
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Large-scale Evaluation of Malicious Tor Hidden
Service Directory Discovery

Chunmian Wang†, Zhen Ling†∗, Wenjia Wu†, Qi Chen†, Ming Yang†, Xinwen Fu‡
†School of Computer Science and Engineering, Southeast University, China

Email: {chunmianwang, zhenling, wjwu, qichen, yangming2002}@seu.edu.cn
‡Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, USA

Email: xinwen_fu@uml.edu

Abstract—Tor is the largest anonymous communication sys-
tem, providing anonymous communication services to approxi-
mately 2.8 million users and 170,000 hidden services per day.
The Tor hidden service mechanism can protect a server from
exposing its real identity during the communication. However,
due to a design flaw of the Tor hidden service mechanism,
adversaries can deploy malicious Tor hidden service directories
(HSDirs) to covertly collect all onion addresses of hidden services
and further probe the hidden services. To mitigate this issue,
we design customized honeypot hidden services based on one-
to-one and many-to-one HSDir monitoring approaches to luring
and identifying the malicious HSDirs conducting the rapid and
delayed probing attacks, respectively. By analyzing the probing
behaviors and payloads, we investigate a novel semantic-based
probing pattern clustering approach to classify the adversaries
so as to shed light on the purposes of the malicious HSDirs.
Moreover, we perform theoretical analysis of the capability
and accuracy of our approaches. Large-scale experiments are
conducted in the real-world Tor network by deploying hundreds
of thousands of honeypots during a monitoring period of more
than three months. Finally, we identify 8 groups of 32 malicious
HSDirs, discover 25 probing pattern clusters and reveal 3 major
probing purposes.

Keywords—Tor, onion address, honeypot hidden service, mali-
cious Tor hidden service directory

I. INTRODUCTION
Tor is one of the most popular anonymous communication

systems that provide anonymity on the Internet for both users
and service providers. Diverse anonymous services, referred
to as hidden services, including web services, email services,
online chat services, etc., are deployed over the Tor network to
protect the anonymity at the server side. The domain names of
hidden services, i.e, onion addresses, are generated by hidden
services and uploaded to hidden service directories (HSDirs).
A HSDir in the Tor network works as a Domain Name System
(DNS) server that is responsible for collecting hidden service
descriptors that contain onion addresses uploaded from hidden
services. Also, it responds to a request of an onion address
from a Tor client so that the Tor client can learn the entry
point information and create a path to the corresponding hidden
service. Since Tor nodes are deployed by volunteers around
the world, adversaries can deploy malicious HSDirs so as to
discover the existence of the hidden services and collect onion
addresses.

Once the adversaries collect the onion addresses, various
attacks, e.g., probing attacks [1], DDoS attacks [2] and hidden
service localization attacks [3], [4], can be performed to
jeopardize the anonymity of the hidden services. For example,
Biryukov et al. [1] deploy HSDirs in the Tor network to collect
onion addresses and scan the ports of hidden services. Flow
watermarks [3], [4] can be embedded into the Tor traffic at

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

the client side and inspected at the hidden service side so as
to locate the real IP address of the hidden service. Tan et al.
[2] compute the six responsible HSDir locations of a target
hidden service in advance and deliberately deploy malicious
HSDirs near the responsible ones so as to force the victim
hidden service to upload descriptors to the malicious ones.
Then the malicious HSDirs can perform a DDoS attack by not
responding to the Tor client requests.

To mitigate these issues, we propose a large-scale malicious
Tor hidden service directory discovery approach and provide
theoretical analysis of effectiveness of the approach so as to
precisely identify malicious HSDirs that launch passive onion
address collection attack and active hidden service probing
attack in the Tor network. According to the time interval
between the time of onion addresses collected by malicious
HSDirs and the time of performing probing attacks, we classify
the probing attacks into the rapid probing attack performed
within one descriptor uploading time period (DUTP) and
delayed probing attack performed in more than one DUTP. To
identify these malicious HSDirs that launch the rapid probing
attack, we customize the honeypot hidden services that only
upload one onion address to one responsible HSDir instead
of default six HSDirs within one DUTP, and then deploy
them in the Tor network to achieve precise one-to-one HSDir
monitoring. As a result, once our honeypot h (servi9996 (our)- (at)-271r)15.0001 (v)-33ed9 TD23 (at73k,)-41123 (at73k,)-29242uplo575 -10.739 TD
123 (a571ly)-334.9998123 (a571ly)-411.2uplo575 a571ly6 (six)-.2uplo575 to

the malicious HSDirs that conduct the rapid probing attack
within one DUTP. To this end, we build a honeypot onion
address collection model to analyze the expected number of
distinct HSDirs that can collect our honeypot onion addresses
within one DUTP. Then we formally analyze the accuracy of
the many-to-one monitoring approach for detecting malicious
HSDirs conducting delayed probing attack.

