
Blind Recognition of Touched Keys on Mobile Devices

Qinggang Yue
University of Massachusetts

Lowell, USA
qye@cs.uml.edu

Zhen Ling
Southeast University, China
zhenling@seu.edu.cn

Xinwen Fu
University of Massachusetts

Lowell, USA
xinwenfu@cs.uml.edu

Benyuan Liu
University of Massachusetts

Lowell, USA
bliu@cs.uml.edu

Kui Ren
University at Buffalo, USA
kuiren@buffalo.edu

Wei Zhao
University of Macau, China

weizhao@umac.mo

ABSTRACT

In this paper, we introduce a novel computer vision based attack
that automatically discloses inputs on a touch-enabled device while
the attacker cannot see any text or popup in a video of the victim
tapping on the touch screen. We carefully analyze the shadow for-
mation around the fingertip, apply the optical flow, deformable part-
based model (DPM), k-means clustering and other computer vision
techniques to automatically locate the touched points. Planar ho-
mography is then applied to map the estimated touched points to a
reference image of software keyboard keys. Recognition of pass-
words is extremely challenging given that no language model can
be applied to correct estimated touched keys. Our threat model is
that a webcam, smartphone or Google Glass is used for stealthy at-
tack in scenarios such as conferences and similar gathering places.
We address both cases of tapping with one finger and tapping with
multiple fingers and two hands. Extensive experiments were per-
formed to demonstrate the impact of this attack. The per-character
(or per-digit) success rate is over 97% while the success rate of rec-
ognizing 4-character passcodes is more than 90%. Our work is the
first to automatically and blindly recognize random passwords (or
passcodes) typed on the touch screen of mobile devices with a very
high success rate.

Categories and Subject Descriptors

K.4.1 [COMPUTERS AND SOCIETY]: Public Policy Issues—
Privacy

General Terms

Human Factors, Security

Keywords

Computer Vision Attack; Mobile Devices; Privacy Enhancing Key-
board

1. INTRODUCTION
Touch-enabled devices are ubiquitously used in our daily life.

However, they are also attracting attention from attackers. In addi-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.

Copyright 2014 ACM 978-1-4503-2957-6/14/11 ...$15.00.

http://dx.doi.org/10.1145/2660267.2660288.

tion to hundreds of thousands of malwares [19], one class of threats
against mobile devices are computer vision based attacks. We can
classify those attacks into three groups: the first group of attacks di-
rectly identify text on screen or its reflections on objects [2, 1]. The
second group of attacks detect visible features of the keys such as
light diffusion surrounding pressed keys [3] and popups of pressed
keys [28, 33]. The third group of attacks are able to blindly recog-
nize the text input on mobile devices while text or popups are not
visible to the attacker [43] .

In this paper, we introduce a novel attack blindly recognizing in-
puts on touch-enabled devices by estimating touched points from a
video of a victim tapping on the touch screen, as shown in Figure
1. In the attack, the deformable part-based model (DPM) is used
to detect and track the target device and the optical flow algorithm
is used to automatically identify touching frames in which a finger
touches the screen surface. We use intersections of detected edges
of the touch screen to derive the homography matrix mapping the
touch screen surface in video frames to a reference image of the
software keyboard, as shown in Figure 2. DPM and other com-
puter vision techniques are applied to automatically estimate a tiny
touched area. We carefully derive a theory of the shadow formation
around the fingertip and use the k-means clustering algorithm to i-
dentify touched points in the tiny touched area. Homography can
then map these touched points to the software keyboard keys in the
reference image. We performed extensive experiments. The victim
target devices include the iPad, Nexus 7 and iPhone 5. Both lo-
gin keyboard and QWERTY keyboard are examined. The cameras
include a webcam, a phone camera and Google Glass. The camer-
a is positioned from different distances and angles. We are able to
achieve a per-key success rate of over 97% and success rate of more
than 90% recognizing 4-digit passcodes in various scenarios.

We also show that DPM can be used to directly estimate the
touched point, which can be mapped to the reference image in or-
der to derive the touched key. This method of direct use of DPM for
recognizing touched keys is called the baseline method. However,
the baseline method achieves a success rate of around 26% since
DPM cannot accurately locate touched points.

To the best of our knowledge, we are the first to be able to reli-
ably and blindly recognize passwords (or passcodes) typed on the
touch screen of mobile devices of various kinds. Since passwords
are random and do not contain meaningful text or pattern, natural
language processing techniques cannot be used. This challenges the
design of automatic recognition of the password. Our recognition
system incorporates recent advancement of object detection tech-
niques and our own analytical model of the touching process, and
is able to achieve a very high success rate. We have also extended
our work to the scenario of touching with both hands and multiple

1403

fingers and are able to recognize the touching finger from 10 fin-
gers and achieve a high success rate of more than 95% recognizing
touched keys.

Figure 1: Touching Frame Figure 2: Soft Keyboard

To defeat many computer vision based attacks including the one
in this paper, we designed and implemented a simple context aware
randomized software keyboard for Android, denoted as Privacy En-
hancing Keyboard (PEK). PEK automatically shows a convention-
al QWERTY keyboard for the normal text input and pops up a
randomized keyboard for inputting sensitive information such as
passcodes. The first PEK prototype was demonstrated at an ACM
workshop [47] in October, 20121. To the best of our knowledge,
PEK is the first generic software keyboard for a mobile platform
while a similar app CodeScrambler for iOS [23] appeared in August
2013. PEK is a full fledged software keyboard while CodeScram-
bler is designed only for the unlock screen and does not provide
the context-aware functionality. Please refer to the appendix for the
implementation and evaluation of PEK.

