Do Not Give A Dog Bread Every Time He Wags
His Tail: Stealing Passwords through Content
Queries (ONQUER) Attack

Chonggqing Lei, Zhen Lind , Yue Zhang, Kai Dongd/, Kaizheng Li¥, Junzhou Lu®, and Xinwen Ft
YSoutheast University, Emaif:leicq, zhenling, dk, kzliul8, jlupg@seu.edu.cn
ZJinan University, Email: zyueinfosec@gmail.com
XUniversity of Massachusetts Lowell, Email: xinwda@uml.edu

Abstract—Android accessibility service was designed to assist On Android devices, malware often uses the accessibility
individuals with disabilities in using Android devices. However, service to steal user passwords. The accessibility service was
it has been exploited by attackers to steal user passwords originally designed to assist users with disabilities in using
due to design shortcomings. Google has implemented various Android apps, but it can be easily exploited by malware
countermeasures to make it dif cult for these types of attacks 1, cojlect sensitive information such as passwords. This is
to be successful on modem Android devices. In this paper, we 005 56 the accessibility service has the ability to interact

present a new type of side channel attack called content queries o A .
(CONQUER) that can bypass these defenses. We discovered that with victim apps and obtain information such as the content of

Android does not prevent the content of passwords from being foreground windows and app life cycles without involving the

queried by the accessibility service, allowing malware with this ~ USer. Attackers can use the accessibility service to passively
service enabled to enumerate the combinations of content to brute collect user credentials through accessibility events or actively

force the password. While this attack seems simple to execute, hijack input or output channels to intercept user credentials.
there are several challenges that must be addressed in order to Previous research has demonstrated the potential of abusing
successfully launch it against real-world apps. These include the the accessibility service for malicious purposes, including the
use of lazy query to differentiate targeted password strings, active qg|lection of user credentials (e.g., [11], [18], [8]) and the

query to determine the right timing for the attack, and timing- ; ; ;
and state-based side channels to infer case-sensitive passwords. interception of user input (e.g., [21], [17], [11], [18]).
Our evaluation results demonstrate that the GNQUER attack is Google is aware of the risks posed by accessibility-

effective at stealing passwords, with an average one-time success service-based attacks and has implemented various defenses

rate of 64.91%. This attack also poses a threat to all Android 14 pjtigate them. One defense strategy is to remove passwords

versions from 4.1 to 12, and can be used against tens of thousands from accessibility events (e.g., [18]). Other defenses aim to

of apps. In addition, we analyzed the root cause of the GNQUER . Nl N .

attack.and dispusged §evera| countermeasures to mitigate the Irgcrl?i?ifle 3:2: ;V\r/]arrrig(:‘izi ngosrzngllIr(])%vi\r/lvartnf:ggaggg:ﬁ)?lﬁs or

potential security risks it poses. quirng AR owing y
service to access certain information (e.g., [35]). These
measures make it dif cult to exploit the accessibility service

I INTRODUCTION to steal passwords on newer versions of Android.

Even with the adoption of biometric authentication meth- However, in this paper, we show that existing defenses
ods such as ngerprint scanning and facial recognition, as We'bgainst password stealing attacks can be bypassed and
as additional hardware authentication methods like USB keygasswords can still be stolen by exploiting a new query-based
and IC cards, passwords remain an important means of authefiyje channel — usin§indAccessibilityNodelnfos-
ticatjng a user in.mobile security. As the rst line of defense By Text(text) to query the content of the foregrounds.
against unauthorized access, passwords protect valuable Uggfrticularly, this allows users to locate user interface (UI)
data, making them an attractive target for attackers. Whilgements containing speci ¢ text by returning a list of such
traditional attacks Il.ke b_rutg-force attempts are not 'mpos_s'meelements. For example, consider an Android app that has a
they often come with signi cant drawbacks, like a high time jogin putton with the text “Login”. Using this API, an assistive
cost. As a result, attackers are seeking more practical methods, can quickly identify the login button and automatically
to obtain user passwords, such as distributing malware (€.Qejick it for the user. While it is intended to help users navigate
keyloggers) onto moblle devices, or guessing passwords basgdq se apps more easily, we have found that it can also
on personal information [34]. be exploited to steal passwords: password elds are also Ul
elements that can be located by searching for a string that
exists within the password. Surprisingly, Android neither
prevents searches of password elds (it returns the password
input box as usual if the searched string hits the real password)

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

Network and Distributed System Security (NDSS) Symposium 2023 nor alerts users to this potential security risk. To make matters
27 February - 3 March 2023, San Diego, CA, USA if onlv b ”p . di yl d in th d
1SBN 1.89156.83. 5 worse, even if only bullet points are displayed in the passwor
https://dx.doi.org/10.14722/ndss.2023.24005 eld (which is a type of defense enabled by Android), this

WWW.Ndss-symposium.org API can still searches the given text in the real password.

Based on this observation, we introduce tl®ntent
Queries (CONQUER) attack, a new query-based side channel
method for stealing passwords.O8QUER exploits the side
channel by repeatedly querying the latest password character
entered using the API as the users types their passwords, by
setting the parameter to all possible characters. If the API
returns results indicating that the queried string is in the
password eld, we can determine what the user has just entered
and update our collected password accordingly (essentially,
we are performing a brute-force attack to query each newly
entered password character).

While CONQUER may seem straightforward to launch,
there are three challenges that must be addressed in order to
make it practical. First, query results can be ambiguous due to
the existence of content descriptions (which are con gured by
the developers) and do not necessarily indicate the presence
of speci ¢ strings or characters in a password. Second, some
apps have implemented defenses to mitigate previous attacks
(e.g., [18], [8]). As a side effect, these defenses may hinder an
attacker's ability to determine when to perform queries. For
instance, these defenses may block outgoing password-related
accessibility events (through which the malware can determine
when to launch the queries), and malware can no longer receive
them. Third, the API being exploited does not require the
speci ed text to be case-sensitive. As such, the malware can
only collect a case-insensitive password by default.

service. Though Android currently has multiple coun-
termeasures in place to defend against accessibility-
service-based attacks ORQUER can go around them
and steal user passwords.

New Techniques.To ensure the practicality of @\-
QUER, we have introduced several new techniques:
the lazy query technique eliminates the side effects
caused by content descriptions, the length-based side
channel allows us to determine if the user is entering
the password, and the temporal side channel and state
machine enable us to handle case-sensitive passwords.

Extensive Experiments.We evaluate the performance
and security implications of GNQUER through real-
world experiments. Our results show thabKlQUER

can recover case-sensitive passwords with an average
one-time success rate of 64.91%. In additiomNS
QUER affects system-provided password input boxes
on all popular Android versions, and our large-scale
analysis of Android apps revealed that 13,001 out of
13,786 (94.3%) apps using customized password input
boxes are also vulnerable to our attack.

Il. BACKGROUND

In this section, we rst introduce the Android accessibil-
ity service in 8lI-A. Next, we discuss existing accessibility-

Fortunately, we have addressed these challenges and siervice-based attacks as well as the defenses in 8lI-B.

cessfully implemented GNQUER To address the rst chal-

lenge, we propose a lazy query algorithm: we can combind. Android Accessibility Service

and query the characters not in the content description but 1he Android accessibility service provides user interface
in the password (i.e., lazy queries) to eliminate side effectgnnancements in assisting users with disabilities (e.g., visual or
caused by the text in the content description. To deal with th‘f’nearing impairment) [12]. The accessibility service allows apps
second challenge, we actively query the password length, and he noti ed of accessibility events triggered by Ul actions,
whenever it changes, we know that the user has entered a n&Wch a5 clicking buttons or scrolling the screen. For example,
character. For the third challenge, we use the time and typing,|kBack [14] can provide real-time spoken feedback to
speed as side channels (i.e., pressing the case-switch butiqBers while they are interacting with their devices. In order to
will cause more time to enter a character) and set up a sta{gse the accessibility service, app developers must con gure

machine that tracks the input state of the user (e.g., pressifge service to tell the system when and how accessibility
the case-switch button) to recover case-sensitive passwordSgeapice should be invoked. and which event types (e.g.