Our major contributions are summarized as follows.
• To the best of our knowledge, we are the first to

design and implement customized honeypot hidden
services based on one-to-one and many-to-one HSDir
monitoring approaches to identifying malicious HS-
Dirs that collect onion addresses and launch probing
attacks. Then we propose a novel semantic-based
probing pattern clustering approach to classifying the
malicious HSDirs in an attempt to shed light on the
distinct purposes of the malicious HSDirs.

• We perform theoretical analysis of the capability and
accuracy of the malicious HSDir identification ap-
proaches. In the one-to-one HSDir monitoring ap-
proach, we can derive the expected number of distinct
monitored HSDirs with the given number of deployed
honeypot hidden services. Moreover, we can obtain
the theoretical detection accuracy of the many-to-one
HSDir monitoring approach with the given number of
deployed and probed honeypot hidden services.

• Extensive empirical experiments are performed to
demonstrate the effectiveness of our approaches. We
deploy 91,269 and 616,017 honeypot hidden services
to conduct one-to-one HSDir monitoring experiments
for one week and one month, respectively, and identify
17 malicious HSDirs performing the rapid probing
attack. Then we use 23,835 and 7,680 honeypot hidden
services to respectively perform one-month many-to-
one HSDir monitoring in two phases and discover
19 malicious HSDirs performing the delayed probing
attack. We derive 25 semantic probing pattern clusters
by analyzing 45,278 probes and correlate the identified
malicious HSDirs using the clusters.

The rest of this paper is organized as follows. We introduce
the hidden service mechanism in Section II. Then we introduce
the threat model of the two attacks and propose our customized
honeypot hidden services based on monitoring approaches
to identifying all HSDirs performing the two attacks in Tor
network, and then investigate the malicious HSDir clustering
approach by analyzing the probing behaviors and payloads
in Section III. In Section IV, we analyze the capability and
accuracy of monitoring approaches. In Section V, we con-
duct large-scale evaluation in the real-world Tor networks to
demonstrate the effectiveness of our approaches and discuss
the limitations of the approaches. We review related work in
Section VI. Finally, we conclude this paper in Section VII.

II. BACKGROUND
In this section, we first introduce how the Tor hidden

service mechanism works and then present the generation and
usage of onion addresses that are employed to look up the
hidden services.

A. Tor hidden service mechanism
Tor is an overlay network that not only provides users

with communication privacy protection, but also allows content
service providers to publish network services anonymously

����

Fig. 1: Tor hidden service mechanism

via a powerful hidden service mechanism. There are four
components in the hidden service mechanism, including Tor
clients, Tor relays, hidden servers, and HSDirs. Figure 1
illustrates the architecture of the Tor network that provides
hidden service. (1) Tor clients. A Tor client installs a Tor
software that works as a local SOCKS5 proxy and transmits the
application layer data into the Tor network. (2) Tor relays. A
Tor relay, referred to as an onion router, is used to create multi-
hop circuits by Tor clients or hidden servers and responsible
for relaying the data between the Tor clients and servers via the
circuits. (3) Hidden servers. A hidden server supports a TCP
network service (e.g., a web service) and generates an onion
address that is used to uniquely identify the server in the Tor
network. The service running on the hidden server is referred to
as hidden service. (4) HSDirs. A HSDir is a type of Tor relays
that not only relays data, but also collects the information from
hidden servers, including their public keys. Moreover, HSDirs
organized by a Distributed Hash Table (DHT) can assist a Tor
client to anonymously look up a hidden server via an onion
address.

We illustrate how the hidden service mechanism works to
protect the anonymity for a web server. To hide a network
identity of a hidden server, the hidden server first selects a
Tor relay as a introduction point (IPO) and creates a long-
lived circuit with default three hops to the IPO. By default,
the hidden server has three IPOs that act as reverse proxies
to receive requests from Tor clients and forward the requests
back to the hidden server via the three-hop circuits. Then the
hidden server generates and uploads descriptors, including the
information of IPOs, an onion address, a public key, the version
of the hidden service, etc., to the HSDirs. A Tor client may
obtain the onion address via out-of-band channel (e.g., public
web forums). To access the hidden server, the Tor client sends
the onion address to the HSDirs and downloads the descriptor
of the hidden server. Then the Tor client selects a Tor relay as
a rendezvous point (RPO) and create a circuit to the RPO.
Next, the Tor client builds a three-hop circuit to the IPO
and sends the information of the RPO to the hidden server
so that the hidden server can establish a three-hop circuit to
the RPO. Finally, the Tor client and the hidden server can
communicate with each other via the six-hop circuit. Since
any Tor relay in the circuit cannot infer the communication
relationship between the Tor client and the hidden server, the
hidden server can anonymously provide the service without
exposing its identity.