The rest of the paper is organized as follows. We introduce the
homography and DPM in Section 2. Section 3 introduces the attack
for the case of tapping with one finger. In Section 4, we discuss
how to recognize touched points from touching frames. Experiment
design and evaluations are given in Section 5. We extend the attack
to tapping with multiple fingers and two hands in Section 6. Section
7 discusses the related work. We conclude the paper in Section 8.

2. BACKGROUND
In this section, we introduce two major computer vision tech-

niques employed in this paper: planar homography and the DPM
(Deformable Part-based Model) object detector.

2.1 Planar Homography
Planar homography is a 2D projective transformation that relates

two images of the same planar surface [7]. Assume p = (s, t, 1)
is any point in an image of a 3D planar surface and q = (s′, t′, 1)
is the corresponding point in another image of the same 3D planar
surface. The two images may be taken by the same camera or dif-
ferent cameras. There exists an invertible 3× 3 matrix H, denoted
as homography matrix,

q = Hp. (1)

2.2 Deformable Part-based Model (DPM)
DPM [11] is the state-of-art object detector and contains three

main components: a mixture of star-structured part based model-
s, the efficient matching process for object detection and the latent
SVM (Support Vector Machine) training process. DPM builds mul-
tiple star-structured models for the object of interest from different
viewpoints. Each star-structured model has a root model that char-
acterizes the object as a whole and several (usually six) part models
that characterize each part of the object, their anchor position rela-
tive to the root and associated deformation parameters. The models

1No paper was published on PEK.

are represented by the Histogram of Oriented Gradients (HOG) [10]
feature, which is insensitive to lighting variation.

To detect an object in an image, DPM uses a sliding-window ap-
proach and calculates a score fβ(x) for each possible object sample
x at each location,

fβ(x) = max
z∈Z(x)

β · Φ(x, z), (2)

where z is the latent values, β is a vector of model parameters, and
Φ(x, z) is the feature vector of x. A high score indicates the loca-
tion of the object. Dynamic programming and generalized distance
transforms are employed for efficient matching.

During the training, a bounding box is used to specify the object
of interest in each image, while its parts are unlabeled. DPM treats
these unlabeled parts as latent (hidden) variables. It automatically
finds and labels the parts, and employs the latent SVM to train the
model. Denote a training data set as D = (< x1, y1 >, . . . , <
xn, yn >). xi is the image patch in the corresponding bounding
box. yi ∈ {−1, 1}, indicating whether xi is the object of interest
(yi = 1) or not (yi = −1). DPM trains β by minimizing the
objective function,

LD(β) =
1

2
‖ β ‖2 +C

n∑

i=1

max(0, 1− yifβ(xi)), (3)

where max(0, 1 − yifβ(xi)) is the standard hinge loss and the
constant C controls the relative weight of the regularization term
[11]. The purpose of minimizing Formula (3) is to classify an object
x correctly and reduce the modulus of β.

3. HOMOGRAPHY BASED ATTACK AGAINST

TOUCH SCREEN
In this section, we introduce the basic idea of the attack and each

step in detail.

3.1 Basic Idea
Figure 3 shows the flow chart of the automatic and blind recog-

nition of touched keys on mobile devices.

Figure 3: Work flow of Blind Recognition of Touched Keys

Without loss of generality, we often use the four-digit passcode in-
put on iPad as the example. Step 1 - Take a video of the victim
tapping on a device. We do not assume the video records any text
or popups while we assume the finger movement and the target de-
vice’s screen surface are recorded. Step 2 - Preprocess the video
and keep only the touch screen area with moving fingers. We as-
sume that the type of device is known or can be detected so that we
also obtain a high resolution image of the corresponding software
keyboard on the touch screen surface, denoted as reference image,
as shown in Figure 2. Step 3 - Detect the touching frames, in which
the finger touches the screen surface, as shown in Figure 1. Step 4

- Identify features of the touch screen surface and derive the planar
homography matrix between the touching frames and the reference
image. Step 5 - Employ DPM and various computer vision tech-
niques to obtain a large box bounding the touching fingertip. This
is a key step of implementing an automatic touched key recogni-
tion. However, extra steps are needed to actually find the touched
point that can be mapped to the reference image and recognize the
touched key. We denote the direct use of DPM finding the touched
point as the baseline method. Step 6 - Find the fingertip contour

1404

in the large bounding box and train a tiny bounding box around the
fingertip top as the accurate touched area. Step 7 - Build a model of
the touching process, identify the touched points from the estimat-
ed tiny touched area and map them to the reference image via the
homography. If the touched points can be correctly located, we can
disclose the corresponding touched keys. We introduce the seven
steps in detail below.

3.2 Step 1 - Taking Videos
The attacker takes a video of a victim tapping on a device from a

distance. Such scenarios include students taking classes, researcher-
s attending conferences, and tourists gathering and resting in a square.
With the development of smartphones and webcams, a stealthy at-
tack at such a crowded location is feasible. For example, cameras
of iPhone, Google Glass and even a smartwatch have decent resolu-
tion. Galaxy S4 Zoom has a 16-megapixel (MP) rear camera with a
10x zoom lens, weighting only 208g. Amazon sells a webcam-like
plugable 2MP USB 2.0 digital microscope with a 10x-50x optical
zoom lens [32].

Three factors in taking videos affect the success of the attack:
camera angle, distance between the target and the camera and light-
ing over the target. The success of the attack relies on accurate
identification of touched points. The camera angle needs to be ad-
justed in order to record the finger movement over the touch screen.
For example, in a conference room, an attacker in the front can use
the front camera of her phone to record a person tapping in the back
row. The camera cannot be too far away from the victim. Other-
wise, the keys and fingers in the image are too small to be differ-
entiated. Intuitively, a camera with an optical zoom lens can help
in such a case. However, the scenes of interest in our context may
not allow cameras with big lens. Lighting affects the brightness and
contrast of the video and thus the recognition result.