We evaluated the effectiveness O(D@QUER by Conducting CliCking a button Or-Scrolling the SCI’een) the service should
extensive experiments. The experimental results on 108 realespond to. To achieve this, developers need to extend the
world passwords show thataBIQUER can recover the original AccessibilityService class and override the callback
passwords based on the collected case-insensitive passwof@§thod onAccessibilityEvent(event) to handle
and input timing information with an average one-time suc-feceived accessibility events and take corresponding actions
cess rate of 64.91%. We show thab&@QUER works against (i-€., specifying how the app deals with accessibility events).

all popular Android versions (ranging from Android 4.1 10 geing an important service that is open to all developers,
Android 12), and all apps that use system-provided passworghe Android accessibility service has offered various APIs.
input boxes are therefore vulnerable to our attack. Through oyfne such API is findAccessibilityNodelnfos-

large-scale analysis on 13,786 Android apps that use CUSIOE‘)/Text(text) . The API takes a specic text as input
password input boxes, we also identi ed 13,001 (94.30%)3ng returns a list ofAccessibilityNodelnfo objects,
apps th_at are subject to our attack. We respon3|bly disclosegych representing a foreground Ul component containing
our ndings to Google, who acknowledged our ndings but {he specied text. Therefore, this API is typically used to
decided notto x the issue at this time because the access'b"'t)ﬂutomatically locate Ul components that have speci ¢ names
service requires this behavior to function as intended. Wey contain speci ¢ texts. For example, an assistive Android app
therefore believe that there is no easy x foO@QUER might use this API to facilitate automatic login. To this end, the
app can rst get the root node of the currently active window
in its target viagetRootInActiveWindow() (Android
New Findings.We are the rst to propose @NQUER, organizes Ul components in a tree structure, with each active
a novel password-stealing attack that exploits thewindow having a root node [13]). The app can then invoke
content query side channel in the Android accessibilityfindAccessibilityNodelnfosByText("login")

Our major contributions are summarized as follows.

=<
A Recovered

Solution I11:

Lazy Query Algorithm

1

i

1

H & =
! Log Time Intervals
1

1

e X Shallenoell Side-channel-based
@)
.1 send events k=) x Password Resolution
c .2 receive events
5 » Temporal Q)
victim wn ") Passwor i
Content description: “'enter* - Solution 11: Active Query Input? Side Channel »
Password: “tenDollar* h] Case Switches
.a get password 3 .b get password
3 .d pwd & pwd len State Machine
""""""""""" O i, 3 l
< <
g Query Password | o Solution |
o 2
) S
e} o
c
<

submit password QU ‘G A v ‘ "
Case-insensitive Password
Password =< > & o
receive events Submission? m

Typing Intervals

Fig. 1: Overall design of the GNQUER attack

“a”, “b”, “1"). Consequently, when the attacker feeds the IV. OVERVIEW OF CONTENT QUERIES (CONQUER)
character “p” intofindAccessibilityNodelnfosBy- ATTACK
Text(text) , the function returns a list of Ul components

including the input box. The attacker then knows “p” is ther§|”_A, we propose Content Queries (CONQUER) attack,

rst character of the user's password. Similarly, when the use ich can be leveraged by the malware to steal user passwords
enters the second character of the password, the passwq\fytji1 9 y P :

text becomes “pa’. If the attacker feeds this string (i.e., “pa’) n the following, we rst present the basic work ow of the
into findAccessibilityNodelnfosByText(text) ' CoONQUERattack, then introduce challenges and the solutions,

the input box will be returned. Please note that before thigollowed by the overall design of the GQUER attack as

round of enumeration, the attacker had already determine%h"-JWn in Figure 1.

that the rst character of the password is “p”, and he or she)

only needs to attach a single character to the rst charactefi- Basic Work ow

to assemble the password string. By using the same method At a high level, the basic work ow of ©NQUERattack can
repeatedly, the attacker is able to recover each remaininge broken into four steps: (i) The malware register$ for the

Based on the observations and assumptions outlined in

character of the password. accessibility service to receive the intended events (e.g., events
triggered by inputting the password). We have omitted the
B. Threat Model and Assumptions details of these techniques for brevity as they are well-known.

The objective of our attack is to steal passwords from regug”) When the user enters the passwore) (the malware will

lar users. We exclude individuals who rely on the accessibilityg(at noti ed (fi.1-2) and be able to determine relevant events

service (e.g., visually-impaired individuals), because they ofterfy INSPEcting the types of the incoming everith.((iii) When
e malware determines that the user has entered a specic

use the touch exploration mode. In this mode, passwords altewaracter of the password, it then extravagantly enumerates
directly leaked through accessibility events and our attack i§ P ’ gantly

; . possible combinations to infer that character) (using the
\r,]voet gggﬁfnsg %e\tltv %igﬂi fr? ;\;eaisr?;trglglocl)r':ﬁ eforrnc;lljvzsrtéaglr(]. E:L?P’bs_ervatlon introduced in 8llI-A. (iv) When the user hits the
Android mobile devices and granted it the accessibility servicd29in Putton £), the malware gets noti ed-3) and knows
permission. This assumption is reasonable because many prigfet the user has nished entering the password. At this point,
studies that target or abuse the accessibility service (e.g., [11/j e malware has leamed the entered password, which forms
had similar assumptions. Besides, recent research [7] h e output of the malware.
revealed that users are willing to grant whatever permissions .
the apps request if they wish to use them. Therefore, w& Challenges and Solutions
believe that malware can lure users into granting such \While the attack is theoretically easy to deploy, it still
permissions unsuspectingly. Second, we assume that victinfgces various challenges in practice. Generally speaking, there
are using the latest Android phones, as older versions dfre at least three challenges that attackers must overcome to
Android are easier to compromise using attacks introduceduccessfully launch the @QUER attack. Below, we explain
in previous efforts [17], [11], [18]. Third, we assume that each challenge in greater detail:
victims have turned off theMake Passwords Visible "
option in order to prevent characters of the password fron{C-1) Differentiating Passwords and Descriptions. The
being directly extracted through accessibility events. Finallyaccessibility service has provided content labels to assist
although the techniques we introduced can be used to deplaysers in understanding the meaning of Ul elements, and

other attacks (e.g., obtaining users' keystrokes beyond jushe android:contentDescription attribute is one
their passwords), we particularly focus on password stealingf these labels. For example, app developers can set the
attacks given their high security implications. android:contentDescription attribute to “Password”

for a password input box to help users understand thgbassword node cannot be directly acquired from accessibility
they need to enter their passwords into this eld. Howeverevents. For example, when users try to log inAiipay, no

when issuing queries usinfindAccessibilityNode- password-related accessibility events are sent while they are
InfosByText(text) , for Ul components such as pass- entering their passwords.

word input boxes, the content of tlendroid:content-

Description attribute will also be searched along with the V-B

actual text (e.g., the entered password). As a consequence,

the content description is set for the password, we cannot dete ~ This challenge only prevents us from knowing when
mine whether the searched string is in the content descriptio, ~ and which object to query passively. However, being ah
or the password text. For example, assume the password | attacker, we can rst try to locate the password input
be entered is “passport”, then the strings “p”, “pa”, and “pas’| box to be queried, then actively query the password
will exist in both the password (i.e., “passport”) and the conten{ length to see if the victim has already started entering
description (i.e., “password”). As a result, the password nod(the password.

will be returned in all queries made on these searched textL.