2

2

B. Onion address generation and usage
An onion address is generated using a pubic key of a

hidden service. We take the version 2 of the hidden service
mechanism as an example to demonstrate how the onion
address is generated and used, since it is a popular version
used to date. Specifically, each Tor relay and hidden server
first generates a pair of RSA public and private keys. Denote
the SHA1 digest of the public key by F , where its length is
160 bits. F is also referred to as the fingerprint of a hidden
server or a Tor relay. All HSDirs that contain all the hidden
service descriptors in the Tor network are sorted in terms
of the fingerprint value in a DHT. Let F [a : b] represent
the byte sequence between a and b of F . To generate an
onion address of a hidden service, the first 10 bytes of the
fingerprint (i.e., F [0 : 9]) are encoded using Base32 to obtain
16 bytes string and then concatenates with a string ".onion".
Therefore, an onion address with a total length of 22 bytes
can be derived in terms of the hidden server public key. The
public key included in the descriptor of the hidden service is
uploaded to the responsible HSDirs. According to the onion
address queried from Tor clients, the HSDirs can look up and
send back the right descriptor to Tor clients. The Tor clients
can learn sufficient information from the descriptor to build a
circuit with the hidden service.

The hidden service computes two different descriptor IDs
used to select six responsible HSDirs for uploading the de-
scriptors as shown in Figure 1. The descriptor ID is computed
by

IDd = H(F [0 : 9]|IDs), (1)

where H is the SHA1 hash function that returns a result length
of 160 bits, | is a concatenation operation, and F is the SHA1
digest of the hidden server public key, i.e., the fingerprint of
the hidden server. The IDs is computed by

IDs = H(tp|d|r), (2)

where tp is the number of days since January 1, 1970, d is a
descriptor cookie that is an optional field (d is null by default),
and r is a binary value (i.e., 0 or 1). tp is derived by

tp =
t+ F [0 : 0]× 86400

256

86400
, (3)

where t is the current UNIX time when computing the descrip-
tor ID. Therefore, the descriptor ID changes every 24 hours.
Since r is a binary value, it is used to generate two distinct
descriptor IDs each time.

The hidden service locates two positions in the DHT of
HSDirs in terms of two descriptor IDs and selects two groups
of HSDirs with three HSDirs in each group to upload the
two descriptors to these two groups, respectively. Recall that
the fingerprints of the HSDirs are used as the hash keys to
build the DHT. The hash key space is 2160. One descriptor
ID of the hidden server is used as a key to look up three
following consecutive fingerprints of the HSDirs for uploading
the descriptors as shown in Figure 1. Since the descriptor ID
changes every 24 hours, the descriptor can be uploaded to
another six different HSDirs. Therefore, the DUTP is 24 hours.

Once a Tor client derives the onion address of the hidden
server, it can download the corresponding descriptor and build
a circuit with the hidden service. The Tor client can first derive
the fingerprint (i.e., F [0 : 9]) by decoding the onion address
using Base32 and then compute the two descriptor IDs in terms
of the onion address based on Equation (1), (2), and (3), and

look up the corresponding responsible HSDirs to download
the descriptor of the hidden server. After the client extract the
information of the IPOs from the descriptor, it establishes a
connection with the hidden server through the IPO and tells
the information of the RPO. Finally, the client accesses the
hidden server through the circuit of the RPO.

III. METHODOLOGY
In this section, we introduce the threat model of malicious

HSDirs and the malicious HSDir detection approach. Further,
we present a novel semantic-based probing pattern clustering
approach to classify the malicious HSDirs by analyzing the
probing behaviors and payloads.

A. Threat model
We assume that an adversary can gather information of the

Tor hidden services by first launching a passive onion address
collection attack and then an active hidden service probing
attack. We elaborate on the two attacks as follows.

Passive onion address collection attack. The adversary
can deploy a number of HSDirs to passively collect the
descriptors uploaded by the hidden services. Upon collecting
the descriptors, the adversary can derive the onion addresses
of the corresponding hidden services. Since the hidden service
reselects six HSDirs every day, this passive onion address
collection attack can theoretically collect all of the onion
addresses as the collection time increases.