3.3 Step 2 - Preprocessing
Since we are particularly interested in the fingertip area, where

the finger touches a key, our first preprocessing step is to apply
DPM to detect and locate the touch device in the video. We then
crop the video and keep the region of the touch device with moving
fingers. Cropping removes much the background and makes later
processing simpler.

To apply DPM to the detection of the target device in each video
frame, we first need to generate positive data (such as iPad) and
negative data (background) to train a target device model. To get
the positive data, we take 700 images of the target device such as
iPad from different viewpoints, and manually label the device with
a bounding box. To get a tight bounding box of the device in an
image, we first derive the homography relation between the device
image and the reference image in Figure 2, and then map the four
corners of the device (iPad in this example) in the reference image
to the training image. The up-right bounding rectangle of the four
points accurately delimits the device in the training image. To de-
rive the negative data, we employ 900 background images from the
SUN database [42] and label objects that have a similar shape to the
target device. DPM will also generate the negative data itself using
its own data mining methods.

A target device appears different in images from different view-
points. Thus, we need to train a multi-component model. Figure
4 shows the four component model of iPad. The first row models
iPad viewed from the right, and the second row models iPad viewed
from the left, and the third and fourth rows model iPad viewed from
the right front and left front of iPad. The first column shows the root
model (the coarse model characterizing iPad as a whole), the sec-
ond column shows its parts from different viewpoints, and the third

column visualizes the spatial model of the location of each part
relative to the whole object. This mixture model effectively charac-
terizes the structure and features of iPad. After training, we apply
the learned model to the video frames, and the device is accurately
localized as shown in Figure 5.

Figure 4: Trained iPad DPM Model

Figure 5: Detected iPad (Magnified)

DPM is a very time-consuming object detector and is not computation-
efficient. If the target device is static in the video, we just need to
detect the target device in the first frame and crop the same area of
the target device in all the video frames. Otherwise, we have to use
DPM and track the target device in every frame.

The second preprocessing step is to digitally enhance the image
resolution of the target device. We digitally magnify the cropped
video frames. For example, we resize each cropped frame to four
times its original size.

The third preprocessing step is to obtain the reference image of
the software keyboard on the target device. We assume the target
device brand is known and the attacker can get a high quality im-
age of the software keyboard on the touch screen. This image is
the “reference image”, as shown in Figure 2. The image shall show
detailed features of the device, particularly the touch screen sur-
face. For example, for iPad, we choose a black wallpaper so that
the touch screen has a high contrast with its white frame. It is not d-
ifficult to recognize most tablets and smartphones since each brand
has salient features. For example, walking past the victim, the at-
tacker can know the device brand. The attacker may also recognize
the device brand from the video.

3.4 Step 3 - Detecting Touching Frames
Touching frames are those video frames in which the finger touch-

es the screen surface. To detect touching frames, we need to analyze
the finger movement pattern of the touching process. Here we an-
alyze the case of people using one finger to tap on the screen and
input the passcode while we extend our work to tapping with mul-
tiple fingers and two hands in Section 6.

During the touching process, the fingertip first moves downward
towards the touch screen, stops, and then moves upward away from
the touch screen. The finger may also move left or right while mov-
ing downward or upward. We define the direction of moving to-
ward the device as positive and the opposite direction as negative.
In the process of a key being touched, the fingertip velocity is first
positive while moving downward, then zero while stopping on the

1405

screen and finally negative while moving upward. This process re-
peats for each touched key. Therefore, a touching frame is the one
where the fingertip velocity is zero. Sometimes the finger moves so
fast that there is no frame where the fingertip has a zero velocity.
In such a case, the touching frame is the one where the fingertip
velocity changes from positive to negative.

The challenge to derive the fingertip velocity is to identify the
fingertip. The angle from which we take the video affects the shape
of the fingertip in the video. The fingertip shape also changes when
the soft fingertip touches the hard touch screen surface. People may
also use different areas of the fingertip to tap the screen. We find
that when people touch keys with the fingertip, the whole hand most
likely keeps the similar gesture and moves in the same direction.
Instead of tracking the fingertip to identify a touching frame, we
track the hand, which has enough number of feature points for an
automatic tracking.

We employ optical flow theory [38] to derive the velocity of fea-
ture points on the moving hand. Optical flow computes object mo-
tion between two frames. The displacement vector of the points be-
tween subsequent frames is called the image velocity or the optical
flow at that point. We employ the KLT algorithm [46], which can
track sparse points. To make the KLT algorithm effective, we select
unique feature points, which are often corners in the image. The
Shi-Tomasi corner detector [35] is applied to obtain these points.
We track several points in case some points are lost during the track-
ing. Our experiments show that each touch with the fingertip may
produce multiple touching frames. This is reasonable since the fin-
gertip is soft. When a fingertip touches the screen, it deforms and
this deforming process takes time. People may also intentional-
ly stop to make sure that a key is touched. During the interaction
between fingertip and touch screen, some tracked points may also
move upward and create noise for detecting touching frames. We
use a simple algorithm to deal with all the noise: if the velocity of
most tracked points in a frame moves from positive to negative, that
frame is a touching frame. Our experiments show that five features
points are reliable for detecting all touching frames.

3.5 Step 4 - Deriving the Homography Matrix
In computer vision, automatically deriving the homography ma-

trix H of a planar surface in two images is a well studied problem
[14]. First, a feature detector such as SIFT (Scale-Invariant Feature
Transform) [27] or SURF (Speeded Up Robust Features) [4] is used
to detect feature points. Matching methods such as FLANN (Fast
Library for Approximate Nearest Neighbors) [31] can be used to
match feature points in the two images. The pairs of matched points
are then used to derive the homography matrix via the algorithm of
RANSAC (RANdom SAmple Consensus) [18].