Being the attacker, we cannot know whether these strings al

r . .
part of the password or just part of the content description. (JC'IH) Recovering Password from Case-Insensitive

Strings. Initially, findAccessibilityNodelnfosBy-

To address this challenge, one intuitive solution is to simplyText(text) is designed to assist users with disabilities and
keep all strings indicated to be contained in the passwortias the requirements of being robust. As such, the match is
box by the query results, and use these strings as the basiase insensitive containment (e.findAccessibility-
for subsequent queries. For example, queries for each lettdfodelnfosByText(text) identi es buttons that contain
in “password” will succeed during the rst round of queries. “login” regardless of whether the text “login” is in upper or
Therefore, we save all these letters as password candidatlsver case). This is reasonable: if someone is u3algBack
of length 1 (e.g., “p", “a”, “s”). During the second round to receive real-time spoken feedback, he or she will likely
of queries, multiple enumerations are carried out based onot care the case of the letters. However, being a piece
the saved 1-character password candidates respectively, antl malware that attempts to steal user passwords, it must
we further get multiple new password candidates of lengtthave the capability of knowing whether the password is in
2 (e.g., “pa”", “as”, “ss”). However, this solution requires upper or lower case. Intuitively, the malware can enumerate
more rounds of character enumeration since multiple stringall the combinations of upper and lower case letters in a
are saved as candidates (instead of only one string undemse-insensitive string (e.g., “Password”, “PAssword”, etc.).
normal cases), which can be extremely time-consuming and thidowever, it is very costly. For a password that has 8 letters,
queries cannot nish in time (e.g., before the next character ishere could beb4 (i.e., 2%) combinations. While the attacker
entered). Our preliminary experiments using this naive methodan still enumerate those combinations, it is not particularly
have con rmed this drawback: it can take several seconds tpractical (e.g., many apps will block accounts after several
nish one round of queries after a single character input. failed login attempts).

Differentiating Passwords via Lazy Queries (8) Inferring Passwords via Side Channels (8§

This challenge only limits our knowledge of whether We can still try to recover user actions (e.g., switching
characters present in the content description are also between cases) by exploiting other side channels. Fpr
present in the password. However, it does not prevent example, since it usually takes longer to enter the nekt
us from querying characters that are only present in letter if a user switches case, this temporal side channel
the actual password. When we query a character that can be exploited to detect case switches.

is not in the content description and it returns the
password node, the in uence of the content description
is eliminated and we can then begin querying the rest V. DETAIL DESIGN OFCONQUER
of the password (using lazy queries).

A. Lazy Query for Password Differentiation

(C-Il) Breaking Defenses enabled on Victim Apps.Some The Lazy Query Algorithm. Since content descriptions are
real-world Android apps do not actively send accessibilityusually short phrases, it is rare for them to cover all characters
events when users enter passwords (ifé.] in Figure 1 in the password. Based on this intuitio@;| can be handled

is blocked), even though the app will still respond to in-by lazy query: the content of the password is not queried
quiries from other apps. This can be achieved by extenduntil users have entered a character that is not in the content
ing the AccessibilityDelegate class and overriding description into the password box. As an advantage of this
the SendAccessibilityEvent() method. When victim strategy, we can completely eliminate the side effects brought
apps block outgoing password-related accessibility events, nioy the content description. The complete lazy query algorithm
app using the accessibility service can receive passwords shown in Algorithm 1. LetS. be the set of all (case-
related accessibility events passively. We speculate that thigsensitive) characters in the content description, @rtzk the
design is intended to protect against previous accessibilityset of all characters that can be used in a password. Initially,
based password-stealing attacks (e.g., [18], [8]). As a resultye haveS,. S. During the lazy query process, every time
when targeting these apps, we cannot receive noti cations character is entered, we rst check if the character is not
when a victim is entering the password and the associategresent in the content description by applying single-character

queries onS, (line 7-13). If we fail to get a match, the value “t”, we perform single-character queries & and no match

of the queried character is ignored. However, the number ofs found. The same process is repeated after the user enters
ignored characters are recorded (line 25-26). Once we gée” and “n”, and no match is found as well. However, after

a match, the password and the content description can kibe user enters “d”, we get a match through single-character
differentiated starting from this character. We then performqueries. We then perform backward queriessqrto determine
backward queries to determine the value of all previouslypreviously entered characters: “ed”, “nd”, “rd” and “td” are
ignored characters by repeatedly performing queriesSgn queried and we can get a match on “nd”. The same steps are
(line 14-24), and the collected password is nally returned.repeated until we obtain “tend”.

With the result from the differentiation process, subsequent

; : : It is worth noting that, although it is very rare, the lazy
gueries can be handled easily using the normal query methog'uery algorithm may fail if: 1) the password happens to be

a sub-string of the content description; or 2) the content
description includes a signi cant portion of the characters in
a password. We cannot handle the rst scenario. However, the
second scenario can still be handled. The basic idea is to record
sub-strings that are only present in the content description, and
combine them with characters within the content description
to derive new sub-strings that are only possible to be present

Algorithm 1: The Lazy Query Algorithm

Data: set of characters presented in content
descriptionS,, set of all possible characters in
passwordsS, the password nod®,

Result: case-insensitive passwoRl

1 Function main(N, S, S):

ent O in the password and query them using the API. Once such a
P sub-string is found, the password can be quickly identi ed.
belazy True ;

Speci cally, we start by de ningS.; as the set of all sub-
strings in the content description with lengih speci cally,
we dene S.o = . By de nition, it is clear thatS.; =
Sc. We further de neS,,; = Scj—1y S Scj, Where
the Cartesian product symbol represents string concatenation.

while belazy do

if a character is entered then
forch2 (S S.)do

if Query(Nyp;ch) then

© O ~N O U~ WN

belazy False ; X ; . .
10 P P +ch Whenever a character is entered, single-character queries will
1 break rst be performed onS,. in case a character not in the content
1 end description is entered. If it is not the case, assume the current
13 end length of the password Is, strings inS,,;, are enumerated and

=R
a >

f : belazy then

while cnt > 0 do

queried. Sinc&,,,\ Scx = @ by de nition, if we get a match,
the queried string must be the current password and we can fall

16 for ch2 S, do back to the normal query strategy since then. Otherwise, we
17 if Query(Np;ch+P) then know the current passworq lies withia.,, but the speci ¢

18 P ch+P: value needs to be determined by subsequent queries. If we
19 cnt cnt 1 cannot decide the actual value of the password until password
20 break submission, we can only make an assertion that the password is
”n end in S¢;, wherel is the nal length of the password. However,

- end since extra queries are needed compared to lazy query, and
” end the size ofS,,; is large (think about a content description that
) break covers all characters), this algorithm comes with a higher time
25 else cost. For example, assume the content description is “enter”,
26 | et cnt+1; but the password is “teren”, we rst obtalb.; =f’e', 'n’, 'r,

27 end t'g, Se2 = fen”, “nt”, “te”, “er” g, S,

28 end

29 end

30 return P;

w W W w
» 0w NP

35
36
37
38

qr

end

InfosByText(
if Node 2 qr then
| flag

Function Query(Node, Text) :
flag

False ;

N ode.findAccessibilityNode-

Text) ;

True ;

return flag;

we want to query is “tendollar” and the target app is
com.infonow.bofa
description “enter”. We rst obtain the seb. = f e/,

For example, consider a scenario where the password

, whose password eld has the content

\n,

r', 't g from the content description. After the user enters

password viaNy.getText().length() (i.e., fi.a-d in
Figure 1). As such, we can successfully gather information
about when the user has entered a character into his or her

password and perform queries accordingly.