Active hidden service probing attack. In order to obtain
more information about the hidden services, the adversary can
deploy a number of Tor clients and leverage the collected
onion addresses to actively establish connections to the hidden
services to probe the open ports, or infer application layer
protocol, or even launch various attacks. In particular, to probe
an open port, the adversary chooses a collected onion address
as a probing target and initiates multiple Tor circuits with
distinct ports to the hidden services. If the circuit is destroyed
by the hidden service, the port is not opened. Once locating
the open port, the adversary tries to mimic various legitimate
application requests (such as HTTP, SSH and SIP) to the
target hidden service so as to determine the specific application
running on the hidden service.

According to the time interval between the passive onion
address collection attack and active hidden service probing
attack, we classify the probing attack into two categories:
rapid probing attack and delayed probing attack. The
rapid probing attack is to initiate the probing tasks within
one day when the HSDirs collect the onion addresses. The
delayed probing attack is performed by the HSDirs that wait
for a period (i.e., more than one day) to perform the probing
task after collecting the onion addresses. Moreover, while
performing the probing tasks, the adversaries may probe all
the collected onion addresses or may probe some of them.
Therefore, we further categorize the delayed probing attack
into two classes: delayed deterministic probing attack and
delayed probabilistic probing attack. We attempt to accurately
and quickly locate the malicious HSDirs and determine their
attack behaviors.

B. Basic idea
Our objective is to identify the malicious HSDirs that

collect onion addresses and then cluster their probing patterns
so as to shed light on the real purposes of adversaries. To
this end, we first collect the information of all the HSDirs
in the Tor network since the HSDirs are publicly available.

3

3

Then we deploy a number of honeypot hidden services to
upload descriptors to all the HSDirs so as to lure malicious
HSDirs to perform the probing attacks. To accurately locate
the malicious HSDirs performing the rapid probing attack, we
generate descriptors of the honeypot hidden services and each
honeypot hidden service only chooses one responsible HSDir
to upload its descriptor instead of default six HSDirs. Then
we wait for 24 hours to see if a honeypot hidden service
receives probes. The one-to-one HSDir monitoring approach
can effecitively identify the malicious HSDirs performing the
rapid probing attack. To locate the HSDirs performing the
delayed probing attack, we customize the honeypot hidden
service to upload the descriptor to two HSDirs in each DUTP,
i.e., one fixed monitored HSDir and one responsible HSDir.
The responsible HSDir is used to enable the adversary to
correctly find the HSDir and derive the IPO information to
establish circuits to the honeypot hidden service. Since the
honeypot hidden service continuously uploads the descriptor
to a new responsible HSDir in each DUTP, we leverage
multiple honeypot hidden services to inspect one HSDir that
may conduct delayed probing attack in order to reduce the
false positive detection caused by one of the malicious re-
sponsible HSDirs. Finally, we analyze the probing behaviors
and payloads and investigate a semantic-based probing pattern
clustering approach to classifying and inferring the purposes
of the adversaries.

C. Identifying the rapid probing attack
To accurately identify the malicious HSDirs performing the

rapid probing attack, we customize and deploy our honeypot
hidden service to only upload its descriptor to one respon-
sible HSDir. Recall that a vanilla hidden service uploads its
descriptor to the six responsible HSDirs until the next DUTP
(i.e., 24 hours) comes. We leverage this time period to monitor
the potentially malicious HSDirs that launch the rapid probing
attack. To achieve precise one-to-one HSDir monitoring, we
customize a honeypot hidden service to select the first HSDir
of the six responsible HSDirs as the monitored HSDir. After
the DUTP, we redeploy a honeypot hidden service with a new
descriptor and choose a new monitored HSDir. The one-to-
one HSDir monitoring approach ensures that an onion address
of a honeypot hidden service can only be learned by one
monitored HSDir. Once the honeypot hidden service is probed,
we can determine that the monitored HSDir is malicious. Since
the responsible HSDirs are randomly selected in terms of the
hidden service mechanism, we need to continuously deploy
new honeypot hidden services to generate right onion addresses
to upload to all the HSDirs. To address this issue, we formally
analyze the expected number of deployed honeypot hidden
services to monitor all the HSDirs within one day in Section
IV. Moreover, the honeypot hidden services record the probing
timestamps, ports and payloads for further analysis.

