker had already determined
that the �rst character of the password is “p”, and he or she
only needs to attach a single character to the �rst character
to assemble the password string. By using the same method
repeatedly, the attacker is able to recover each remaining
character of the password.

B. Threat Model and Assumptions

The objective of our attack is to steal passwords from regu-
lar users. We exclude individuals who rely on the accessibility
service (e.g., visually-impaired individuals), because they often
use the touch exploration mode. In this mode, passwords are
directly leaked through accessibility events and our attack is
not necessary. We make four assumptions for our attack. First,
we assume that victims have installed the malware on their
Android mobile devices and granted it the accessibility service
permission. This assumption is reasonable because many prior
studies that target or abuse the accessibility service (e.g., [11])
had similar assumptions. Besides, recent research [7] has
revealed that users are willing to grant whatever permissions
the apps request if they wish to use them. Therefore, we
believe that malware can lure users into granting such
permissions unsuspectingly. Second, we assume that victims
are using the latest Android phones, as older versions of
Android are easier to compromise using attacks introduced
in previous efforts [17], [11], [18]. Third, we assume that
victims have turned off the “Make Passwords Visible ”
option in order to prevent characters of the password from
being directly extracted through accessibility events. Finally,
although the techniques we introduced can be used to deploy
other attacks (e.g., obtaining users' keystrokes beyond just
their passwords), we particularly focus on password stealing
attacks given their high security implications.

IV. OVERVIEW OF CONTENT QUERIES (CONQUER)
ATTACK

Based on the observations and assumptions outlined in
§III-A, we propose Content Queries (CONQUER) attack,
which can be leveraged by the malware to steal user passwords.
In the following, we �rst present the basic work�ow of the
CONQUER attack, then introduce challenges and the solutions,
followed by the overall design of the CONQUER attack as
shown in Figure 1.

A. Basic Workflow

At a high level, the basic work�ow of CONQUERattack can
be broken into four steps: (i) The malware registers (‹) for the
accessibility service to receive the intended events (e.g., events
triggered by inputting the password). We have omitted the
details of these techniques for brevity as they are well-known.
(ii) When the user enters the password (›), the malware will
get noti�ed (fi.1-2) and be able to determine relevant events
by inspecting the types of the incoming events (fl). (iii) When
the malware determines that the user has entered a speci�c
character of the password, it then extravagantly enumerates
possible combinations to infer that character (°) using the
observation introduced in §III-A. (iv) When the user hits the
login button (–), the malware gets noti�ed (†-‡) and knows
that the user has �nished entering the password. At this point,
the malware has learned the entered password, which forms
the output of the malware.

B. Challenges and Solutions

While the attack is theoretically easy to deploy, it still
faces various challenges in practice. Generally speaking, there
are at least three challenges that attackers must overcome to
successfully launch the CONQUER attack. Below, we explain
each challenge in greater detail:

(C-I) Differentiating Passwords and Descriptions. The
accessibility service has provided content labels to assist
users in understanding the meaning of UI elements, and
the android:contentDescription attribute is one
of these labels. For example, app developers can set the
android:contentDescription attribute to “Password”

4

for a password input box to help users understand that
they need to enter their passwords into this �eld. However,
when issuing queries usingfindAccessibilityNode-
InfosByText(text) , for UI components such as pass-
word input boxes, the content of theandroid:content-
Description attribute will also be searched along with the
actual text (e.g., the entered password). As a consequence, if
the content description is set for the password, we cannot deter-
mine whether the searched string is in the content description
or the password text. For example, assume the password to
be entered is “passport”, then the strings “p”, “pa”, and “pas”
will exist in both the password (i.e., “passport”) and the content
description (i.e., “password”). As a result, the password node
will be returned in all queries made on these searched texts.
Being the attacker, we cannot know whether these strings are
part of the password or just part of the content description.

To address this challenge, one intuitive solution is to simply
keep all strings indicated to be contained in the password
box by the query results, and use these strings as the basis
for subsequent queries. For example, queries for each letter
in “password” will succeed during the �rst round of queries.
Therefore, we save all these letters as password candidates
of length 1 (e.g., “p”, “a”, “s”). During the second round
of queries, multiple enumerations are carried out based on
the saved 1-character password candidates respectively, and
we further get multiple new password candidates of length
2 (e.g., “pa”, “as”, “ss”). However, this solution requires
more rounds of character enumeration since multiple strings
are saved as candidates (instead of only one string under
normal cases), which can be extremely time-consuming and the
queries cannot �nish in time (e.g., before the next character is
entered). Our preliminary experiments using this naive method
have con�rmed this drawback: it can take several seconds to
�nish one round of queries after a single character input.

Differentiating Passwords via Lazy Queries (§V-A)

This challenge only limits our knowledge of whether
characters present in the content description are also
present in the password. However, it does not prevent
us from querying characters that are only present in
the actual password. When we query a character that
is not in the content description and it returns the
password node, the in�uence of the content description
is eliminated and we can then begin querying the rest
of the password (using lazy queries).

(C-II) Breaking Defenses enabled on Victim Apps.Some
real-world Android apps do not actively send accessibility
events when users enter passwords (i.e.,fi.1 in Figure 1
is blocked), even though the app will still respond to in-
quiries from other apps. This can be achieved by extend-
ing the AccessibilityDelegate class and overriding
the SendAccessibilityEvent() method. When victim
apps block outgoing password-related accessibility events, no
app using the accessibility service can receive password-
related accessibility events passively. We speculate that this
design is intended to protect against previous accessibility-
based password-stealing attacks (e.g., [18], [8]). As a result,
when targeting these apps, we cannot receive noti�cations
when a victim is entering the password and the associated

password node cannot be directly acquired from accessibility
events. For example, when users try to log in toAlipay, no
password-related accessibility events are sent while they are
entering their passwords.

Thwarting Defenses via Active Queries (§V-B)

This challenge only prevents us from knowing when
and which object to query passively. However, being an
attacker, we can �rst try to locate the password input
box to be queried, then actively query the password
length to see if the victim has already started entering
the password.

