Advanced Data Structures

String Pattern Matching/Te t Search



What 1s Pattern Matching?

Definition:

given a te t string T and a pattern string P,
find the pattern inside the te t

T: the rain in spain sta s mainl on the plain
P: nth



Te tsearch

Pattern matching directl
Brute force
KMP
BM

Regular ¢ pressions (Not 1n this course)

Indices for pattern matching
Inverted files
Signature files
Suffix trees and Suffix arrays
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The Brute Force Algorithm

Check each position in the te t T to see
if the pattern P starts 1n that position

T: | dandrew T: | dandr

P:| rlelw P:lrielw

P moves 1 char at a time through T






The brute force algorithm 1s fast when the
alphabet of the te t1s large
e.g. A.Z,a.. , 1.9, etc.

It 1s slower when the alphabet 1s small
e.g. 0, 1 (as in binar files, image files, etc.)

continued



E ample of a worst case:

T: "aaaaaaaaaaaaaaaaaaaaaaaaaah"
P: "aaah"

E ample of a more average case:

T: "a string searching ¢ ample 1s standard"
P: "store"



The KMP Algorithm

The Knuth-Morris-Pratt (KMP) algorithm

looks for the pattern in the te t in a left-to-
right order (like the brute force algorithm).

But it shifts the pattern more intelligentl
than the brute force algorithm.

continued



Summar

If a mismatch occurs between the te t and
pattern P at P[j], what 1s the most we can
shift the pattern to avoid wasteful
comparisons?



Summar

If a mismatch occurs between the te t and
pattern P at P[j], what 1s the most we can
shift the pattern to avoid wasteful
comparisons?

Answer: the largest prefi of P[0 .. j-1] that
1s a suffi of P[1 .. j-1]



TRIGR




KMP Advantages

KMP runs in optimal time: O(m+n)
ver fast

The algorithm never needs to move
backwards in the input te t, T

this makes the algorithm good for processing
ver large files that are read 1n from e ternal

devices or through a network stream



KMP Disadvantages

KMP doesn t work so well as the s1 ¢ of
the alphabet increases

more chance of a mismatch (more possible
mismatches)

mismatches tend to occur earl 1n the pattern,
but KMP is faster when the mismatches occur
later



Boyer and Moore Algorithm

A fast string searching algorithm. Communications of the ACM.
Vol. 20 p.p. 762-772, 1977.

BOYER, R.S. and MOORE, J.S.
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Boyer and Moore Algorithm

The algorithm compares the pattern P with the
substring of sequence T within a sliding
window in the right-to-left order.

The bad character rule and good suffix rule
are used to determine the movement of sliding
window.
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Bad Character Rule

Suppose that P, 1s aligned to 7, now, and we perform a pair-
wise comparing between te t 7 and pattern P from right to left.

Assume that the first mismatch occurs when comparing 7, Yy
with P;.

Since T, ; #P;, we move the pattern P to the right such that the
largest position ¢ in the left of P, is equal to 7, ;. We can shift
the pattern at least (j-c) positions right.

s s +j -1
T t
P t
1 C ] m
Shift . P ¢ ;




Character Matching Rule

Bad character rule uses Rule 2-1 (Character Matching

Rule).

For an character x in 7, find the nearest x in P which

1s to the left of x in 7.

T X

/

P X
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Implication

Case 1. If there 1s a x 1n P to the left of 7, move P so
that the two s match.

18



Case 2: If no such a x e 1sts in P, consider the partial
window defined b x in 7 and the string to the left of

1t.

- Partial W —>
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E : Suppose that P, 1s aligned to 7, now. We compare pair-
wise between T and P from right to left. Since T ,,=P;; ;, =
“CA” andT,5= “G" #P,,= "“T . Therefore, we find
the rightmost position ¢=7 1n the left of P,,1n P such that P,
isequalto “G” and we can move the window at least

(10-7=3) positions.

directing of the scan

5s=6 <
1011 (1213141516 |17 |18 19|20

\O

1 12 (3 |4 |5 |6 |7 |8

AIAIAIA|AA|TICIAICIA|T|ITIAGClAAAA
/Imismatch

PIAITICIACIAIG T AT|C|A
1 2 13 14 |5 16 |7 |8 9 [10]11 |12
¢ T~ /=10 m=12

— > PIA|TICIAICIA|GTIAT|ClA
4 7

8 |9 |10 (11 |12




Good Suffix Rule 1

[f a mismatch occurs in 7, ;, we match 7, with P;. where

s+j- -m+j °
Jj (m-j+1= j <m)is the

21



Rule: The Substring Matching Rule

For an substring u 1in T, find a nearest u in P which
1s to the left of 1it. If such a u in P e 1sts, move P;
otherwise, we ma define a new partial window.

u

/

P u
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E : Suppose that P, is aligned to 7, now. We compare pair-
wise between P and 7T from right to left. Since 7;,,= “CA”
=P, pand T)5= "A” #P,,= “T” . We find the substring

“CA” inthe left of P,,in P such that “CA” is the suffi
of P, ; and the left character to this substring “CA” in P is
not equal to P,,= “T . Therefore, we can move the

window at least m-j~ (12-6=6) positions right.
s=6 s+j-1

[

3 (4 [5 |6 (7 (8 |9 [1I0(11|12|13 (14 |15|16 |17 (18|19 |20

\©)

AIAAJAIA|IGICIC|TIA|G|C|AJA|CIA]A|A|A

I mismatch

PIA|T|ICIA|CIA|T|C|A|T|C|A
1|12

m=12

,_
NS}
W
n
W
N
-
0
\O
—
)

10

)}
(@)
3
o)
O

A#T



Good Suffix Rule 2

Good Suffi Rule 2 1s used onl when Good Suffi Rule 1 can not
be used. That is, t does not appear in P(1, j). Thus, t is unigue in
P.