D. Identifying the delayed probing attack
We customize the honeypot hidden service to upload two

HSDirs in each DUTP, i.e. one fixed monitored HSDir and one
randomly selected responsible HSDir, to determine whether
the monitored HSDir conducts the delayed probing attack
or not. The adversary performs the delayed probing attack
after several DUTPs. Since a hidden service always randomly
chooses HSDirs in each period to upload the descriptors, it
can hardly upload the descriptor to the same monitored HSDir
in these time periods. To address this issue, we deliberately
force the honeypot hidden service to upload its descriptor to

the same monitored HSDir in every DUTP. Consequently, the
monitored HSDir is able to collect the latest descriptor of
the honeypot hidden service during our monitoring period. In
addition, a responsible HSDir is also selected by the honeypot
hidden service to allow the monitored HSDir to access it if
the monitored HSDir intends to perform the delayed prob-
ing attack. However, a new responsible HSDirs is randomly
selected as the DUTP changes. When the honeypot hidden
service is probed by adversaries, it is nontrivial to differentiate
the probing of the monitored HSDir from that of one of
the responsible HSDirs that may be malicious. Moreover,
the longer the monitoring period lasts, the more responsible
HSDirs can collect our honeypot descriptors. Therefore, it can
increase the false positive detection of malicious HSDirs using
one-to-one HSDir monitoring approach.

To reduce the false positive detection, we adopt many-to-
one HSDir monitoring approach, i.e, using multiple honeypot
hidden services to monitor the same HSDir. Since there are
around 4,000 HSDirs, a large number of hidden services de-
ployed to monitor each HSDir may cause performance degra-
dation in the Tor network. To mitigate this issue, we first use
three honeypot hidden services to monitor each HSDir in the
first monitoring period. If a honeypot hidden service receive
the probes, the corresponding monitored HSDir is considered
as a potential malicious one. In the second monitoring period,
ten honeypot hidden services are deployed to monitor each
potential malicious HSDir to further improve the true positive
detection. If the number of probed honeypot hidden services
is greater than a threshold, we can confirm that the monitored
HSDir is malicious. We perform theoretical accuracy analysis
of the many-to-one HSDir monitoring approach for identifying
a malicious HSDir in Section IV.

E. Clustering malicious HSDirs
We analyze the probing behaviors of adversaries to shed

light on the probing purposes of the attacks in the Tor network.
To quickly collect hidden service onion addresses in the
Tor network, adversaries usually deploy multiple malicious
HSDirs to improve efficiency and probe these collected onion
addresses simultaneously. Different adversaries may adopt
distinct probing behaviors to retrieve the information of the
hidden services, including the open ports, the application types
of the hidden services, etc. According to the different probing
behaviors, we try to categorize the adversaries into several
groups. Note that we record the probed timestamps, port
numbers, onion addresses and payloads. To this end, we first
segment a sequences of continuous probes into one probing
task in terms of the probing time interval. Since 95% of hidden
service connection establishment time is less than 65s [5], we
choose the time interval 65s to segment the probes.

Once deriving the segmented probing tasks, we analyze
the probing payloads so as to enrich the semantic features
of the probes. We extract the probing semantic features of
a probe and concatenate the probed port number with the
semantic feature to represent a individual probe. Specifically,
We use a string “port_feature” to indicate a probe, where
the “_” symbol is used for concatenation. According to
our empirical analysis, the semantic feature of a probe
includes three types, i.e, probing TCP ports, applications, and
vulnerabilities. Therefore, we use the string “TCP”, a string
of an application name (e.g., “SSH”, “SMB” and “HTTP”),
and a string keyword in the payload of a vulnerability
(e.g., “dmdt” [6] and “tnmp” [7]) to represent the feature

4

4

of three types, respectively. If a payload is a series of hex
stings, we use “HEX” to represent the semantic feature
of a potential vulnerability probe. Moreover, if a HTTP
request is used to probe the HTTP application, we extract
more features to represent the HTTP probe, including the
information of the HTTP version, request method (e.g., GET,
POST, etc.), path, and user agent. For example, the string
“80_http_HTTP/1.1_GET_/_Mozilla/5.0+(X11;+Linux+x86_
64;+rv:68.0)+Gecko/20100101+Firefox/68.0” indicates that
the TCP port 80 is probed and the HTTP feature includes
the “HTTP/1.1” version, “GET” method, “/” path, and a user
agent (i.e., the rest string). In this way, we enrich the probes
in each task using the semantic features.