(C-III) Recovering Password from Case-Insensitive
Strings. Initially, findAccessibilityNodeInfosBy-
Text(text) is designed to assist users with disabilities and
has the requirements of being robust. As such, the match is
case insensitive containment (e.g.,findAccessibility-
NodeInfosByText(text) identi�es buttons that contain
“login” regardless of whether the text “login” is in upper or
lower case). This is reasonable: if someone is usingTalkBack
to receive real-time spoken feedback, he or she will likely
not care the case of the letters. However, being a piece
of malware that attempts to steal user passwords, it must
have the capability of knowing whether the password is in
upper or lower case. Intuitively, the malware can enumerate
all the combinations of upper and lower case letters in a
case-insensitive string (e.g., “Password”, “PAssword”, etc.).
However, it is very costly. For a password that has 8 letters,
there could be64 (i.e., 28) combinations. While the attacker
can still enumerate those combinations, it is not particularly
practical (e.g., many apps will block accounts after several
failed login attempts).

Inferring Passwords via Side Channels (§V-C)

We can still try to recover user actions (e.g., switching
between cases) by exploiting other side channels. For
example, since it usually takes longer to enter the next
letter if a user switches case, this temporal side channel
can be exploited to detect case switches.

V. DETAIL DESIGN OFCONQUER

A. Lazy Query for Password Differentiation

The Lazy Query Algorithm. Since content descriptions are
usually short phrases, it is rare for them to cover all characters
in the password. Based on this intuition,C-I can be handled
by lazy query: the content of the password is not queried
until users have entered a character that is not in the content
description into the password box. As an advantage of this
strategy, we can completely eliminate the side effects brought
by the content description. The complete lazy query algorithm
is shown in Algorithm 1. LetSc be the set of all (case-
insensitive) characters in the content description, andS be the
set of all characters that can be used in a password. Initially,
we haveSc � S. During the lazy query process, every time
a character is entered, we �rst check if the character is not
present in the content description by applying single-character

5

queries onSc (line 7-13). If we fail to get a match, the value
of the queried character is ignored. However, the number of
ignored characters are recorded (line 25-26). Once we get
a match, the password and the content description can be
differentiated starting from this character. We then perform
backward queries to determine the value of all previously
ignored characters by repeatedly performing queries onSc

(line 14-24), and the collected password is �nally returned.
With the result from the differentiation process, subsequent
queries can be handled easily using the normal query method.

Algorithm 1: The Lazy Query Algorithm
Data: set of characters presented in content

descriptionSc, set of all possible characters in
passwordsS, the password nodeNp

Result: case-insensitive passwordP
1 Function main(Np, Sc, S) :
2 cnt 0;
3 P ′′;
4 belazy True ;
5 while belazy do
6 if a character is entered then
7 for ch 2 (S � Sc) do
8 if Query(Np, ch) then
9 belazy False ;

10 P P + ch;
11 break
12 end
13 end
14 if : belazy then
15 while cnt > 0 do
16 for ch 2 Sc do
17 if Query(Np, ch + P) then
18 P ch + P ;
19 cnt cnt � 1;
20 break
21 end
22 end
23 end
24 break
25 else
26 cnt cnt + 1;
27 end
28 end
29 end
30 return P ;
31

32 Function Query(Node, T ext) :
33 flag False ;
34 qr Node.findAccessibilityNode-

InfosByText(T ext) ;
35 if Node 2 qr then
36 flag True ;
37 end
38 return flag;

For example, consider a scenario where the password
we want to query is “tendollar” and the target app is
com.infonow.bofa , whose password �eld has the content
description “enter”. We �rst obtain the setSc = f `e', `n',
`r', 't' g from the content description. After the user enters

“t”, we perform single-character queries onSc and no match
is found. The same process is repeated after the user enters
“e” and “n”, and no match is found as well. However, after
the user enters “d”, we get a match through single-character
queries. We then perform backward queries onSc to determine
previously entered characters: “ed”, “nd”, “rd” and “td” are
queried and we can get a match on “nd”. The same steps are
repeated until we obtain “tend”.

It is worth noting that, although it is very rare, the lazy
query algorithm may fail if: 1) the password happens to be
a sub-string of the content description; or 2) the content
description includes a signi�cant portion of the characters in
a password. We cannot handle the �rst scenario. However, the
second scenario can still be handled. The basic idea is to record
sub-strings that are only present in the content description, and
combine them with characters within the content description
to derive new sub-strings that are only possible to be present
in the password and query them using the API. Once such a
sub-string is found, the password can be quickly identi�ed.

Speci�cally, we start by de�ningScj as the set of all sub-
strings in the content description with lengthj, speci�cally,
we de�ne Sc0 = ∅. By de�nition, it is clear thatSc1 =
Sc. We further de�neSnj = Sc(j−1) � Sc � Scj , where
the Cartesian product symbol represents string concatenation.
Whenever a character is entered, single-character queries will
�rst be performed onSc in case a character not in the content
description is entered. If it is not the case, assume the current
length of the password isk, strings inSnk are enumerated and
queried. SinceSnk \ Sck = ∅ by de�nition, if we get a match,
the queried string must be the current password and we can fall
back to the normal query strategy since then. Otherwise, we
know the current password lies withinSck, but the speci�c
value needs to be determined by subsequent queries. If we
cannot decide the actual value of the password until password
submission, we can only make an assertion that the password is
in Scl, wherel is the �nal length of the password. However,
since extra queries are needed compared to lazy query, and
the size ofSnj is large (think about a content description that
covers all characters), this algorithm comes with a higher time
cost. For example, assume the content description is “enter”,
but the password is “teren”, we �rst obtainSc1 = f `e', `n', `r',
`t' g, Sc2 = f “en”, “nt”, “te”, “er” g, Sn

password viaNp.getText().length() (i.e., fi.a-d in
Figure 1). As such, we can successfully gather information
about when the user has entered a character into his or her
password and perform queries accordingly.

We now demonstrate this process using the
aforementioned Alipay example (whose package name
is com.eg.android.AlipayGphone). First, we locate
the password input box and obtain its view ID, which is
com.ali.user.mobile.security.ui:id/content .
After that, the correspondingAccessibilityNodeInfo
object of the password input box can be obtained by invoking
findAccessibilityNodeInfosByViewId(id)
on the root node of the active window (obtained via
getRootInActiveWindow() as discussed earlier)
with the parameter set to the acquired view ID. With
the collected password nodeNp, we can repeatedly
request updates on the current length of the password
via Np.getText().length() and determine when we
need to perform queries based on the increase of the password
length.