However, those common computer vision algorithms for deriving
homography H are not effective in our context. Because of the
angle of taking videos and reflection by the touch screen, there are
few good feature points in the video frames for the algorithms above
to work effectively. Intuitively, touch screen corners are potential
good features, but they are blurry in our context since the video is
taken remotely and the resolution is poor. Therefore, SIFT or SURF
cannot correctly detect these corners.

We derive the homography matrix H in Formula (1) as follows.
H has 8 degrees of freedom. Therefore, to derive the homography
matrix, we need 4 pairs of matching points of the same plane in the
touching frame and reference image. Any three of them should not
be collinear [14]. In our case, we try to use the corners of the touch
screen as shown in Figure 1 and Figure 2. Because the corners in
the image are blurry, to derive the coordinates of these corners, we
first detect the four edges of the touch screen. The intersections
of these edges are the desired corners. We apply the Canny edge

detector [9] to extract the edges and use the Hough line detector
[29] to derive candidate lines in the image. We manually choose
the lines aligned to the edges. This is the only manual procedure in
our entire system of blindly recognizing touched keys. After edges
are derived, now we can calculate the intersection points and derive
the coordinates of the four corners of interest. With these four pairs
of matching points, we can derive the homography matrix with the
DLT (Direct Linear Transform) algorithm [14]. If the device does
not move during the touching process, this homography matrix can
be used for all the video frames. Otherwise, we have to derive H
for every touching frame and the reference image.

3.6 Step 5 - Locating the Touching Fingertip
In this step we locate the touching fingertip in the touching frame

to identify where the fingertip touches the screen. Then we can map
the touched point to the reference image by the homography matrix
in order to get the touched key. Again, we turn to the DPM object
detector to locate the touching fingertip in touching frames.

The process of employing DPM to locate the touching finger-
tip is similar to the process of applying DPM to the detection of
the target device in a video frame. We first generate positive da-
ta (touching fingertip) and negative data (non touching fingertip) to
train a model for the “touching” fingertip. To get the positive data,
we take videos in various scenarios and obtain the touching frames.
For each touching frame, we label the touching fingertip with an
appropriate bounding box centered at the center of the touched key.
We derive the center of a key in a touching frame in the following
way. During the training process, we know the touched keys and
can derive their position by mapping the area of a key from the ref-
erence image to the touching frame with the planar homography.
As we know, DPM needs a bounding box that is large enough to
perform well although we want a bounding box as small as possi-
ble. We evaluated bounding boxes of different size. The optimal
bounding box in our context is the one bounding the fingertip, cen-
tered at the touched key and has a size of 40 × 30 pixels. If different
bounding box sizes are used for training images, DPM resizes the
bounded area to a uniform size. To get the negative data, we use the
bounding box around the non-touching fingertip. DPM also gener-

Figure 11: Touching Gestures

Figure 12: Fingertip Image Formation

on the fingertip will project to the point F ′ on the image plane. Its
brightness in the image will be determined by lighting and the fin-
gertip shape. Because of the lighting difference, points on the side
of the finger facing the touch screen are dark in the image. Adjacent
to the dark area is the gray area where lighting is weak. There is
also the bright area on the finger that is well illuminated.

Figure 13 shows the longitudinal view of a finger touching the
surface. We use Figure 13 to discuss our basic principle of inferring
a touched key. Kf and Kb are the front and back of the touched key
K respectively. T is the touched point. Apparently T is on the line
segment KfKb. T and KfKb are projected onto the image plane

as T ′ and K′

fK
′

b. If we can identify T ′ in the image, our problem
is solved. However, as we can see from Figure 13, since the human
finger has a curved surface, the camera may not be able to see the
touched point. OTo is the tangent line to the curved finger surface
and it intersects with the touch screen surface at To. The camera
can see To, which is the closest point to the touched point on the
touch screen surface. To is projected as T ′

o on the image plane. If
T ′

o is on the line segment K′

fK
′

b, then we just need to find T ′

o in the

image and T ′

o can be used to determine the touched key.
We argue that T ′

o generally lands in the area of a key. Table 1
shows the key size of the unlock screen software keypad for iPad,
iPhone and Nexus 7 tablet. Figure 12 gives the definition of key
height and length. Table 2 gives the average size of the fingertip for
index and middle fingers of 14 students of around 27 years old, in-
cluding 4 females and 10 males. The fingertip height is the distance
from the fingertip pulp to the fingernail. The fingertip length is the
distance between the fingertip pulp to the far front of the finger.
When people touch the screen, they generally use the upper half of
the fingertip to touch the middle of the key so that the key can be
effectively pressed. We can see that half of the fingertip is around
6.5mm, less than the key height for all devices in Table 1. More-
over, according to Tables 1 and 2, the fingertip width is smaller than
the key length. Therefore, the fingertip generally lands inside the
key area, as shown in Figure 13. That is, the far front of the finger-
tip F in Figure 13 is in the range of the key and the touched point
is inside the key area. Based on the perspective projection, To is
on the segment of KfKb so that T ′

o is on the segment of K′

fK
′

b

whenever the fingertip is in the view of the camera.
On a QWERTY keyboard of iPhone and other small smartphones,

keys are very small. In these scenarios, people often use vertical
touching or touch with the fingertip side in order not to touch wrong
keys. That is, the fingertip top lands in the key area. The analysis
above is still valid. Our experiments on the QWERTY keyboard
also validate this analysis.