We now demonstrate this process using the
aforementioned Alipay example (whose package name

is com.eg.android.AlipayGphone). First, we locate
the password input box and obtain its view ID, which is

com.ali.user.mobile.security.ui:id/content

After that, the correspondindccessibilityNodelnfo

object of the password input box can be obtained by invoking
findAccessibilityNodelnfosByViewld(id)

on the root node of the active window (obtained via
getRootInActiveWindow() as discussed earlier)

with the parameter set to the acquired view ID. With

———————————————————————

-~ T |
(12623 = -= 156167,
>= threshsﬂd?

S S i e

the collected password noddN,, we can repeatedly
request updates on the current length of the password

via Np.getText().length() and determine when we d o t # C O m

need to perform queries based on the increase of the password

length. Fig. 2: Work ow of the time-side-channel-based case switch
detection

C. Side Channels for Passwords Resolution

.) switch. As shown in Figure 2, we tackle the two challenges
Intuitively, it may take the users longer to enter the nextihyough a two-step process:

letter if they switch between upper and lower case letters. This

temporal difference can be used as a side channel to deteStep-(I): Detecting Case Switches Using Normalized Typing

when the user is switching between cases. However, relyinghtervals. To address the rst challenge, instead of trying to

solely on this temporal side channel is not reliable undedetermine an absolute-time-based model, we build a relative-

real-world scenarios for two reasons. First, most keyboardgme-based model using normalized time interval sequences.

provide two ways to switch cases: using caps-lock or shiftNormalization can help to reduce individual differences and

but such information cannot be effectively derived through thencrease the generality of our model, making it more ef-

temporal side channel. Second, the user may need to switdbctive at detecting case switches. Assume the input time

between different keyboard layouts to enter a more compleinterval sequencé for a password with lengtim is given as

password, which, like case switching, also takes longer and = (t;.o;t2.3;:::;th_1:n), Whereti.i,; represents the time

hence can be indistinguishable for the temporal side channeghterval between entering thigh and the(i + 1)th character.

To address the limitations of the standalone time-based sidehent is rst normalized with z-score:

channel and further improve the robustness of the password

resolution process, we additionally exploit a state-machine- t

based side channel to recover characters with better precision Thorm =

(e.g., most keyboards share the same operation logic for case

switching, therefore a general state machine can be built tg/here , is the average of, and . is the standard deviation

mimic the case switching process). The details of the two sidef t. We further de ne the true positive rate for detecting case

channels are discussed below. switches and non-case-switchesT® RCS and TPRNCS,
respectively. With the normalizet,orm, @ universal optimal

(I) Time-based Side Channel for Case Switch Detection. threshold value that maximizd&P RCS TPRNCS can be

In order to use the time-based side channel to detect cashtained to detect potential case switches.

switches, two challenges must be overcome: First, typing speed

varies signi cantly among people [26], making it dif cult to Step-(ll): Improving Robustness by Ignoring Keyboard

create a universal model that works for everyone. Second, th®witches.To handle the second challenge, our key idea is to

complexity of passwords can also vary widely, with some re-only normalize the time intervals between letters. In contrast,

quiring users to switch between different keyboards in additiorall other intervals are discarded before the normalization,

to changing cases. This makes it harder to distinguish betweeand reassigned to the valu@ afterwards. The rationale

case switches and keyboard switches, as the time intervalsehind this solution is that by only considering time intervals

between characters may be similar in both cases. For exampleetween letters, we can eliminate the in uence of keyboard

consider the password “dot#COm”. To enter this password, thewitching, which can help to create a more robust model.

user must switch to the symbols keyboard to enter “#”, theriTake the previous password “dot#COm” as an example, the

switch back to the letters keyboard and change the case tome intervals between “t” and “#", and “#” and “c” will be

enter “c”. However, it is dif cult to determine whether the discarded during normalization and reassigned the vélue

user changed the case before entering “c”, as the time interv&ormally, assuméd = ft;,.i, 11 tis:i,+1;: 15 i 410 iS the

1)

t

N N

enter a character enter a character

~—__ switch ,,/Ll"\ switch /U\
N —

“/ N\ case [\ case \‘\
| Switching | | Lowercase | Uppercase |
\ / entera / switch /
AN A= — — %
) ~—— character case ~—
Switch to Letters Switch to Letters
Keyboard Switch to Letters Keyboard
Keyboard
N N N N N N
enter a character enter a character enter a character enter a character enter a character enter a character
switch ,,/Ll"\ switch /U\ _—___switch switch /U\ _—__ switch - Ll\ switch
- N— — \ / X — N\ / \ 7 \
case / \ case \ / | case case / \ / | case | case
| Lowercase | Uppercase | Switching | | Uppercase | | Switching | | Lowercase
entera /_switch / \ / entera switch /\ / entera /_switch
— — — / AN A — / AN A= — —

character case ~— ~— character case ~ ~~— character case

unknown. Therefore, we will have three copies of the initialthree different possibilities respectively: lowercase, switching,
password (i.e., an empty string) with the case state set tand uppercase.

lowercase, switching, and uppercase, respectively. To analyze the theoretical password recovery performance

As the number of case switches in the password grows, theith state forking enabled, we further assume that the number
maximum number of possible passwords recovered through thef detected keyboard switchesis;. The number of passwords
NFA can be shown to form a Fibonacci sequence. To provavith the lowercase state aftan keyboard switches and
this, we rst de ne ng as the number of detected case switchesgase switches is de ned to &, ,,. Similarly, a5, anday.,,
and al, as the number of passwords with the case state setre de ned for the switching and uppercase state respectively.
to lowercase aften case switches. Similarly, we de ne§ Now let Qn;m be the number of passwords afterkeyboard
and aY respectively for the switching and uppercase stateswitches anch case switches. According to Equation (4), we
The initial condition is de ned by Equation (2). According to immediately have Equation (5). For every keyboard switch
Figure 3, the uppercase state will transition to the lowercasdetected, 3 new copies of the password with 3 different case
state on a case switch, the lowercase state will transition tstates are generated, therefore Equation (6) holds.
either the switching or uppercase state on a case switch, and
the switching state is temporary, which will transition to the Qniom = Qnsim + On: 5)
lowercase state once the next character is entered. Therefore, n+zm n+Lm mm
we have the relationship betweaj, a¥ andal as shown in Qn:m+1 = 3Qn:m (6)
Equation (3).

ay =1lay=1a = (2) As shown in our theoretical analysis, the number of guessed
passwords heavily depends on the number of case switches
and keyboard switches. If the number of case switches and
keyboard switches is large, the total number of recovered

1 —
Any1 = ap possible passwords may be up to dozens or hundreds. How-
aS,., =ah+a (3) ever, according to our statistical analysis (see 8VI-A) on the

Rockyou password dataset [28], which consists of 14,344,356
unique passwords and their use counts leaked from a real-
world website, shows that for passwords used by 99.65%
Through a series of derivations as shown in Equation (4) WOf _the USers, the number of case SWItCheS and keyboard
can see thatQ,.g is a Fibonacci sequence wi, = 3 and' Switches is small. Thereforg:-, the theort_ehcal password. recovery
_c ng q 0 performance of our model is suf cient in most scenarios. Our
Q1 =5 analysis also shows that among users who have passwords
with at least one letter, 99.55% of these passwords follow one
o s u of three simple patterns: all letters are lowercase, all letters
Qni2 = anjs +anys +ang, are uppercase, or the rst character is the only uppercase
+al,, +ad,, +al,, +a letter. Hence, we include these three patterns in the recovered

u — Al s
an+1 - an +an

Let Qn be the number of passwords afteccase switches.