C. Side Channels for Passwords Resolution

Intuitively, it may take the users longer to enter the next
letter if they switch between upper and lower case letters. This
temporal difference can be used as a side channel to detect
when the user is switching between cases. However, relying
solely on this temporal side channel is not reliable under
real-world scenarios for two reasons. First, most keyboards
provide two ways to switch cases: using caps-lock or shift,
but such information cannot be effectively derived through the
temporal side channel. Second, the user may need to switch
between different keyboard layouts to enter a more complex
password, which, like case switching, also takes longer and
hence can be indistinguishable for the temporal side channel.
To address the limitations of the standalone time-based side
channel and further improve the robustness of the password
resolution process, we additionally exploit a state-machine-
based side channel to recover characters with better precision
(e.g., most keyboards share the same operation logic for case
switching, therefore a general state machine can be built to
mimic the case switching process). The details of the two side
channels are discussed below.

(I) Time-based Side Channel for Case Switch Detection.
In order to use the time-based side channel to detect case
switches, two challenges must be overcome: First, typing speed
varies signi�cantly among people [26], making it dif�cult to
create a universal model that works for everyone. Second, the
complexity of passwords can also vary widely, with some re-
quiring users to switch between different keyboards in addition
to changing cases. This makes it harder to distinguish between
case switches and keyboard switches, as the time intervals
between characters may be similar in both cases. For example,
consider the password “dot#COm”. To enter this password, the
user must switch to the symbols keyboard to enter “#”, then
switch back to the letters keyboard and change the case to
enter “c”. However, it is dif�cult to determine whether the
user changed the case before entering “c”, as the time interval
between “#” and “c” may be large due to the keyboard switch
and indistinguishable from a large interval caused by a case

d o t # C O md o t # C O m

t1,2t1,2 t2,3t2,3 t3,4t3,4 t4,5t4,5 t5,6t5,6 t6,7t6,7

t1,2t1,2 t2,3t2,3 t5,6t5,6 t6,7t6,7

t'1,2t'1,2 t'2,3t'2,3 t'5,6t'5,6 t'6,7t'6,7

z-score normalization

t'1,2t'1,2 t'2,3t'2,3 t'5,6t'5,6 t6,7t6,7-∞-∞ -∞-∞t'1,2 t'2,3 t'5,6 t6,7-∞ -∞

output

d o t # C O md o t # C O m

NSCNSC NSCNSC NSCNSC NSCNSC NSCNSCSCSC

>= threshold?

Step-(II)

Step-(I)

Fig. 2: Work�ow of the time-side-channel-based case switch
detection

switch. As shown in Figure 2, we tackle the two challenges
through a two-step process:

Step-(I): Detecting Case Switches Using Normalized Typing
Intervals. To address the �rst challenge, instead of trying to
determine an absolute-time-based model, we build a relative-
time-based model using normalized time interval sequences.
Normalization can help to reduce individual differences and
increase the generality of our model, making it more ef-
fective at detecting case switches. Assume the input time
interval sequencet for a password with lengthn is given as
t = (t1,2, t2,3, . . . , tn−1,n), where ti,i+1 represents the time
interval between entering theith and the(i + 1)th character.
Then t is �rst normalized with z-score:

tnorm =
t � µt

σt
(1)

whereµt is the average oft, andσt is the standard deviation
of t. We further de�ne the true positive rate for detecting case
switches and non-case-switches asT P RCS and T P RNCS,
respectively. With the normalizedtnorm, a universal optimal
threshold value that maximizesT P RCS � T P RNCS can be
obtained to detect potential case switches.

Step-(II): Improving Robustness by Ignoring Keyboard
Switches.To handle the second challenge, our key idea is to
only normalize the time intervals between letters. In contrast,
all other intervals are discarded before the normalization,
and reassigned to the value�1 afterwards. The rationale
behind this solution is that by only considering time intervals
between letters, we can eliminate the in�uence of keyboard
switching, which can help to create a more robust model.
Take the previous password “dot#COm” as an example, the
time intervals between “t” and “#”, and “#” and “c” will be
discarded during normalization and reassigned the value�1 .
Formally, assumeD = f ti1,i1+1, ti2,i2+1, . . . , tik,ik+1g is the
set of all discarded time intervals, then the original time inter-
val sequencet = (t1,2, . . . , ti1,i1+1, . . . , tik,ik+1, . . . , tn−1,n)

7

Switch to Letters

Keyboard

UppercaseLowercaseSwitching

switch

case

enter a

character

switch

case

switch

case

enter a character enter a character

UppercaseLowercaseSwitching

switch

case

enter a

character

switch

case

switch

case

enter a character enter a character

UppercaseLowercaseSwitching

switch

case

enter a

character

switch

case

switch

case

enter a character enter a character

Switch to Letters

Keyboard
Switch to Letters

Keyboard

UppercaseLowercaseSwitching

switch

case

enter a

character

switch

case

switch

case

enter a character enter a character

unknown. Therefore, we will have three copies of the initial
password (i.e., an empty string) with the case state set to
lowercase, switching, and uppercase, respectively.

As the number of case switches in the password grows, the
maximum number of possible passwords recovered through the
NFA can be shown to form a Fibonacci sequence. To prove
this, we �rst de�ne ns as the number of detected case switches,
and al

n as the number of passwords with the case state set
to lowercase aftern case switches. Similarly, we de�neas

n
and au

n respectively for the switching and uppercase state.
The initial condition is de�ned by Equation (2). According to
Figure 3, the uppercase state will transition to the lowercase
state on a case switch, the lowercase state will transition to
either the switching or uppercase state on a case switch, and
the switching state is temporary, which will transition to the
lowercase state once the next character is entered. Therefore,
we have the relationship betweenal

n, as
n andau

n as shown in
Equation (3).

al
0 = 1, as

0 = 1, au
0 = 1 (2)

al
n+1 = au

n

as
n+1 = al

n + as
n

au
n+1 = al

n + as
n

(3)

Let Qn be the number of passwords aftern case switches.
Through a series of derivations as shown in Equation (4), we
can see thatf Qng is a Fibonacci sequence withQ0 = 3 and
Q1 = 5.