Table 1: Unlock Screen Keypad Size - Height × Length (mm)

iPad iPhone 5 Nexus 7

Height (mm) × Length (mm) 9× 17 8× 16 10× 16

Table 2: Fingertip Size (σ - Standard Deviation)

Index Finger Middle Finger
Average σ Average σ

Height (mm) 9.6 1.2 10.4 1.3

Length (mm) 12.9 1.6 13.1 1.7

Width (mm) 13.1 1.9 13.7 1.7

There are cases that T ′

o is not on the line segment K′

fK
′
r , corre-

sponding to the touched key K. Figure 14 illustrates such a case.
Please note we intentionally draw a large finger for clarity. In this
case, the key, such as one on a keyboard for a non-unlock screen,
is so small. The camera is too close to the finger and takes such a
wrong angle that To lands outside KfKr . Therefore, T ′

o is not on

the line segment K′

fK
′
r. In such cases, our observation is that T ′

o

generally lands into the far rear part of the key K′ in front of K. We
define a percentage α. If an estimated touched point lands in the
rear α of K′, the touched key is K.

We now derive the size of a key in an image and investigate its
impact. The camera focus length is f . The height from the camera
to the touch screen surface is h. The physical key height |KfKb| =
w. The distance between the key front Kf and the lens center is d.
By geometry operations, we have

|K
′

fK
′

b| =
fh

d(1 + d/w)
. (4)

If the physical key length is l, the key length l′ in the image is,

l′ =
fl

d
. (5)

From Formulas (4) and (5), the farther the touch screen from the
camera, the smaller the size of the key in the image. The smaller the
physical key size, the smaller of the key in an image. Table 3 gives
the camera specifications of the cameras used in our experiments:
Logitech HD Pro Webcam C920 [26], the iPhone 5 camera and the
Google glass camera. If the camera is around 2 meters away and
half a meter away from the target, according to Formula (4) and
our experiments, the key height is only a few pixels. Therefore,
in our experiments, we often need to zoom the fingertip image for
accurate localization of touched points. We can also derive the key
size in the touching frames practically by using the homography
from the reference image to the touching frames. The key area
in the reference image is known, thus the key size in the touching
frames can be derived.

4.2 Clustering-based Recognition of Touched
Points

Based on the model of the touching finger in an image, we now
introduce the clustering-based strategy recognizing touched keys. If

we can derive the position of the touched point T
′

o in Figure 15, we
can infer the corresponding key by applying the homography. The

problem is how to identify this touched point2. Intuitively, since T
′

o

is far below the fingertip, which blocks light rays, T
′

o should be in
the darkest area around the fingertip in the image.

We now analyze the brightness of the area around the fingertip.
The fingertip is a very rough surface at the microscopic level and
can be treated as an ideal diffuse reflector. The incoming ray of
light is reflected equally in all directions by the fingertip skin. The

2Touched points actually form an area under the fingertip.

1408

Figure 13: Touched Point inside the Key Figure 14: Touched Point outside the Key Figure 15: Five Pixel Groups at Fingertip

reflection conforms to the Lambert’s Cosine Law [38]: the reflected
energy from a small surface area in a particular direction is propor-
tional to cosine of the angle between the particular direction and
the surface normal. Therefore, for the lower part of the fingertip arc
facing the touch screen, denoted as the inner side of the fingertip,

ifferent devices as well as the impact of different kinds of keyboard-
s. In all experiments, we try to recognize 4-digit or 4-character
passcodes, which are randomly generated. The success rate is de-
fined as the probability that the passcodes are correctly recognized.

In addition to different cameras and target devices, we also con-
sider the impact from the following factors: users, the distance be-
tween the camera and target device, and the camera angle.

Users: Different people have different finger shape, fingernail
and touching gestures. Five females and six males with the expe-
rience of using tablets and smartphones participated in the experi-
ments. They were separated to three groups: 3 people in the first
group, and 7 people in the second group. These two groups per-
formed experiments with iPad. The last group helped us evaluate
the success rate versus the distance between the camera and the tar-
get, different cameras versus different devices, and the web camera
versus different kinds of keyboards. For the first group, we took
10 videos for every person at each angle (front, left and right of
the target device). For the second group, five videos were taken
for every person per angle. Discarding 3 videos not recording the
whole touching process, we obtain 192 videos totally. During the
experiments, users tap in their own way without any intervention.

Angles and Distance: To measure the impact of the angle, we
placed the target in front, on the left (3 o’clock) and on the right
(9 o’clock) of the camera. In the first two groups of experiments,
the camera was 2.1 meters (m) to 2.4m away from and around 0.5m
above the device. To test how the distance affects the recognition
results, we also positioned the camera, the Logitech HD Pro Web-
cam C920, in front of the target device, an iPad, at a distance of 2m,
3m, 4m and 5m, and approximately one meter above the target.

Lighting: The lighting affects the brightness and contrast of
the image. The experiments are performed in a classroom with
dimmable lamps on the ceiling. The first group of videos were tak-
en under normal lighting and the second group of experiments were
taken under strong lighting. All other experiments were performed
under normal lighting. Darkness actually helps the attack since the
touch screen is brighter in the dark. We did not consider these easy
dark scenes in our experiments.

5.2 Detecting Touching Frames via Optical Flow
As discussed in Section 3.4, we track a hand’s feature points and

use their velocity change to detect touching frames. Our experi-
ments show that 5 or more feature points are stable for tracking
touching frames with a true positive of 100%, as shown in Table 4.
The optical flow algorithm may also produce false positives, falsely
recognizing frames in which a finger does not touch the screen sur-
face as touching frames. The false positive rate is very low, less than
1% as shown in Table 4. One way to reduce the false positive is to
use DPM. Our experiments show that DPM is able to detect touch-
ing frames since no fingers touch the screen in non-touching frames
and DPM only recognizes touching fingers in touching frames. We
exclude the non-touching frames by DPM if the number of detected
touching frames is more than 4 by optical flow.