— u
=ani

n+1 Nn+1 Nn+1 n+1 (4) : '
=Qny +al+al +a8 possible passwords to increase the robustness of our attack.
= Qn+1 + Qn

TABLE II: Vendors, device names and OSs of mobile phones

While the Fibonacci numbers will increase exponentially, jrused by participants

is important to note tha®, can be guaranteed to be small in Vendor Device Name 0S
most cases. In fact, previous research [20], [23] has shown Mi 11 Android 12
that even when password composition policies require the yomi Mi 10 Pro Android 12
inclusion of at least one uppercase letter, the average number of g;(jlr‘;i K30 Pro Zoom Edition Ali';’r'gidlzll
uppercase letters used in passwords is typically no more than 2. — IGO0 Neos Androd 12
With this assumption, even in the worst-case scenario, in which ~ YVo 1QO0 71 Android 11
a password contains two non-adjacent uppercase letters that are " oppo Renob Android 12
both located in the middle of the password (therefore 2 case _Meizu 16T Android 9
switches are needed), the number of possible combinations is g;‘;:t‘:g E’G‘Talaxy - A’*ﬁ;‘?{'ﬂdsgo
limited to 8 at most given thaD, = 8. Mate 20 Harmony0S 2.0.0
Step-(ll): Dealing with Extraordinary Cases Using State Huawei MZIi ig Pro ﬂ?ﬂ%’&yfésszz(é%
Forking Handler. While the case state NFA is effective P40 Pro HarmonyOS 2.0.0
at handling continuous letter input, complex passwords may Nova 4 HarmonyOS 2.0.0
. . Nova 5 HarmonyOS 2.0.0
require the user to switch keyboards from and back to the 30 Pro HarmonyOS 2.0.0
letters keyboard. We handle this situation by proposing a state Hornor 10 Lite HarmonyOS 2.0.0

forking mechanism. The state forking mechanism is activated "~ Note: duplicated (vendor, device name, OS) tuples are ignored.
whenever the user switches back to the letters keyboard (re-

ferred to as keyboard switches for brevity), which can be easily VI
detected from the already collected case-insensitive password. '
During state forking, three copies of the current password with In this section, we conduct an experimental evaluation
three different case states are created, corresponding to tbé CONQUER We rst illustrate the experiment setup, then

EVALUATION

TABLE llI: Selected Passwords. “xX” represents the number of case switches, and “y” represents the number of keyboard switche:

Category (X, y) Passwords

(0;0) chocolate passwordl butter y liverpool basketball elizabeth

’ tinkerbell spongebob alexandra beautiful alexander christian
(0;1) lovedever 1password 123456789a 1princess hotmail.com yahoo.com

’ friendsdever 1truelove 1babygirl lovedlife c.ronaldo 4everlove
(0;2) i love you 2cutedyou 2bornot2b chOcOlate @hotmail.com 2hot2handle

’ 2gether4ever llife2live 11verp00I 2pacdlife i love me TEXT ONLY AD
(1;0) HarryPotter JesusChrist ChrisBrown HelloKitty LinkinPark iloveJesus

’ TokioHotel BettyBoop CyoiydgTv JohnnyDepp SpongeBob HannahMontana
(1;1) iydgTvmuijl6f iydgTvgl,v glk;lydKIN 123qweASD ry=ibomiN Thbfkiy9oN

’ okiuiy9oN Lbibiy9oN vkiuiy9oN iydgTv,kd OydidAKIN Ibibiy9oN
(1;2) 16fkiy9oN iydgTvmeéd;yo iy9ok4iIN The RockYou Team OyomiNObik 4ymik4iIN

’ 06Rkiy9oN 8ow,jrbgLK 06iuiy9oN v6[liy9oN 164kiy9oN JOhNYexstasynemis
(2;0) FallOutBoy diilbdkiN MyChemicalRomance AaBbCc123 WinnieThePooh TaeKwonDo

’ JesseMcCartney IchLiebeDich CrashIntoMe99 dHgTvojkiyd TeQuieroMucho SuzieAndRocco
1) iydotgfHdF] dyPPkiy9oN fydotgfHdR \] 16iLydfbN v4blbmTbN obLkiy9oN

’ mbrpN;iil db99bLydfbN Vii5IbmTbN oyomNiyd,kiN8 mb5vulbsTd8 gfHd,uxyPsk
(2;2) 0b9bLkI9IN Mje4nGq6vL45 JaY143$P.rBoricua 2KaEle4cxK *mZ?9%jS y712xC61viHc

’ xXx-rebecca-xXx xAlvpTjLb]x pacS*ptt-*KnKA* 16mTkiy9oN 16mThb]ydKIN k6kgWW7WuM

explain the experiment results by answering several researédhpasswords. To simulate the real attack scenario, we assumed
questions. that different people use different passwords and therefore each
password was only assigned to one volunteer. Furthermore, to
simulate the fact that people are typically familiar with their
own passwords, each password was entered 20 times during the
experiment. To ensure that the volunteers were familiar with

Volunteers and Testing Environment. We recruited 20 vol- ; o .
unteers to participate in the experiment, which is a typicage assigned passwords, we heuristically omitted data collected

A. Experiment Setup

setup used in previous research (e.g., [11]). The voluntee uring the rst 10 inputs of a password and only considered

were recruited from our college campus and were all studenté e last 10 user inputs of each password as valid data for the

The vendors, device names and OSs of the mobile phonee'gperlment.

used by the participants are listed in Table Il. The experimenhetrics_ We de ne three metrics for our experimetP RCS

was app|>|r0\r/]ed by Fge dIRB.IThe vollénte_er_s were InS'[ruh(:t.eq'PRNCS and one-time password recovery success rate

to install the provided malware and victim app on their;p oo : . '
: : andTPRNCS are previously de ned in §V-C and

own mobile phones, and to give the malware access to the .oy ced to evaluate the effectiveness of the time-side-

accessibility service. They were then asked to input severgl - inel-based switch detection method. We de ne a pass-

pre-selected real-world passwords into the victim app usin . :
their usual keyboards. The case-insensitive passwords and t%;é) rd recovery process as successful if the real password is

input time interval sequences collected by the malware durin Cluded in the set of recovered possible passwords. In real-
P . q y ; orld scenarios, attackers generally only have one chance to
the experiment are later processed to evaluate the ef ciency

teal user passwords. Therefore, we propose to use the one-
time password recovery success rate as a metric, which is
de ned as the ratio of successfully recovered passwords (out
experiment are selected from tReckyou password dataset, °f the selected 108 passwords) in a single round of password
H’nput. Note that similar to the one-time password recovery

As discussed in 8V-C, the number of case switches an ;
keyboard switches are two main factors that in uence the>UCCess ratel PRCS andTPRNCS are also independently

ability to recover passwords. Therefore, we rst categorizecalCUIatEd between rounds.
these passwords by the number of case switches and keyboard
switches, then select passwords from different categories.
Based on our analysis of tHiRockyou dataset, we found that
among all users using passwords containing at least one letter,
passwords used by 99.65% of them have a case switch and
keyboard switch count of no more than 2 times. Therefore,
we focused our experiment on the 9 categories of passwords
that fall within this range. Within each category, we sorted
passwords that are longer than 8 characters and contain only
English keyboard characters based on their popularity (i.e.,
the number of users), and selected the top 12 passwords for e

he experiment. In total, we selected 108 (2) real World * Fig, 4: Calculated TPRNCS-threshold and TPRCS-
passwords. e selected passwords are listed in Table IlI. threshold curve on th®1OBIKEYdataset

CONQUER N recovering passwords.