Qn+2 = al
n+2 + as

n+2 + au
n+2

= au
n+1 + al

n+1 + as
n+1 + al

n+1 + as
n+1

= Qn+1 + au
n + al

n + as
n

= Qn+1 + Qn

(4)

While the Fibonacci numbers will increase exponentially, it
is important to note thatQn can be guaranteed to be small in
most cases. In fact, previous research [20], [23] has shown
that even when password composition policies require the
inclusion of at least one uppercase letter, the average number of
uppercase letters used in passwords is typically no more than 2.
With this assumption, even in the worst-case scenario, in which
a password contains two non-adjacent uppercase letters that are
both located in the middle of the password (therefore 2 case
switches are needed), the number of possible combinations is
limited to 8 at most given thatQ2 = 8.

Step-(II): Dealing with Extraordinary Cases Using State
Forking Handler. While the case state NFA is effective
at handling continuous letter input, complex passwords may
require the user to switch keyboards from and back to the
letters keyboard. We handle this situation by proposing a state
forking mechanism. The state forking mechanism is activated
whenever the user switches back to the letters keyboard (re-
ferred to as keyboard switches for brevity), which can be easily
detected from the already collected case-insensitive password.
During state forking, three copies of the current password with
three different case states are created, corresponding to the

three different possibilities respectively: lowercase, switching,
and uppercase.

To analyze the theoretical password recovery performance
with state forking enabled, we further assume that the number
of detected keyboard switches isms. The number of passwords
with the lowercase state afterm keyboard switches andn
case switches is de�ned to beal

n,m. Similarly, as
n,m andau

n,m
are de�ned for the switching and uppercase state respectively.
Now let Qn,m be the number of passwords afterm keyboard
switches andn case switches. According to Equation (4), we
immediately have Equation (5). For every keyboard switch
detected, 3 new copies of the password with 3 different case
states are generated, therefore Equation (6) holds.

Qn+2,m = Qn+1,m + Qn,m (5)

Qn,m+1 = 3Qn,m (6)

As shown in our theoretical analysis, the number of guessed
passwords heavily depends on the number of case switches
and keyboard switches. If the number of case switches and
keyboard switches is large, the total number of recovered
possible passwords may be up to dozens or hundreds. How-
ever, according to our statistical analysis (see §VI-A) on the
Rockyou password dataset [28], which consists of 14,344,356
unique passwords and their use counts leaked from a real-
world website, shows that for passwords used by 99.65%
of the users, the number of case switches and keyboard
switches is small. Therefore, the theoretical password recovery
performance of our model is suf�cient in most scenarios. Our
analysis also shows that among users who have passwords
with at least one letter, 99.55% of these passwords follow one
of three simple patterns: all letters are lowercase, all letters
are uppercase, or the �rst character is the only uppercase
letter. Hence, we include these three patterns in the recovered
possible passwords to increase the robustness of our attack.

TABLE II: Vendors, device names and OSs of mobile phones
used by participants

Vendor Device Name OS

Xiaomi

Mi 11 Android 12
Mi 10 Pro Android 12
Mi 10 Android 12
Redmi K30 Pro Zoom Edition Android 11

Vivo
IQOO Neo5 Android 12
IQOO Z1 Android 11

OPPO Reno5 Android 12
Meizu 16T Android 9
OnePlus 5T Android 9
Samsung Galaxy S8 Android 8.0

Huawei

Mate 20 HarmonyOS 2.0.0
Mate 30 HarmonyOS 2.0.0
Mate 40 Pro HarmonyOS 2.0.0
P40 Pro HarmonyOS 2.0.0
Nova 4 HarmonyOS 2.0.0
Nova 5 HarmonyOS 2.0.0

Hornor
30 Pro HarmonyOS 2.0.0
10 Lite HarmonyOS 2.0.0

* Note: duplicated (vendor, device name, OS) tuples are ignored.

VI. EVALUATION

In this section, we conduct an experimental evaluation
of CONQUER. We �rst illustrate the experiment setup, then

9

TABLE III: Selected Passwords. “x” represents the number of case switches, and “y” represents the number of keyboard switches.

Category (x, y) Passwords

(0, 0)
chocolate password1 butter�y liverpool basketball elizabeth
tinkerbell spongebob alexandra beautiful alexander christian

(0, 1)
love4ever 1password 123456789a 1princess hotmail.com yahoo.com
friends4ever 1truelove 1babygirl love4life c.ronaldo 4everlove

(0, 2)
i love you 2cute4you 2bornot2b ch0c0late @hotmail.com 2hot2handle
2gether4ever 1life2live l1verp00l 2pac4life i love me TEXT ONLY AD

(1, 0)
HarryPotter JesusChrist ChrisBrown HelloKitty LinkinPark iloveJesus
TokioHotel BettyBoop CyoiydgTv JohnnyDepp SpongeBob HannahMontana

(1, 1)
iydgTvmujl6f iydgTvgl,v glk;]ydKIN 123qweASD ry=ibomiN Tbfkiy9oN
okiuiy9oN Lbibiy9oN vkiuiy9oN iydgTv,kd 0ydidAKIN lbibiy9oN

(1, 2)
l6fkiy9oN iydgTvm6d;yo iy9ok4iIN The RockYou Team 0yomiN0bik 4ymik4iIN
06Rkiy9oN 8ow,jrbgLK 06iuiy9oN v6[]iy9oN l64kiy9oN JOhNYexstasynemis

(2, 0)
FallOutBoy diiIbdkiN MyChemicalRomance AaBbCc123 WinnieThePooh TaeKwonDo
JesseMcCartney IchLiebeDich CrashIntoMe99 dHgTvojkiyd TeQuieroMucho SuzieAndRocco

(2, 1)
iydotgfHdF'j dyPPkiy9oN iydotgfHdF\\'j l6iLydfbN v4blbmTbN obLkiy9oN
mbrpN;iiI db99bLydfbN vii5lbmTbN oyomNiyd,kiN8 m5vuIbsTd8 gfHd,uxyPsk

(2, 2)
ob9bLkl9iN Mje4nGq6vL45 JaY14$P.rBoricua 2KaEle4cxK *mZ?9%ˆjS y712xC61vIHc
xXx-rebecca-xXx xAIvpˆjLb]x pacS*ptt-*KnKA* l6mTkiy9oN l6mTb]ydKIN k6kgWW7WuM

explain the experiment results by answering several research
questions.