Table 4: Performance of Detecting Touching Frames

Front Left Right Average

True Positive 100% 100% 100% 100%

False Positive 0.91% 0.88% 0.88% 0.89%

5.3 Recognizing Touched Keys on iPad via
Webcam

Table 5 shows the result of the baseline method for videos tak-
en from different viewpoints. Its overall success rate is less than
30%. Therefore, the baseline method is not very effective since
DPM cannot accurately locate the touched points.

Table 5: Success Rate by Baseline Method

Front Left Right Average

Success Rate 26.66% 29.03% 22.22% 26.13%

From now on, we present experiment results using the seven-step
recognition method, referred to as Automatic Apprpach (AA), in-
troduced in Section 3. We also use a metric called the Best Effort
Approach (BEA) success rate, which is derived by giving a sec-
ond attempt for correcting a wrong recognition with some human
intervention. The BEA is performed in the following way. We of-
ten see one or two wrong keys in the failed experiments. Some of
these wrong keys are caused by DPM that fails to detect the touch-
ing fingertip. Sometimes, even if the touching fingertip is detected,
the image can be so blurry that pixels around the touching fingertip
have almost the same color and it is difficult to derive the finger-
tip contour in Figure 9. Other fingers may also block the touching
finger and incur wrong recognition of the touching fingertip top.
Therefore, we often know which key might be wrong and give them
a second try. We manually select the small bounding box of the fin-
gertip in Figure 8 or the touched area in Figure 10 to correct such
errors. As analyzed in Section 4, for each touch we may also pro-

Figure 17: Success Rate v.s. Distance

two meters away from and about 0.65m above the device. To in-
vestigate the impact of different cameras, we conducted 30 exper-
iments using iPhone 5 to record passcode inputs on iPad, from a
similar distance and at a similar height. 30 experiments with the
Google glass recording passcode inputs on iPad were performed
two meters away and at a human height. Figure 18 presents the re-
sults. The AA success rate is more than 80%, and the BEA success
rate is more than 90% in all cases. The high success rate for all the
cases demonstrates the severity of our attack.

Figure 18: Success Rate Comparison

We also tested the effect of our attack on different kinds of key-
board: the iPad QWERTY keyboard and iPhone QWERTY key-
board. The iPad QWERTY keyboard key is larger than the iPhone
QWERTY keyboard key. 30 experiments were done respectively
with the web camera from the front of the target from about 2.2
meters away and at a height of 0.6 meters. Figure 18 presents the
results. It can be observed that the AA success rate is over 80% and
the BEA success rate is over 90%!

6. DISCUSSION: TOUCHING WITH MUL-

TIPLE FINGERS AND TWO HANDS
As shown in Figure 19, people may type the iPad passcodes, or

their bank account passwords on a large keyboard (in Figure 21)
with multiple fingers and two hands. In this section, we extend our
work in the previous sections and discuss the recognition of touch
input by two hands and multiple fingers.

Figure 19: Touching Frame with Multiple Fingers (Magnified)

In the case of multiple fingers, the challenge is to recognize which
finger is the touching finger. In [43], touching is defined as a finger-
tip hovering at a certain position or suddenly changing the moving
direction for another key. In the case of touching with multiple
fingers, this is not true any more. As shown in Figure 19, the non-
touching fingertips also follow a similar pattern during the touching
process if both the little finger of the right hand and middle finger of
the left hand are used for typing. The strategy in [43] for deriving
the fingertip’s moving trajectory cannot work directly if multiple
fingertips are involved.

In Section 3.4 when we address the case of touching with one
finger, we use the finger’s velocity direction change to detect the
touching frames. The touching finger and other fingers follow a
similar pattern of velocity direction change. The touching frame is
the one in which the majority of those fingers change the velocity
from positive to negative. In the case of multiple fingers, in order to
use the similar strategy, we have to differentiate and track the two
hands. The complicated background involving the two hands is a
great challenge for a general solution.

We address the challenges above by looking more closely at what
is touching. The finger movement registers a touch input only when
the fingertip actually touches the screen. Therefore, we may detect
touching frames by detecting touching actions from the perspec-
tive of action detection [45] (also termed action localization [24],
or event detection [20]). A video can be modeled as a sequence
of frames captured along the time, as shown in Figure 20. We can
detect each touch action with SDPM (Spatiotemporal Deformable
Part Model [39]). One touch event usually involves several touch-
ing frames. Therefore, we can treat the touching action detection
problem as the problem of detecting a set of touching frames.

We use DPM to detect touching frames and localize the touch-
ing finger in the case of typing with multiple fingers. As discussed
in Section 3.6, DPM can localize the touching fingertip in touch-
ing frames effectively. Therefore, by applying DPM to all video
frames, we can detect and localize all the touching fingertips in the
touching frames, excluding non touching fingertips. The bounding
box in Figure 20 shows the detected touching fingertip in the case
of typing with multiple fingers. It is also observed that the touch
event involves a few consecutive touching frames along the t-axis
as shown in Figure 20.

x

y t

Frame k+1

Frame k+2

Frame k+3

Figure 20: One Touch Event Involving Multiple Frames in a Video

For every touching action, we use the touching frame in the mid-
dle as the actual touching frame. Given the touching frame, we
adopt the same steps introduced in Section 4 to derive the touched
key. Figure 21 shows the mapped result (green dot) for the touch
event in Figure 20, where “U” is the touched key. From the discus-
sion above, we can also see that touching with one finger (or hand)
is a special case of touching with two hands and multiple fingers.