We leverage an edit distance, i.e., the Levenshtein distance,
to measure the similarity between two probing tasks. Since
a probing task includes a sequence of probed port numbers
and semantic features arranged in chronological order, the
Levenshtein distance is used to compute the minimum amount
of operations, e.g., insertions, updations or deletions of the port
numbers required to transform one probing task to another. Let
S(Ta, Tb) be the similarity between the probing task Ta and
Tb, where the numbers of the probes of tasks Ta and Tb are
|Ta| and |Tb|, respectively. We then normalize the similarity
by

S 0(Ta, Tb) =
|Ta|+ |Tb| − S(Ta, Tb)

|Ta|+ |Tb|
(4)

According to the normalized similarity, we employ a
density-based clustering algorithm, i.e., DBSCAN [8], to clus-
ter the probing tasks so as to discover diverse probing pur-
poses. In particular, if the normalized similarity of two probing
tasks is more than ε, i.e., S 0(Ta, Tb) > ε, the two tasks
are classified into a group, i.e., a neighborhood, where the
radius of a neighborhood ε defines how similar the neighbors
(i.e. the probing tasks) are in neighborhoods. Once we obtain
the clusters of the probing tasks, we can further analyze the
purposes of adversaries that are illustrated in Section V.

IV. ANALYSIS
In this section, we theoretically analyze the capability of

the one-to-one HSDir monitoring approach and the accuracy
of the many-to-one HSDir monitoring approach, respectively.

A. Capability analysis
We analyze the total number of customized honeypot

hidden services deployed to upload honeypot descirptors to all
of the HSDirs so as to identify malicious HSDirs performing
the rapid probing attack in one DUTP. Recall that, to identify
the attack, one honeypot hidden service randomly generates
one descriptor at one time in terms of the Equation (1), (2), as
well as (3) and then uploads it to the first responsible HSDir.
Therefore, if a randomly generated honeypot descriptor ID
is located between the fingerprint of the ith HSDir and the
(i−1)th HSDir, i.e., between Fi and Fi�1, the honeypot hidden
service can upload the descriptor to the ith HSDir. We have
the following theorem to compute the collection probability
that a HSDir can collect a honeypot descriptor in one DUTP.

Theorem 1. The collection probability of the ith HSDir can
be derived by

pi =
Li∑m

i=1 Li
(5)

where m is the total number of HSDirs in the Tor network, and
Li is the difference of the fingerprint values between the ith

HSDir and the (i−1)th HSDir in the DHT, i.e., Li = Fi−Fi�1.

we denote a random variable by Xi and define

Xi =

{
1, if the ith HSDir collects a honeypot descriptor
0, otherwise

(6)
After deploying ` honeypot hidden services, ` descriptors are
uploaded in one DUTP. Then the probability that none of `
honeypot descriptors is collected by the ith HSDir is

P (Xi = 0) = (1− pi)
‘ (7)

Then the number of different HSDirs that collect honeypot
descriptors is

X‘ =
m∑

i=1

Xi (8)

Since

E(Xi) = P (Xi = 1)× 1 + P (Xi = 0)× 0

= P (Xi = 1) = 1− P (Xi = 0) = 1− (1− pi)
‘, (9)

we can have the following theorem.

Theorem 2. The expected number of distinct HSDirs that
collect honeypot descriptors after uploading ` honeypot de-
scriptors in one DUTP becomes

E(X‘) = E(
m∑

i=1

Xi)

= E(X1) + E(X2) + · · ·+ E(Xm)

= 1− (1− p1)
‘ + · · ·+ 1− (1− pm)‘

= m−
m∑

i=1

(1− pi)
‘ (10)

Figure 2 illustrates the relationship between the expected
number of the distinct HSDirs collecting honeypot descriptors
and the number of deployed honeypots. According to the real-
world Tor data, there are 4,000 HSDirs on June 30, 2021.
As we can see from the figure, 95% of HSDirs can collect
honeypot descriptors in one DUTP by deploying 90, 000
honeypots. Since deploying a large number of honeypots in
one DUTP may take up a lot of Tor network resources, we
can deploy these honeypots in different periods in practice.
Since we adopt one-to-one monitoring approach to detecting
the potential malicious HSDirs that perform the rapid probing
attack, our honeypot hidden service can identify such malicious
HSDirs with 100% accuracy.