A. Experiment Setup

Volunteers and Testing Environment.We recruited 20 vol-
unteers to participate in the experiment, which is a typical
setup used in previous research (e.g., [11]). The volunteers
were recruited from our college campus and were all students.
The vendors, device names and OSs of the mobile phones
used by the participants are listed in Table II. The experiment
was approved by the IRB. The volunteers were instructed
to install the provided malware and victim app on their
own mobile phones, and to give the malware access to the
accessibility service. They were then asked to input several
pre-selected real-world passwords into the victim app using
their usual keyboards. The case-insensitive passwords and the
input time interval sequences collected by the malware during
the experiment are later processed to evaluate the ef�ciency of
CONQUER in recovering passwords.

Password Selection.The real-world passwords used in the
experiment are selected from theRockyou password dataset.
As discussed in §V-C, the number of case switches and
keyboard switches are two main factors that in�uence the
ability to recover passwords. Therefore, we �rst categorize
these passwords by the number of case switches and keyboard
switches, then select passwords from different categories.
Based on our analysis of theRockyou dataset, we found that
among all users using passwords containing at least one letter,
passwords used by 99.65% of them have a case switch and
keyboard switch count of no more than 2 times. Therefore,
we focused our experiment on the 9 categories of passwords
that fall within this range. Within each category, we sorted
passwords that are longer than 8 characters and contain only
English keyboard characters based on their popularity (i.e.,
the number of users), and selected the top 12 passwords for
the experiment. In total, we selected 108 (9� 12) real-world
passwords. The selected passwords are listed in Table III.

Experiment Guidelines. The selected 108 passwords were
randomly distributed to the 20 volunteers, with 8 volunteers
being assigned 6 passwords and 12 volunteers being assigned

5 passwords. To simulate the real attack scenario, we assumed
that different people use different passwords and therefore each
password was only assigned to one volunteer. Furthermore, to
simulate the fact that people are typically familiar with their
own passwords, each password was entered 20 times during the
experiment. To ensure that the volunteers were familiar with
the assigned passwords, we heuristically omitted data collected
during the �rst 10 inputs of a password and only considered
the last 10 user inputs of each password as valid data for the
experiment.

Metrics. We de�ne three metrics for our experiment:T P RCS,
T P RNCS and one-time password recovery success rate.
T P RCS andT P RNCS are previously de�ned in §V-C and
are introduced to evaluate the effectiveness of the time-side-
channel-based switch detection method. We de�ne a pass-
word recovery process as successful if the real password is
included in the set of recovered possible passwords. In real-
world scenarios, attackers generally only have one chance to
steal user passwords. Therefore, we propose to use the one-
time password recovery success rate as a metric, which is
de�ned as the ratio of successfully recovered passwords (out
of the selected 108 passwords) in a single round of password
input. Note that similar to the one-time password recovery
success rate,T P RCS andT P RNCS are also independently
calculated between rounds.

Fig. 4: Calculated T P RNCS-threshold and T P RCS-
threshold curve on theMOBIKEYdataset

General Threshold Calculation. To calculate a general
threshold for detecting case switches as discussed in §V-C, we

10

(a) One-time success rate

(b) TPRCS

(c) TPRNCS

Fig. 5: Experiment results of the CONQUER attack

conducted a preliminary experiment on the strong password
(.tie5Roanl) dataset of theMOBIKEY keystroke dynamics
password database [4]. This dataset includes 3303 records
and provides many different features of keystroke dynamics
when entering the password, including time intervals between
keystrokes. Using the time intervals between keystrokes, we
can collect the time intervals between entering two letters.
As discussed in §V-C, the time interval between entering
“e” and “5” was discarded during normalization. However,
we did kept the time interval between entering “5” and “R”
because “R” is the only uppercase letter in the password.
This speci�c time interval was calculated as the summation
of keystroke intervals between “abc” and “shift”, and “shift”
and “R”, while the interval between “5” and “abc” was ignored
to minimize the impact of keyboard switching. After that, the
optimal threshold that maximizesT P RCS � T P RNCS was
calculated as previously discussed.

Figure 4 describes the relationship betweenT P RNCS and
the threshold, as well as the relationship betweenT P RCS
and the threshold on theMOBIKEYdataset. Using the metric
mentioned above, the threshold was calculated to be 1.028,
resulting in T P RCS and T P RNCS values of 0.9700 and
0.9692, respectively. To validate the effectiveness and gener-
ality of the time-and-model-based password recovery method,
we adopted this optimal threshold (i.e., 1.028) derived from
the MOBIKEYdataset throughout our experiment.

B. Experiment Results

RQ1. How does the pre-calculated threshold perform
in detecting case switches?

We measureT P RCS and T P RNCS to answer this
question.T P RCS and T P RNCS were calculated for the
entire set of 108 selected passwords, as well as for each
category of passwords, using the data collected from the last 10
rounds of password inputs. The threshold used to detect case
switches was set to 1.028 as previously discussed. The results
are shown in Figure 5(b) and Figure 5(c), where the notion “(a,
b)” represents a category of passwords witha case switches
andb keyboard switches. Note that forT P RCS, passwords in
categories (0, 0), (0, 1), and (0, 2) do not have case switches
and are therefore omitted in the �gure. The overallT P RCS
andT P RNCS within the last 10 rounds ranges from 59.26%
to 68.51% and 88.69% to 90.87%, respectively. Interestingly,
we observed two diametrically opposite trends forT P RCS
and T P RNCS. For T P RCS, the value decreases as the
number of case switches increases, and the negative impact of
the number of keyboard switches onT P RCS becomes greater
as the number of case switches increases. However, when it
comes toT P RNCS, the value increases as the number of case
switches increases, and the increase in the number of keyboard
switches has a positive impact on this value. We believe that

11

this phenomenon occurs because the increase of these two
numbers may make passwords more dif�cult to enter, thereby
violating the common input pattern exploited by the proposed
temporal-side-channel-based case switch detection method.

RQ2. Can CONQUER effectively steal user passwords
exploiting the two side channels?