Password Selection.The real-world passwords used in the

Experiment Guidelines. The selected 108 passwords were
randomly distributed to the 20 volunteers, with 8 volunteersGeneral Threshold Calculation. To calculate a general
being assigned 6 passwords and 12 volunteers being assignttgleshold for detecting case switches as discussed in 8V-C, we

10

(a) One-time success rate

1.0 1 (1,0)

1,1

0.8 1,2

5 (2,0)

b 0.6 (2,1)

o B (2, 2)
& 0.4 5 ‘ . mmm average

0.0 : :
R11 R12 R14 R15 R16 R17 R18 R19 R20
Input Round
(b) TPRCS

* J .
. q [-
* N D *
N J .
. q [-
* N D *
N J .

R15 R16

R

Fig. 5: Experiment results of thedIQUER attack

(c) TPRNCS

conducted a preliminary experiment on the strong passwor8. Experiment Results
(:tiebRoanl) dataset of theMOBIKEY keystroke dynamics
password database [4]. This dataset includes 3303 records
and provides many different features of keystroke dynamicqg RQ1: How does the pre-calculated threshold perform
when entering the password, including time intervals betweerj !N detecting case switches?
keystrokes. Using the time intervals between keystrokes, we
can collect the time intervals between entering two letters. \We measureTPRCS and TPRNCS to answer this
As discussed in §V‘C, the t|me intel’val betWeen enteringquestion'TPRcs and TPRNCS were Ca'cu'ated for the
‘e” and “5" was discarded during normalization. However, entire set of 108 selected passwords, as well as for each
we did kept the time interval between entering “5” and “R” category of passwords, using the data collected from the last 10
because “R” is the only uppercase letter in the passwordounds of password inputs. The threshold used to detect case
This speci ¢ time interval was calculated as the summationsyjitches was set to 1.028 as previously discussed. The results
of keystrokg mteryals between “abc” and “shift”, anq “shift” gre shown in Figure 5(b) and Figure 5(c), where the notian *(
and “R”", while the interval between “5” and “abc” was ignored p)" represents a category of passwords wtitase switches
to minimize the impact of keyboard switching. After that, the andh keyboard switches. Note that &P RCS, passwords in
optimal threshold that maximizesPRCS TPRNCS was categories (0, 0), (0, 1), and (0, 2) do not have case switches
calculated as previously discussed. and are therefore omitted in the gure. The overalP RCS
andTP RN CS within the last 10 rounds ranges from 59.26%
Figure 4 describes the relationship betwddhRNCS and to 68.51% and 88.69% to 90.87%, respectively. Interestingly,
the threshold, as well as the relationship betwd@dhRCS we observed two diametrically opposite trends TdP RCS
and the threshold on thelOBIKEYdataset. Using the metric and TPRNCS. For TPRCS, the value decreases as the
mentioned above, the threshold was calculated to be 1.028umber of case switches increases, and the negative impact of
resulting inTPRCS and TPRNCS values of 0.9700 and the number of keyboard switches ®® RCS becomes greater
0.9692, respectively. To validate the effectiveness and geneas the number of case switches increases. However, when it
ality of the time-and-model-based password recovery method;omes tol PRN CS, the value increases as the number of case
we adopted this optimal threshold (i.e., 1.028) derived fromswitches increases, and the increase in the number of keyboard
the MOBIKEYdataset throughout our experiment. switches has a positive impact on this value. We believe that

11

this phenomenon occurs because the increase of these twadroid:inputType attributes represent password input
numbers may make passwords more dif cult to enter, therebyoxes and check if they follow two rules based on our root
violating the common input pattern exploited by the proposedtause analysis (see 8VII-B) : (i) the class of the custom
temporal-side-channel-based case switch detection method. password input box must be a subclasg ektView . (ii) the
class and its superclasses (excludibgxtView) must not

. override thefindViewsWithText() method, and either
RQ2. Can CONQUER effectively steal user passwords the getAccessibilityNodeProvider () method is not
exploiting the two side channels? overridden by these superclasses or it is overridden but no class

in the app has extendefccessibilityNodeProvider

To answer this question, we rst measure the one-time To measure the impact of GIQUER on these apps, we

password recovery success rate. Similarly, the success rate WaS acted 324125 Android apps froAndroZoo [3] and per-
calculated for all 108 selected passwords and for each categopy . 4 2 Iargé—scale security analysis on these apps using our

of passwords within the last 10 rounds of input. Figure 5(a
shows the obtained one-time success rate. The overall on)f%rl_amework. We were able to successfully test 324,080 apps,

' . hile 45 apps were unable to be tested becaask failed to
time success rate ranges from 60.18% to 69.44%, with a .
average of 64.91%. For passwords in categories (0, 0), (ecompile them. Out of the 324,080 apps that we successfully

. sted, 13,786 have custom password input boxes, and 13,001
1) and (0, 2), the success rate is 100% because they follo P o o '
the three most common patterns described in §V-C. For othe\é?Ut of the 13,786 apps (94.30%) implement their own custom

categories of passwords, the one-time recovery success r gssword input boxes based daxtView . By applying our

. tection rules on thesgéextView -based custom password
Esr.ﬂ:‘:"gg StOTTFr:S%r?e?tinrgeﬂ;zig\?er?yfguz\gess;h?af:rigerglig[tisgllympu'[boxes, we found that all of them (100%) are vulnerable to
low for passwords in categories (2, 1) and (2, 2) due to theiCONQUER The evaluation results show that the vulnerability

. . . has not been previously recognized by the community and has
high complexity. However, such cases are rare in real—worldaehuge security impact.

because among all users who use passwords with at least oh
letter, only 0.02041% of them have deployed passwords in

these two categories. Additionally, we did not observe the VIl. DiscussiON
impact of smartphones keyboard layouts on our experiment 011
20 subjects, as our method of detecting case switches utilizés
normalized typing intervals between letters, which will not We take ethics into the highest consideration. First, we

be affected by keyboard layouts. Finally, we evaluated theesponsibly disclosed our ndings to Google. However, Google
stealthiness of GNQUER CONQUERdoes not necessitate any decided not to x this vulnerability for two main reasons: 1)
foreground Ul operations, instead, it only executes backgrounthis behavior is required for the accessibility service to function
gueries. Therefore, except for possible delays caused by ttes intended, and r5e3 [(0)15(v)15(erridden)-245(2r423((i/we)8d |
gueries, victims should not detect any unusual behavior. Our

experiment validated this point: we explicitly asked the volun-

teers if they had observed any anomalies (including delays),

and none of them did. To demonstrate the high query ef ciency

of CONQUER, we randomly generated 20 passwords of length

16 and recorded the time it took to successfully query them.

The results show that on average, it only takes 174ms to query

a password of length 16, including the time for inter-process

communication (IPC) and the time for actually processing the

query on the victim side (see 8VII-B). In summarypSQUER

is robust and can effectively recover passwords in most real-

world scenarios.

Responsible Disclosure and Ethical Considerations

RQ3. Which Android versions are affected and how
many apps are subject to @WNQUER attack?