To validate the attack against typing with multiple fingers, we
performed 21 experiments with the web camera spying on the i-
Pad character keyboard, from distance about 2.2 meters away and

1411

Figure 21: Multi Touching Mapped Result

0.65 meters above the device. We achieve the AA success rate of
95.24%. In the experiments, only one touch event was not correctly
detected. If we manually retrieve the touching frame for that touch
event as introduced in previous sections, we get the BEA success
rate of 100% to retrieve the character passcode by two hands and
multiple fingers. This demonstrates the correctness and severity of
the attack introduced in this paper.

7. RELATED WORK
In this paper, we exploit the movement of the touching finger to

infer the input on a touch screen. It is one type of side channel
attack. There are various similar attacks on touch-enabled devices
exploiting different hidden venues. Because of the space limit, we
discuss the most related work on side channels using computer vi-
sion knowledge. Backes et al. [2, 1] exploit the reflections of a
computer monitor on glasses, tea pots, spoons, plastic bottles, and
eyes of the user to recover what is displayed on the computer mon-
itor. Their tools include a SLR digital camera Canon EOS 400D, a
refractor telescope and a Newtonian reflector telescope, which can
successfully spy from 30 meters away.

Balzarotti et al. propose an attack retrieving text typed on a phys-
ical keyboard from a video of the typing process [3]. When keys are
pressed on a physical keyboard, the light diffusing surrounding the
key’s area changes. Contour analysis is able to to detect such a key
press. They employ a language model to remove noise. They as-
sume the camera can see fingers typing on the physical keyboard.
Maggi et al. [28] implement an automatic shoulder-surfing attack
against touch-enabled mobile devices. The attacker employs a cam-
era to record the victim tapping on a touch screen. Then the stream
of images are processed frame by frame to detect the touch screen,
rectify and magnify the screen images, and ultimately identify the
popping up keys. Raguram et al. exploit refections of a device’s
screen on a victim’s glasses or other objects to automatically in-
fer text typed on a virtual keyboard [33]. They use inexpensive
cameras (such as those in smartphones), utilize the popup of keys
when pressed and adopt computer vision techniques processing the
recorded video in order to infer the corresponding key although the
text in the video is illegible.

Xu et al. extend the work in [33] and track the finger movement
to infer input text [43]. Their approach has six stages: in Stage 1,
they use a tracking framework based on AdaBoost [13] to track the
location of the victim device in an image. In Stage 2, they detect
the device’s lines, use Hough transform to determine the device’s
orientation and align a virtual keyboard to the image. In Stage 3,
they use Gaussian modeling to identify the “fingertip” (not touched
points as in our work) by training the pixel intensity. In Stage 4,
RANSAC is used to track the fingertip trajectory, which is a set
of line segments. If a line segment is nearly perpendicular to the
touch screen surface, it implicates the stopping position. In Stage 5,
they apply image recognition techniques to determine which keys
are most likely pressed given the stopping positions. In Stage 6,
they apply a language model to optimize the result given the candi-
date keys and associated confidence values from the previous stage.
They use two cameras: Canon VIXIA HG21 camcorder with 12x
optical zoom and Canon 60D DSLR with 400mm lens.

In comparison with [43] on recognizing passwords, we can achieve
a much higher success rate. We extend our work to the scenario of
touching with both hands and multiple fingers while such a scenario
is not addressed in [43].

8. CONCLUSION
In this paper, we present a computer vision based attack that

blindly recognizes inputs on a touch screen from a distance auto-
matically. The attack exploits the homography relationship between
the touching images (in which fingers touch the screen surface) and
the reference image of a software keyboard. We use the optical flow
algorithm to detect touching frames. The deformable part-based
model (DPM) and various computer vision techniques are utilized
to track the touching fingertip and identify the accurate touched
area. We carefully analyze the image formation of the touching
fingertip and design the k-means clustering strategy to recognize
the touched points. The homography is then applied to recognize
the touched keys. Our extensive experiments show that the AA suc-
cess rate of recognizing touched keys is more than 80%, while the
BEA success rate is more than 90%. We have also extended the
attack to the case of typing with two hands and multiple fingers
and achieve a high success rate of more than 95%. As a counter-
measure, we design a context aware Privacy Enhancing Keyboard
(PEK) which pops up a randomized keyboard on Android systems
for sensitive information input such as passwords. Our future work
includes further refinement of the attack and design of alternative
authentication strategies for mobile devices.

9. ACKNOWLEDGEMENTS
This work is supported in part by National Key Basic Research

program of China under grant 2010CB328104, Macau FDCT 061-
2011-A3, International S&T Cooperation Program of China grant
2013DFA10690, US NSF grants 1116644, CNS-1318948 and 1262275,
National Science Foundation of China under grant 61272054. Any
opinions, findings, conclusions, and recommendations in this paper
are those of the authors and do not necessarily reflect the views of
the funding agencies.

10. REFERENCES

[1] M. Backes, T. Chen, M. Duermuth, H. Lensch, and M. Welk.
Tempest in a teapot: Compromising reflections revisited. In
Proceedings of 30th IEEE Symposium on Security and

Privacy, pages 315–327, 2009.

[2] M. Backes, M. Dürmuth, and D. Unruh. Compromising
reflections or how to read lcd monitors around the corner. In
Proceedings of IEEE Symposium on Security and Privacy,
pages 158–169, 2008.

[3] D. Balzarotti, M. Cova, and G. Vigna. Clearshot:
Eavesdropping on keyboard input from video. In Proceedings

of the 2008 IEEE Symposium on Security and Privacy, SP
’08, pages 170–183, 2008.