To answer this question, we �rst measure the one-time
password recovery success rate. Similarly, the success rate was
calculated for all 108 selected passwords and for each category
of passwords within the last 10 rounds of input. Figure 5(a)
shows the obtained one-time success rate. The overall one-
time success rate ranges from 60.18% to 69.44%, with an
average of 64.91%. For passwords in categories (0, 0), (0,
1) and (0, 2), the success rate is 100% because they follow
the three most common patterns described in §V-C. For other
categories of passwords, the one-time recovery success rate
is related toT P RCS and therefore follows the same pattern
as T P RCS. The one-time recovery success rate is relatively
low for passwords in categories (2, 1) and (2, 2) due to their
high complexity. However, such cases are rare in real-world,
because among all users who use passwords with at least one
letter, only 0.02041% of them have deployed passwords in
these two categories. Additionally, we did not observe the
impact of smartphones keyboard layouts on our experiment of
20 subjects, as our method of detecting case switches utilizes
normalized typing intervals between letters, which will not
be affected by keyboard layouts. Finally, we evaluated the
stealthiness of CONQUER. CONQUER does not necessitate any
foreground UI operations, instead, it only executes background
queries. Therefore, except for possible delays caused by the
queries, victims should not detect any unusual behavior. Our
experiment validated this point: we explicitly asked the volun-
teers if they had observed any anomalies (including delays),
and none of them did. To demonstrate the high query ef�ciency
of CONQUER, we randomly generated 20 passwords of length
16 and recorded the time it took to successfully query them.
The results show that on average, it only takes 174ms to query
a password of length 16, including the time for inter-process
communication (IPC) and the time for actually processing the
query on the victim side (see §VII-B). In summary, CONQUER
is robust and can effectively recover passwords in most real-
world scenarios.

RQ3. Which Android versions are affected and how
many apps are subject to CONQUER attack?

Through manual veri�cation, all Android versions from
4.1 to 12 (i.e., all currently of�cially supported versions)
are subject to CONQUER, which means that all system-
provided password �eld UI components and apps using these
components are vulnerable. However, Android apps may
use custom password input boxes, which could potentially
avoid this vulnerability. As such, we have designed and
implemented a framework for detecting vulnerable custom
password input boxes used by Android apps. Our frame-
work is built on top of Jadx [16] and Soot [30] to de-
compile Android apps, extract layout �les, and perform
static analysis. We look for self-de�ned elements whose

android:inputType attributes represent password input
boxes and check if they follow two rules based on our root
cause analysis (see §VII-B) : (i) the class of the custom
password input box must be a subclass ofTextView . (ii) the
class and its superclasses (excludingTextView) must not
override thefindViewsWithText() method, and either
thegetAccessibilityNodeProvider() method is not
overridden by these superclasses or it is overridden but no class
in the app has extendedAccessibilityNodeProvider .

To measure the impact of CONQUER on these apps, we
collected 324,125 Android apps fromAndroZoo [3] and per-
formed a large-scale security analysis on these apps using our
framework. We were able to successfully test 324,080 apps,
while 45 apps were unable to be tested becauseJadx failed to
decompile them. Out of the 324,080 apps that we successfully
tested, 13,786 have custom password input boxes, and 13,001
out of the 13,786 apps (94.30%) implement their own custom
password input boxes based onTextView . By applying our
detection rules on theseTextView -based custom password
input boxes, we found that all of them (100%) are vulnerable to
CONQUER. The evaluation results show that the vulnerability
has not been previously recognized by the community and has
a huge security impact.

VII. D ISCUSSION

A. Responsible Disclosure and Ethical Considerations

We take ethics into the highest consideration. First, we
responsibly disclosed our �ndings to Google. However, Google
decided not to �x this vulnerability for two main reasons: 1)
this behavior is required for the accessibility service to function
as intended, and r5e3 [(o)15(v)15(erridden)-245(2r423((i/we)8d [(as)-5d [(W5(er[(metthe)-2Aer[o8asons:)-376(1))]TJ 0 -10.959 Td [(this)-234(beha)20(vior)-234(-10.959r)20(-234(-ighest)-501(consideration.)-501(First,)-501(we)]TJ -14T Td [26613,001)]TJ 0 -1(posss)]TJ ueriepps)-321266115(eruer10.959 uerie58(vulnerable)-557(ca]TJ 0w)1ler)-2962(w]TJms)-285(t0w)b22 9.96962(TJ 0 -10.9t0w)thereby)]Tt0w)mpact.

1 private void findAccessibilityNodeInfosByTextUiThr ⌋
ead(Message message)
{

↪→

↪→

2 final int flags = message.arg1;
3 ...
4 ...
5 final int accessibilityViewId = args.argi1;
6 final int virtualDescendantId = args.argi2;
7 ...
8 List<AccessibilityNodeInfo> infos = null;
9 try {

10 ...
11 final View root = findViewByAccessibilityId(ac ⌋

cessibilityViewId);↪→

12 if (root != null && isShown(root)) {
13 AccessibilityNodeProvider provider =
14 root.getAccessibilityNodeProvider();
15 if (provider != null) {
16 infos = provider.findAccessibilityNodeInfo ⌋

sByText(text,
virtualDescendantId);

↪→

↪→

17 } else if (virtualDescendantId ==
AccessibilityNodeProvider.HOST_VIEW_ID) {↪→

18 ArrayList<View> foundViews =
mTempArrayList;↪→

19 foundViews.clear();
20 root.findViewsWithText(foundViews, text,
21 View.FIND_VIEWS_WITH_TEXT
22 | View.FIND_VIEWS_WITH_CONTENT_DESCRIPTION
23 | View.FIND_VIEWS_WITH_ACCESSIBILITY_NODE_ ⌋

PROVIDERS);↪→

24 ...
25 }
26 }
27 } finally {
28 ...
29 }
30 }

Listing 1: Client-sidefindAccessibilityNodeInfos-
ByText() request handler in the Android source code

by an app with the accessibility service permission, the call
is forwarded via IPC and the request is �nally handled by the
View object to be searched. AView object has two ways to
handle the request: First, the methodgetAccessibility-
Provider() is called. If anAccessibilityProvider
object is returned, the request is �nally handled by thefind-
AccessibilityNodeInfosByText(text) method of
the returned object. Second, ifgetAccessibility-
Provider() returnsnull , the request is handled by the
findViewsWithText() method of theView object itself.