Through manual veri cation, all Android versions from
4.1 to 12 (i.e., all currently of cially supported versions)
are subject to ONQUER which means that all system-
provided password eld Ul components and apps using these
components are vulnerable. However, Android apps may
use custom password input boxes, which could potentially
avoid this vulnerability. As such, we have designed and
implemented a framework for detecting vulnerable custom
password input boxes used by Android apps. Our frame-
work is built on top ofJadx [16] and Soot [30] to de-
compile Android apps, extract layout les, and perform
static analysis. We look for self-de ned elements whose

© o N o O A& w N

PR
=<

12
13
14
15
16

17

18

19
20
21
22
23

24
25

26

28
29
30

private void findAccessibilityNodelnfosByTextUiThr |
— ead(Message message)
- {

final int flags = message.argl;
final int accessibilityViewld = args.argil;
final iInt virtualDescendantld = args.argi2;

List<AccessibilityNodelnfo> infos =
try {

null;

final View root = findViewByAccessibilityld(ac |
— cessibilityViewld);
ifT (root != null && isShown(root)) {
AccessibilityNodeProvider provider =
root.getAccessibilityNodeProvider();
it (provider = null) {
infos = provider.findAccessibilityNodelnfo
— sByText(text,
— virtualDescendantld);
} else if (virtualDescendantld ==
— AccessibilityNodeProvider.HOST VIEW _ID) {
ArrayList<View> foundViews =
— mTempArrayList;
foundViews.clear();
root.findViewsWithText(foundViews, text,
View.FIND_VIEWS_WITH_TEXT
| View.FIND_VIEWS_WITH_CONTENT _DESCRIPTION
| View.FIND_VIEWS_ WITH_ACCESSIBILITY_NODE_
— PROVIDERS); '

}

}
} Finally {

}
}

Listing 1: Client-sidefindAccessibilityNodelnfos-
ByText() request handler in the Android source code

by an app with the accessibility service permission, the call
is forwarded via IPC and the request is nally handled by the
View object to be searched. Xiew object has two ways to

handle the request: First, the methgetAccessibility-
Provider() is called. If anAccessibilityProvider
object is returned, the request is nally handled by fimal-
AccessibilityNodelnfosByText(text)
the returned object. Second, ifietAccessibility-
Provider() returns null
findViewsWithText()

By default, the getAccessibilityProvider()
method inView will return null , and hencdindViews-

method of

, the request is handled by the
method of theview object itself.

AccessibilityProvider() method is not overridden.
Therefore,TextView and all Android-providedrextView -
based classes, including those that are widely used as password
input boxes (e.g.EditText), are vulnerable to GNQUER
because they do not override the two methods.

C. Possible Mitigation

While CONQUERIs hard to be defended as it is powered by
the normal functionalities of the accessibility service, there are
still possible mitigation measures. There are two possible ways
to mitigate the attack based on the discussion in 8VII-B: either
at the system level, before tfiadAccessibilityNode-
InfosByText(text) request is handled by the client, or
at the application level, after the request is dispatched to the
client.

System level mitigation There are several ways to
x this vulnerability at the system level. One option
is to enforce security checks inside the server-side
accessibility service APfindAccessibility-
NodelnfosByText(text) to ensure that a pass-
word node is not allowed to be searched. However,
identifying password nodes could be challenging in
general due to the existence of custom password input
boxes. Another way is to make the API only search
the given text inside content descriptions but not the
contained texts. However, this approach may hinder
the functionalities of the accessibility service.

Application level mitigation To mitigate this vulner-
ability, Android app developers should always adopt
custom password elds instead of system-provided
TextView -based classes as password elds. Cus-
tom password elds inherited directly or indirectly
from TextView should either override thénd-
ViewsWithText() method to make sure the pass-
word text is not searched, or override thyet-
AccessibilityNodeProvider() method to re-
turn a customAccessibilityNodeProvider -
based object.

D. Limitations

Our CONQUER is not perfect, and it has the following
limitations. First, though the range of possible passwords
is greatly reduced to make the attack more practical, the
remaining number of possible passwords could still be too
large to perform a successful login attempt when there is
a limitation on failed login attempts. Second, the time-and-
model-based password recovery method is not reliable for
long or complex passwords due to accidental input errors or
different typing habits (e.g., using keyboard pop-ups to choose
characters). However, smartphone sensors can accurately
detect touch events (e.g., [36]). Future research can use
sensors to more accurately distinguish case changes based on

WithText() will be invoked to handle the request. How- the number of touches between letters. Additionally, passwords
ever, thefindViewsWithText() method inView only may have semantic features [31], [33]. Future research can
searches the given text in the content description of thalso apply these semantic patterns to recover passwords.
View object and hence is not vulnerable to the proposedhird, if victims use password managers to automatically |l
attack.TextView is a subclass offiew . In TextView , the in their passwords, GNQUER can only steal case-insensitive
findViewsWithText() method is overridden to search passwords by actively issuing content queries. As discussed in
the given text in the object's own text, while thget- 8VI-B, querying passwords is ef cient and if the victim does

13

not press the login button within a very short period after thecontrast, our proposed attack is more stealthy, general, and
password is lled in, the case-insensitive password can still bgractical.

obtained. However, original passwords cannot be ef ciently

recovered due to the lack of input timing information. PreviousAndroid Accessibility Service Defenses.Compared with
research has shown that the use of password managers is @tacks against the accessibility service, defenses on the frame-

common, particularly on mobile phones [27], [2]. work are rarely focused. Naseti al. [25] proposed a frame-
work to help developers automatically detect and x Android
VIIl. RELATED WORK apps that may leak passwords through the accessibility ser-

vice. Huanget al. [15] recently proposed a privacy-enhanced

Android Accessibility Service Abuses.The Android acces- accessibility framework to strike a balance between the regular
sibility service has been proven to have exploitable desighunctionality of the accessibility framework and its security
Shortcomings by previous research. Kraundlis al. [21] mechanlsms_. While thlS IS not the focus of this Wor!<, more
demonstrated that the Android accessibility service can b&omprehensive security mechanisms should be studied in the
exploited by malware to perform malicious actions such aduture.

gaining control of the screen and stealing user credentials]

through phishing. Jangt al. [17] studied the security of Side-Channel-based Keystroke InferencePrevious research

accessibility support on four popular platforms and identi ed has studied the feasibility of inferring keystrokes through vari-
several vuinerabilities. Fratantonier al. [11] proposed the ©Ous side channels. The temporal side channel is one of the most
famous “cloak and dagger” attack exploiting both overlaycommonly exploited methods for keystroke inference [29], [6].
and the accessibility service. Interestingly, the “cloak andSmartphone sensors are also used to infer user keystrokes
dagger” attack can be executed even without the overlal38l. [32], [19], [36], [24], [22] due to the vast amount of
permission before Android 8.0 [37]. Aonzo al. [5] showed Information they provide. We also exploit the temporal side
that it is possible to conduct phishing attacks against passworghannel, but unlike previous works, it is used to detect case
managers by exploiting the accessibility service. Kalysch Switches rather than inferring keystrokes.