B. Accuracy analysis
We analyze the accuracy of the many-to-one HSDir mon-

itoring approach to identifying the delayed probing attack.
Recall that a honeypot descriptor is uploaded to a fixed
monitored HSDir and a new randomly selected responsible
HSDir in each DUTP. As a result, after several periods, one
of the responsible HSDirs may be malicious and performs the
delayed probing attack, so that it can cause a false positive
detection of the approach. We denote the number of malicious
HSDirs performing the delayed probing attack by u. Then
the probability that a customized honeypot hidden service
randomly selects a malicious responsible HSDir is u/m. After
d DUTPs, a honeypot hidden service uploads its descriptors to
d responsible HSDirs, in addition to uploading descriptors to

5

5

Fig. 2: Deployment number of honeypot hidden services

a fixed monitored HSDir. Once the honeypot hidden service is
probed, we can infer that either the monitored HSDir or one
of the responsible HSDirs is malicious. Let pc = (1− u

m)d be
the probability that all of the d responsible HSDirs are benign.
Then the probability that at least one of the d responsible
HSDirs is malicious becomes 1−pc. If we deploy H honeypots
and more than or equal to t out of H honeypots receive
probes, the probability that all the probes come from either the
malicious monitor HSDir or the malicious responsible ones is

pb =

H∑
i=t

(
H

i

)
[1− (1− ps)pc]

i[(1− ps)pc]
H�i (11)

where ps (0 < ps ≤ 1) is the probability that a monitored mali-
cious HSDir performs delayed probabilistic probing attack, i.e,
only probing a fraction ps of all collected onion addresses. If
ps = 1, the adversary adopts the delayed deterministic probing
attack, i.e., probing all of the collected onion addresses. In
addition, the probability that all the probes only come from
the malicious responsible HSDirs can be calculated by

pr = (1− ps)
H

H∑
i=t

(
H

i

)
(1− pc)

ipc
H�i (12)

Therefore, in theory, we have the false positive detection, i.e,
pr

pb
, that the monitored HSDir is misidentified as a malicious

one if we deploy H honeypots and more than or equal
to t honeypots receive probes. Then the detection accuracy
becomes

A

Fig. 3: Accuracy versus t, ps with 50
malicious HSDirs (H=3)

Fig. 4: Accuracy versus t, ps with 100
malicious HSDirs (H=3)

Fig. 5: Accuracy versus t, ps with 50
malicious HSDirs (H=10)

Fig. 6: Accuracy versus t, ps with 100
malicious HSDirs (H=10)

Fig. 7: Number of probed distinct hon-
eypot hidden services

Fig. 8: The top 8 most probed ports

C. Delayed probing attack detection
We conduct a one-month many-to-one HSDir monitoring

experiment to identify malicious HSDirs performing delayed
probing attack. To this end, we monitor a total of 7,945 HSDirs
that appear in the Tor network from Oct. 1 to Oct. 15, 2020.
Recall that we perform two-phase experiments to reduce the
influence in the Tor network. In the first phrase, we deploy
23,835 honeypots to monitor the 7,945 HSDirs from Oct. 20
to Nov. 20, 2020. We use 3 customized honeypots to monitor
one HSDir. During the monitoring period, the 823 honeypots
receive a total of 45,278 probes. Table I illustrates the number
of probed honeypots that monitor the same HSDir and the
number of the monitored HSDirs performing the probing attack
in the two phases. In the first phase, among the 7,945 HSDirs,
725 and 32 HSDirs probe one and two out of three of their
monitoring honeypots, respectively. 11 HSDirs probe all of the
three monitoring honeypots. We treat HSDirs that conduct at
least one probe as potential malicious HSDirs.

To monitor the 768 potential malicious HSDirs, we conduct
the second phase experiment from December 2, 2020 to
January 2, 2021. Since 10 honeypots are used to monitor
each HSDir, we deploy a total of 7,680 honeypots. During
this monitoring period, 417 out of 7,680 honeypots receive
a total of 6,937 probes. According to the theoretical analysis
in Section IV, if we deploy 10 honeypots for each monitored
HSDir and the number of probed honeypots is at least 3, the
detection accuracy can achieve 94.5%. Therefore, as shown in
Table I, we conclude that 19 (i.e., 9+1+9) malicious HSDirs
performing delayed probing attack are identified in the second
phase. 9 out of 19 malicious HSDirs perform the delayed de-
terministic probing attacks, while the rest conduct the delayed
probabilistic probing attacks.