By default, the getAccessibilityProvider()
method inView will return null , and hencefindViews-
WithText() will be invoked to handle the request. How-
ever, thefindViewsWithText() method inView only
searches the given text in the content description of the
View object and hence is not vulnerable to the proposed
attack.TextView is a subclass ofView . In TextView , the
findViewsWithText() method is overridden to search
the given text in the object's own text, while theget-

AccessibilityProvider() method is not overridden.
Therefore,TextView and all Android-providedTextView -
based classes, including those that are widely used as password
input boxes (e.g.,EditText), are vulnerable to CONQUER
because they do not override the two methods.

C. Possible Mitigation

While CONQUER is hard to be defended as it is powered by
the normal functionalities of the accessibility service, there are
still possible mitigation measures. There are two possible ways
to mitigate the attack based on the discussion in §VII-B: either
at the system level, before thefindAccessibilityNode-
InfosByText(text) request is handled by the client, or
at the application level, after the request is dispatched to the
client.

� System level mitigation There are several ways to
�x this vulnerability at the system level. One option
is to enforce security checks inside the server-side
accessibility service APIfindAccessibility-
NodeInfosByText(text) to ensure that a pass-
word node is not allowed to be searched. However,
identifying password nodes could be challenging in
general due to the existence of custom password input
boxes. Another way is to make the API only search
the given text inside content descriptions but not the
contained texts. However, this approach may hinder
the functionalities of the accessibility service.

� Application level mitigation To mitigate this vulner-
ability, Android app developers should always adopt
custom password �elds instead of system-provided
TextView -based classes as password �elds. Cus-
tom password �elds inherited directly or indirectly
from TextView should either override thefind-
ViewsWithText() method to make sure the pass-
word text is not searched, or override theget-
AccessibilityNodeProvider() method to re-
turn a customAccessibilityNodeProvider -
based object.

D. Limitations

Our CONQUER is not perfect, and it has the following
limitations. First, though the range of possible passwords
is greatly reduced to make the attack more practical, the
remaining number of possible passwords could still be too
large to perform a successful login attempt when there is
a limitation on failed login attempts. Second, the time-and-
model-based password recovery method is not reliable for
long or complex passwords due to accidental input errors or
different typing habits (e.g., using keyboard pop-ups to choose
characters). However, smartphone sensors can accurately
detect touch events (e.g., [36]). Future research can use
sensors to more accurately distinguish case changes based on
the number of touches between letters. Additionally, passwords
may have semantic features [31], [33]. Future research can
also apply these semantic patterns to recover passwords.
Third, if victims use password managers to automatically �ll
in their passwords, CONQUER can only steal case-insensitive
passwords by actively issuing content queries. As discussed in
§VI-B, querying passwords is ef�cient and if the victim does

13

not press the login button within a very short period after the
password is �lled in, the case-insensitive password can still be
obtained. However, original passwords cannot be ef�ciently
recovered due to the lack of input timing information. Previous
research has shown that the use of password managers is not
common, particularly on mobile phones [27], [2].

VIII. R ELATED WORK

Android Accessibility Service Abuses.The Android acces-
sibility service has been proven to have exploitable design
shortcomings by previous research. Krauneliset al. [21]
demonstrated that the Android accessibility service can be
exploited by malware to perform malicious actions such as
gaining control of the screen and stealing user credentials
through phishing. Janget al. [17] studied the security of
accessibility support on four popular platforms and identi�ed
several vulnerabilities. Fratantonioet al. [11] proposed the
famous “cloak and dagger” attack exploiting both overlay
and the accessibility service. Interestingly, the “cloak and
dagger” attack can be executed even without the overlay
permission before Android 8.0 [37]. Aonzoet al. [5] showed
that it is possible to conduct phishing attacks against password
managers by exploiting the accessibility service. Kalyschet
al. [18] discovered several security �aws in the accessibility
service and discussed corresponding countermeasures. Diao
et al. [9] conducted a systematic study of the Android ac-
cessibility framework through code review and app scanning,
and discussed several shortcomings as well as corresponding
attacks exploiting these weaknesses. Evidence has proven that
various real-world malware [10], [1], [39] have exploited
the attacks mentioned above. However, none of these works
have discovered the query-based side channel in the Android
accessibility service.

Accessibility Service Assisted Password Stealing Attacks.
Kraunelis [21]et al. pointed out that the accessibility service
can be exploited to steal user passwords through phishing, but
the malware has to completely disguise itself as a benign app,
which could be hard for complex closed-source apps. Janget
al. [17] demonstrated that an Android malware exploiting the
accessibility service can alter system settings programmatically
without user consent and register a malicious text-to-speech
(TTS) application to steal passwords. However, this approach
no longer works on newer versions of Android. Instead, a
series of UI operations are needed to accomplish the same
goal. Fratantonioet al. [11] proposed three password stealing
attacks, two of which require the assistance of overlay. This
results in the display of an alert window on Android 8.0 or
later, which makes it less practical these days. The other attack
that only uses the accessibility service is achieved by inferring
keystrokes from keyboards, but this requires the keyboard used
by the victim to be vulnerable. However, some keyboards
have have addressed this vulnerability [18]. Kalyschet al.
[18] found that by exploiting screen recording or accessibility
events snif�ng, the most recently entered password character
can be acquired, as the character is displayed on the screen
for a short period of time. However, this can be easily
defended by turning off the “Make passwords visible” option
in Settings . Therefore, all existing accessibility-service-
assisted password stealing attacks are much less practical or
feasible nowadays than when they were �rst proposed. In

contrast, our proposed attack is more stealthy, general, and
practical.

Android Accessibility Service Defenses.Compared with
attacks against the accessibility service, defenses on the frame-
work are rarely focused. Naseriet al. [25] proposed a frame-
work to help developers automatically detect and �x Android
apps that may leak passwords through the accessibility ser-
vice. Huanget al. [15] recently proposed a privacy-enhanced
accessibility framework to strike a balance between the regular
functionality of the accessibility framework and its security
mechanisms. While this is not the focus of this work, more
comprehensive security mechanisms should be studied in the
future.

Side-Channel-based Keystroke Inference.Previous research
has studied the feasibility of inferring keystrokes through vari-
ous side channels. The temporal side channel is one of the most
commonly exploited methods for keystroke inference [29], [6].
Smartphone sensors are also used to infer user keystrokes
[38], [32], [19], [36], [24], [22] due to the vast amount of
information they provide. We also exploit the temporal side
channel, but unlike previous works, it is used to detect case
switches rather than inferring keystrokes.