[4] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (surf). Comput. Vis. Image Underst.,
110(3):346–359, June 2008.

[5] H. Benko, A. D. Wilson, and P. Baudisch. Precise selection
techniques for multi-touch screens. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems, CHI ’06, pages 1263–1272, 2006.

[6] R. Biddle, S. Chiasson, and P. van Oorschot. Graphical
passwords: Learning from the first twelve years. In ACM

Computing Surveys, 2012.

1412

[43] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm.
Seeing double: Reconstructing obscured typed input from
repeated compromising reflections. In Proceedings of the

20th ACM Conference on Computer and Communications

Security (CCS), 2013.

[44] Q. Yan, J. Han, Y. Li, J. Zhou, and R. H. Deng. Designing
leakage-resilient password entry on touchscreen mobile
devices. In Proceedings of the 8th ACM Symposium on

Information, Computer and Communications Security

(AsiaCCS), 2013.

[45] Y.Hu, L. Cao, F.Lv, S.Yan, Y.Gong, and T.S.Huang. Action
detection in complex scenes with spatial and temporal
ambiguities. ICCV, 2009.

[46] J. yves Bouguet. Pyramidal implementation of the lucas
kanade feature tracker. Intel Corporation, Microprocessor

Research Labs, 2000.

[47] Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu.
Fingerprint attack against touch-enabled devices. In
Proceedings of the second ACM workshop on Security and

privacy in smartphones and mobile devices, SPSM ’12,
pages 57–68, 2012.

Appendix

In this appendix, we discuss countermeasures to computer vision
based attacks introduced in this paper and related work. There are
many other authentication approaches immune to these attacks to
some extent, including biometric-rich gesture-based authentication
[34, 44, 21] and graphic password schemes [6, 37, 8]. The idea
of randomized keyboard has been proposed for legacy keypad and
touch-enabled devices [16, 15, 30, 17, 36, 25, 22]. We have de-
signed and developed the context aware Privacy Enhancing Key-
boards (PEK) for Android for the first time. We have implemented
the PEK as a third party app and are also able to change the internal
system keyboard to implement the PEK.

Design and Implementation of PEK

A software keyboard may contain three sub-keyboards. The pri-
mary sub-keyboard is the QWERTY keyboard, which is the most
common keyboard layout. The second sub-keyboard is the numer-
ical keyboard that may also contain some symbols. The last sub-
keyboard is a symbol keyboard that contains special symbols. The
layout for these three sub-keyboards is stored in a XML file, which
records the positions of keys and corresponding key codes. The
system generates its keyboard in this way: the keys will be read
from the XML file and put in a right position.

PEK changes the key layout to implement randomized keys. When
a keyboard is needed, we first generate a random sequence of key
labels for each of the three different keyboards. When a key is read
from the XML, we randomly choose an integer number between
one and the size of the key sequence. We use this number to pick
the specific key label from the randomized key sequence and also
remove this label from the key sequence. This randomly selected
key replaces the current key. In this way, we can shuffle the key po-
sitions on a normal keyboard. Another version of PEK is to make
each key move within the keyboard region in a Brownian motion
fashion by updating each key’s position repeatedly according to the
Brownian motion. In this way, the keys are moving all the time.
Even if the same key is pressed a few times, their positions are d-
ifferent. This is an improvement compared with PEK with shuffled
keys, in which the keyboard does not change in one session of pass-
word input. Figure 22 shows PEK with shuffled keys and Figure 23
shows PEK with the Brownian motion of keys.

Figure 22: PEK-Shuffled Keys Figure 23: PEK-Brownian Motion

Normal Keyboard Shuffled Keys Brownian Motion
0

5

10

15

20

25

30

35

40

45

In
p

u
t

T
im

e
(S

e
c)

Figure 24: Input Time of Three Distinct Keyboards

PEK is aware of the context and can pop up the randomized key-
board only if the input box is for sensitive information. The An-
droid class “EditorInfo” can be used to detect the input box type.
In our case, TYPE_NUMBER_VARIATION_PASSWORD, TYPE_TEXT_
VARIATION_PASSWORD, TYPE_TEXT_VARIATION_VISIBLE_PASSWORD
and TYPE_TEXT_VARIATION_WEB_PASSWORD are used to identify
the password input box. The first type is the variation of TYPE_
CLASS_NUMBER, while the other three types are the variations of
TYPE_CLASS_TEXT. Once the password input box is triggered by
the user, a new randomized keyboard will be constructed. As a re-
sult, the user can have different key layouts every time she presses
the password input box.

Evaluation of PEK

To measure the usability of the PEK, we recruit 20 students, 5 fe-
male students and 15 male students, whose average age is 25 years
old. We implemented a test password input box and generated 30
random four-letter passwords. The students are required to input
these 30 passwords by using a shuffled keyboard and a Brownian
motion keyboard, and the test app records the user input time. Ta-
ble 7 shows the results of our evaluation and Figure 24 gives a box
plot of the input time of three different keyboards. The median in-
put time is around 2.2 seconds on the normal keyboard, 5.9 seconds
on the shuffled keyboard and 8.2 seconds on the Brownian motion
keyboard. The success rate is the probability that a user correctly
inputs four-letter passwords. The success rate of all three keyboards
are high while it is a little bit lower for the Brownian motion key-
board. The participants in our experiments feel PEK is acceptable
if PEK only pops up the randomized keyboard for sensitive infor-
mation input.

Table 7: Usability Test

Normal Shuffled Brownian
Keyboard Keys Motion

Median Input Time (Second) 2.235 5.859 8.24

Success Rate 98.50% 98.83% 94.17%

1414