TABLE I: The distribution of received probes in the first phase
and second phrase

First phrase Honeypots (#) 0 1 2 3 - -
HSDirs (#) 7177 725 32 11 - -

Second phrase Honeypots (#) 0 1 2 3 4 10
HSDirs (#) 493 216 40 9 1 9

D. Probing purpose analysis
By analyzing the probing information recorded by the hon-

eypot hidden services, we try to identify the probing behaviors
and purposes of adversaries. We use the probing data collected
in the first phase of identifying delayed probing attacks as
we monitor all of the HSDirs in the one-month experiment.
During this experiment, we receive a total of 45,278 probes that
probe more than 800 distinct honeypots. Figure 7 illustrates
the number of daily probed and accumulated probed distinct
hidden services, respectively. We can see that a probing spike
appears about every 4 days. It implies that the adversaries
may periodically perform delayed probing attacks using the
collected onion addresses. Figure 8 illustrates the top 8 probed
ports. In fact, a total of 143 distinct ports are probed in the one-
month experiment. The most probed port is port 80 with 6164
probes, followed by port 443 with 361 probes. These two ports
are respectively used to run the HTTP and HTTPS services by
default. It indicates that the service of interest to the adversaries
is the Web service. Other ports that may be open for the Web
services are also probed, such as 81, 8080, 8008, 8000, etc.
The port 113 often runs an identification/authorization service
and can be used by the adversaries to probe the server for
the connection information, such as user identity. The port 22
is used for the SSH service by default and is often probed
by the adversaries for discovering weak login passwords. In
addition, diverse special ports are probed as well. For example,

7

7

TABLE II: Semantic features of probes

Probes Probe type Semantic feature Number

With payloads
(17,588)

TCP port probes TCP 7,708

Application probes
(5,953)

HTTP 4,607
SSH 259
SIP 240
SMTP 231
Ident 206
SMB 203
RTSP 190
JDWP 15

TABLE V: Malicious HSDirs correlation

Group HSDir (#) Probing attack Probing purposes Cluster (#)
1 1

Rapid probing

Vulnerability probes 1
2 2

Only port 80 probes

1
3 1 1
4 10 1
5 7

Delayed probing
2

6 5
Hybrid probes

1
7 2 1
8 4 Both 1

conduct the vulnerability probes. 20 HSDirs in the 2nd, 3rd,
4th, and 5th group only focus on port 80. 10 and 3 out of
20 HSDirs performing the rapid probing attack conduct a
single TCP port 80 probe and multiple repeating TCP port 80
probes, respectively. The rest 7 out of 20 HSDirs performing
the delayed probing attack launch multiple repeating HTTP
application probes with two different HTTP user agents. 11
HSDirs in the rest groups perform HTTP(S) and SSH appli-
cation probes, i.e., hybrid probes. 4 HSDirs in the last group
perform both the rapid and delayed probing attacks.

F. Discussion
We notice that 9 probing patterns are used by the 32

identified malicious HSDirs. However, we derive 25 probing
clusters by analyzing 1,649 probe tasks. It indicates that we do
not identify all of the malicious HSDirs. There are two major
reasons that we cannot find all the malicious ones. Firstly, since
the malicious HSDirs do not always keep online, our honeypots
cannot monitor them in our entire experimental period and can
miss the probes. Then it can significantly reduce our detection

REFERENCES
[1] A. Biryukov, I. Pustogarov, F. Thill, and R.-P. Weinmann, “Content

and popularity analysis of tor hidden services,” in Proceedings of the
34th IEEE International Conference on Distributed Computing Systems
Workshops (ICDCSW), pp. 188–193, 2014.

[2] Q. Tan, Y. Gao, J. Shi, X. Wang, and B. Fang, “A closer look at
eclipse attacks against tor hidden services,” in Proceedings of the IEEE
International Conference on Communications (ICC), pp. 1–6, 2017.

[3] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Trawling for tor
hidden services: Detection, measurement, deanonymization,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P),
pp. 80–94, 2013.

[4] Z. Ling, J. Luo, K. Wu, and X. Fu, “Protocol-level hidden server
discovery,” in Proceedings of the 32nd IEEE International Conference
on Computer Communications (INFOCOM), pp. 1043–1051, 2013.

[5] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Performance
measurements and statistics of tor hidden services,” in Proceedings of
the International Symposium on Applications and the Internet, pp. 1–7,
2008.

[6] lsakbaetle3r9, “Am I in trouble? (flask/strange requests):learnpython.”
https://www.reddit.com/r/learnpython/comments/1cj1kt/am_i_in_
trouble_flaskstrange_requests/, 2021.

[7] vosec, “Imagenow perceptive content server 7.1.4 dos | opposition secu-
rity.” https://www.oppositionsecurity.com/imagenow-7-1-4-dos/, 2021.

[8] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD), vol. 9600.00091 (v)192-62.99801 (1-erce1�351,)-349.99593 1.991.