al. [18] discovered several security aws in the accessibility

service and discussed corresponding countermeasures. Diao IX. CONCLUSION

et al. [9] conducted a systematic study of the Android ac-

cessibility framework through code review and app scanning, In this work, we propose GNQUER a novel content
and discussed several shortcomings as well as correspondifigery assisted password stealing attackoNQUER breaks
attacks exploiting these weaknesses. Evidence has proven ttisting Android defenses against password stealing attacks
various real-world malware [10], [1], [39] have exploited by exploiting a query-based side channel in the Android
the attacks mentioned above. However, none of these worl@ccessibility service, and can be abused to launch password

have discovered the query-based side channel in the AndroRfealing attacks in real-world scenarios. To makeNQUER
accessibility service. practical, we introduce théazy query technique to disam-

biguate query results, thetive query technique to determine
Accessibility Service Assisted Password Stealing Attacks. query timing, and the temporal side channel and state machine
Kraunelis [21]et al. pointed out that the accessibility service to recover case-sensitive passwords. Our experiment shows that
can be exploited to steal user passwords through phishing, b@ONQUER can steal user passwords with a high success rate.
the malware has to completely disguise itself as a benign apghe attack has affected all Android versions from 4.1 and 12
which could be hard for complex closed-source apps. #ang and many Android apps. @VQUER has not been recognized
al. [17] demonstrated that an Android malware exploiting theby the community and poses a signi cant security risk.
accessibility service can alter system settings programmatically
without user consent and register a malicious text-to-speech
(TTS) application to steal passwords. However, this approach
no longer works on newer versions of Android. Instead, a We would like to thank Kang Jia and the anonymous
series of Ul operations are needed to accomplish the sanreviewers for their valuable feedback on this work. This
goal. Fratantoniar al. [11] proposed three password stealingresearch was supported in part by National Natural Sci-
attacks, two of which require the assistance of overlay. Thignce Foundation of China Grant Nos. 62022024, 61972088,
results in the display of an alert window on Android 8.0 or 62072103, 62102084, 62072102, 62072098, 62232004, and
later, which makes it less practical these days. The other attadk1972083, by US National Science Foundation (NSF) Awards
that only uses the accessibility service is achieved by inferrind 931871, 1915780, and US Department of Energy (DOE)
keystrokes from keyboards, but this requires the keyboard usedlvard DE-EE0009152, Jiangsu Provincial Natural Science
by the victim to be vulnerable. However, some keyboardg-oundation of China Grant No. BK20190340, Jiangsu Provin-
have have addressed this vulnerability [18]. Kalysehal cial Key R&D Program (Nos. BE2021729, BE2022680 and
[18] found that by exploiting screen recording or accessibilityBE2022065-4), Jiangsu Provincial Key Laboratory of Net-
events snif ng, the most recently entered password charactevork and Information Security Grant No. BM2003201, Key
can be acquired, as the character is displayed on the screkaboratory of Computer Network and Information Integration
for a short period of time. However, this can be easilyof Ministry of Education of China Grant Nos. 93K-9, and
defended by turning off the “Make passwords visible” option Collaborative Innovation Center of Novel Software Technology
in Settings . Therefore, all existing accessibility-service- and Industrialization. Any opinions, ndings, conclusions, and
assisted password stealing attacks are much less practical mcommendations in this paper are those of the authors and do
feasible nowadays than when they were rst proposed. Imot necessarily re ect the views of the funding agencies.

ACKNOWLEDGMENT

14

(1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

REFERENCES

0x1c3n, “Anubis android malware analysis,” 2021. [Online]. Available:
https://0x1c3n.tech/anubis-android-malware-analysis

N. Alkaldi and K. Renaud, “Why do people adopt, or reject, smartphone
password managers?” Proceedings of the 1st European Workshop on
Usable Security (EuroUSEC), 2016.

K. Allix, T. F. Bissyanc, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of Android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), 2016, pp. 468—471.

M. Antal and L. Nemes, “The MOBIKEY keystroke dynamics password
database: Benchmark results,"Soyftware Engineering Perspectives and
Application in Intelligent Systems: Proceedings of the 5th Computer
Science Online Conference (CSOC), R. Silhavy, R. Senkerik, Z. K.
Oplatkova, P. Silhavy, and Z. Prokopova, Eds. Cham: Springer
International Publishing, 2016, pp. 35-46.

S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing attacks on
modern Android,” inProceedings of the 25th ACM SIGSAC Conference

on Computer and Communications Security (CCS), 2018, pp. 1788—
1801.

L. Cai and H. Chen, “TouchLogger: Inferring keystrokes on touch
screen from smartphone motion,” Proceedings of the 6th USENIX
Workshop on Hot Topics in Security (HotSec), 2011.

W. Cao, C. Xia, S. T. Peddinti, D. Lie, N. Taft, and L. M. Austin, “A
large scale study of user behavior, expectations and engagement with
Android permissions,” inProceedings of the 30th USENIX Security
Symposium (USENIX Security), 2021, pp. 803-820.

E. Cebuc, “How are we doing with Android's overlay attacks in
20207?" 2020. [Online]. Available: https://labs.f-secure.com/blog/how
-are-we-doing-with-androids-overlay-attacks-in-2020/

W. Diao, Y. Zhang, L. Zhang, Z. Li, F. Xu, X. Pan, X. Liu, J. Weng,
K. Zhang, and X. Wang, “Kindness is a risky business: On the
usage of the accessibility APIs in Android,” iBroceedings of the
22nd International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2019, pp. 261-275.

T. Fabric, “The rage of Android banking trojans,” 2021. [Online].
Available: https://www.threatfabric.com/blogs/the-rage-of-android-ban
king-trojans.html

Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
From two permissions to complete control of the Ul feedback loop,”
in Proceedings of the 38th IEEE Symposium on Security and Privacy
(S&P), 2017, pp. 1041-1057.

Google, “Create your own accessibility service,” 2021. [Online].
Available: https://developer.android.com/guide/topics/ui/accessibility/
service

Google, “Accessibilitynodeinfo,” 2022. [Online]. Available:
https://developer.android.com/reference/android/view/accessibility/Acc
essibilityNodelnfo

Google, “Talkback,” 2022. [Online]. Available: https://support.google.c

https://0x1c3n.tech/anubis-android-malware-analysis
https://labs.f-secure.com/blog/how-are-we-doing-with-androids-overlay-attacks-in-2020/
https://labs.f-secure.com/blog/how-are-we-doing-with-androids-overlay-attacks-in-2020/
https://www.threatfabric.com/blogs/the-rage-of-android-banking-trojans.html
https://www.threatfabric.com/blogs/the-rage-of-android-banking-trojans.html
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=10601571
https://support.google.com/accessibility/android/answer/6283677?hl=en&ref_topic=10601571
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://wiki.skullsecurity.org/Passwords
https://unit42.paloaltonetworks.com/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/
https://unit42.paloaltonetworks.com/unit42-android-toast-overlay-attack-cloak-and-dagger-with-no-permissions/

(38]

[39]

L. Zhuang, F. Zhou, and J. D. Tygar, “Keyboard acoustic emanations
revisited,” in Proceedings of the 12th ACM Conference on Computer

and Communications Security (CCS), 2005, pp. 373-382.

E. Y. Sahin, “When your phone gets sick: Flubot abuses accessibility
features to steal data,” 2021. [Online]. Available: https://www.srlabs.d
e/bites/ ubot-abuses-accessibility-features-to-steal-data

16

https://www.srlabs.de/bites/flubot-abuses-accessibility-features-to-steal-data
https://www.srlabs.de/bites/flubot-abuses-accessibility-features-to-steal-data

	Introduction
	Background
	Android Accessibility Service
	Accessibility Service Abuse and Defense

	Observation And Threat Model
	Key Observation
	Threat Model and Assumptions

	Overview of Content Queries (conquer) Attack
	Basic Workflow
	Challenges and Solutions

	Detail Design of Conquer
	Lazy Query for Password Differentiation
	Active Queries for Breaking Enabled Defenses
	 Side Channels for Passwords Resolution

	Evaluation
	Experiment Setup
	Experiment Results

	Discussion
	Responsible Disclosure and Ethical Considerations
	Root Cause Analysis
	Possible Mitigation
	Limitations

	Related Work
	Conclusion
	References