IX. CONCLUSION

In this work, we propose CONQUER: a novel content
query assisted password stealing attack. CONQUER breaks
existing Android defenses against password stealing attacks
by exploiting a query-based side channel in the Android
accessibility service, and can be abused to launch password
stealing attacks in real-world scenarios. To make CONQUER
practical, we introduce thelazy query technique to disam-
biguate query results, theactive query technique to determine
query timing, and the temporal side channel and state machine
to recover case-sensitive passwords. Our experiment shows that
CONQUER can steal user passwords with a high success rate.
The attack has affected all Android versions from 4.1 and 12
and many Android apps. CONQUER has not been recognized
by the community and poses a signi�cant security risk.

ACKNOWLEDGMENT

We would like to thank Kang Jia and the anonymous
reviewers for their valuable feedback on this work. This
research was supported in part by National Natural Sci-
ence Foundation of China Grant Nos. 62022024, 61972088,
62072103, 62102084, 62072102, 62072098, 62232004, and
61972083, by US National Science Foundation (NSF) Awards
1931871, 1915780, and US Department of Energy (DOE)
Award DE-EE0009152, Jiangsu Provincial Natural Science
Foundation of China Grant No. BK20190340, Jiangsu Provin-
cial Key R&D Program (Nos. BE2021729, BE2022680 and
BE2022065-4), Jiangsu Provincial Key Laboratory of Net-
work and Information Security Grant No. BM2003201, Key
Laboratory of Computer Network and Information Integration
of Ministry of Education of China Grant Nos. 93K-9, and
Collaborative Innovation Center of Novel Software Technology
and Industrialization. Any opinions, �ndings, conclusions, and
recommendations in this paper are those of the authors and do
not necessarily re�ect the views of the funding agencies.

14

REFERENCES

[1] 0x1c3n, “Anubis android malware analysis,” 2021. [Online]. Available:
https://0x1c3n.tech/anubis-android-malware-analysis

[2] N. Alkaldi and K. Renaud, “Why do people adopt, or reject, smartphone
password managers?” inProceedings of the 1st European Workshop on
Usable Security (EuroUSEC), 2016.

[3] K. Allix, T. F. Bissyand́e, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of Android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), 2016, pp. 468–471.

[4] M. Antal and L. Nemes, “The MOBIKEY keystroke dynamics password
database: Benchmark results,” inSoftware Engineering Perspectives and
Application in Intelligent Systems: Proceedings of the 5th Computer
Science Online Conference (CSOC), R. Silhavy, R. Senkerik, Z. K.
Oplatkova, P. Silhavy, and Z. Prokopova, Eds. Cham: Springer
International Publishing, 2016, pp. 35–46.

[5] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing attacks on
modern Android,” inProceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2018, pp. 1788–
1801.

[6] L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch
screen from smartphone motion,” inProceedings of the 6th USENIX
Workshop on Hot Topics in Security (HotSec), 2011.

[7] W. Cao, C. Xia, S. T. Peddinti, D. Lie, N. Taft, and L. M. Austin, “A
large scale study of user behavior, expectations and engagement with
Android permissions,” inProceedings of the 30th USENIX Security
Symposium (USENIX Security), 2021, pp. 803–820.

[8] E. Cebuc, “How are we doing with Android's overlay attacks in
2020?” 2020. [Online]. Available: https://labs.f-secure.com/blog/how
-are-we-doing-with-androids-overlay-attacks-in-2020/

[9] W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng,
K. Zhang, and X. Wang, “Kindness is a risky business: On the
usage of the accessibility APIs in Android,” inProceedings of the
22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2019, pp. 261–275.

[10] T. Fabric, “The rage of Android banking trojans,” 2021. [Online].
Available: https://www.threatfabric.com/blogs/the-rage-of-android-ban
king-trojans.html

[11] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
From two permissions to complete control of the UI feedback loop,”
in Proceedings of the 38th IEEE Symposium on Security and Privacy
(S&P), 2017, pp. 1041–1057.

[12] Google, “Create your own accessibility service,” 2021. [Online].
Available: https://developer.android.com/guide/topics/ui/accessibility/
service

[13] Google, “Accessibilitynodeinfo,” 2022. [Online]. Available:
https://developer.android.com/reference/android/view/accessibility/Acc

essibilityNodeInfo

[14] Google, “Talkback,” 2022. [Online]. Available: https://support.google.c

https://0x1c3n.tech/anubis-android-malware-analysis
https://labs.f-secure.com/blog/how-are-we-doing-with-androids-overlay-attacks-in-2020/
https://labs.f-secure.com/blog/how-are-we-doing-with-androids-overlay-attacks-in-2020/
https://www.threatfabric.com/blogs/the-rage-of-android-banking-trojans.html
https://www.threatfabric.com/blogs/the-rage-of-android-banking-trojans.html
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=10601571
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=10601571
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://wiki.skullsecurity.org/Passwords
https://unit42.paloaltonetworks.com/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/
https://unit42.paloaltonetworks.com/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/

[38] L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), 2005, pp. 373–382.

[39] E. Y. Şahin, “When your phone gets sick: Flubot abuses accessibility
features to steal data,” 2021. [Online]. Available: https://www.srlabs.d
e/bites/�ubot-abuses-accessibility-features-to-steal-data

16

https://www.srlabs.de/bites/flubot-abuses-accessibility-features-to-steal-data
https://www.srlabs.de/bites/flubot-abuses-accessibility-features-to-steal-data

	Introduction
	Background
	Android Accessibility Service
	Accessibility Service Abuse and Defense

	Observation And Threat Model
	Key Observation
	Threat Model and Assumptions

	Overview of Content Queries (conquer) Attack
	Basic Workflow
	Challenges and Solutions

	Detail Design of Conquer
	Lazy Query for Password Differentiation
	Active Queries for Breaking Enabled Defenses
	 Side Channels for Passwords Resolution

	Evaluation
	Experiment Setup
	Experiment Results

	Discussion
	Responsible Disclosure and Ethical Considerations
	Root Cause Analysis
	Possible Mitigation
	Limitations

	Related Work
	Conclusion
	References