It a mismatch occurs in 7, we match 7, - with P,

where j’ (1= j’ = m-j) is the largest position such that

P, .. isasuffix of P,

jti,m:
S S+i-1 S-I—m_j’

J’

1 Tj’ J

Shift

E— 1] ] | S > B t

P.S. : t"is suffi of substring t. 24




Rule: Unigue Substring Rule

The substring u appears in P ¢ actl once.

[f the substring u matches with 7, ;, no matter whether a mismatch
occurs in some position of P or not, we can slide the window b /.

e u
T. s
: «—Uu
P. S S
| |
I |
| |
|
: S u
l |
| €mmmm o mm e » |
| [

The string s 1s the longest prefi  of P which equals to a suffi of u.
25



The Suffix to Prefix Rule

For a window to have an chance to match a
pattern, in some wa , there must be a suffi of
the window which 1s equal to a prefi of the

pattern.

T

P—
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Note that the above rule also uses Rule 1.

It should also be noted that the unique
substring 1s the shorter and the more right-
sided the better.

A short u guarantees a short (or even empt ) s
which 1s desirable.

———————————————————————————————
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E : Suppose that P, is aligned to 7, now. We compare pair-wise
between P and T from right to left. Since 7T',, # P, and there 1s no

substring Py ;, in left of Pgto e actl match 75, We find a

longest suffi
also prefi of P. We shift the window such that the last character

of prefi substring to match the last character of the suffi

substring. Therefore, we can shift at least 12-4=8 positions.

"AATC" of substring T'; ;,, the longest suffi is

s=6
1 {213 |4 |5]6 |7 |8 [9 |10f|11|12]13|14]15|16]|17]18|19]20
AlA|AIA|AA|IT|ICIAICIA|T|TIA|A|T|IClAAlA
j =4 j:71 mismatch
PIA|A|T|CIA|T|C|T|AA|T|C
1|2 (3 4|5 |6 |7 |8 ]9 [to|1n|12] m=12
—— o
_ — — .
shitt P[A|A|T|C|A|T|C|T|A|A|T|C
1 (2|3 |4 |5 |6 |7 9 10|11 |12
joo=4 =T m=12



Let Bc(a) be the rightmost position of a in P. The
function will be used for appl ing bad character rule.

Folu2 |3 (4[5 |6 |7 |8 |9 |10]11]12 SIAlCIGIT
P|IA|IT|CIA|CIA|T|C|A|T|C|A B |12 (110 |10

We can move our pattern right j-B(T,,. ) position b

above B¢ function.

+j-

j123456789101112131415161718

TIAIGIC|IT|A|G|C|IC|TIGJCIA|C|G|T[|A|C|A

j123456789101112\

Move
PIA|T|C|A|C|A|T|C|A|T|C|A| | 10-B(G) = 10 positions

29



Let Gs(j) be the largest number of shiftsb good
suffix rule when a mismatch occurs for comparing P,
with some character in T.

30



gsl(i) be the largest k such that P;,, , Is a suffix of P, , and
wm+j T Pj, where m-j+1 =k<m ; 0 if there is no such £.

(gs ; 1s for Good Suffi Rule 1)

gs,(j) be the largest k such that P, , Is a suffix of P, .,
where 1 =k =m-j; 0 if there is no such «.

(gs, 1s for Good Suffi Rule 2.)

Gs(j) = m — max{gs,, gs,}, if j = m ,Gs(j)=1.

i o1 1210314 |5 |6 |7 (8 ]9 |10]11]12] &s,(7)=9
P [A|T|ICA|CIA|T|C|A|T|C|A]| ' Pg,isasuffi ofP,,
gs;, |00 0]0]0|0]9|0]O0O]6]|1]0 and P,#P,
gs, |4|44]4]4|a|a]a]|1]1[1]0], o
Gs |88 8|8 8|8 |3 s|ilo]|1]1|&4D"
P 1sasuffi of Py,




How do we obtain gs; and gs,”?

In the following, we shall show that b
constructing the Suffix Function, we can kill
two birds with one arrow.

32



Suffix function £~

For 1 =j =m-1, let the sutfi function /() for P; be the
smallest k such that Py= P iiiers (J12 <K =m)
If there is no such k, we set f© = m+1.
If j=m, we setf~ (m)=m+2.

P t | t
j j+l A4 k m
E J Lok

Fol v 2| 3 4] s| 6| 7| 8] 9| 10| 11] 12

PIATICIA|CIA|TICIAI T ClA
(10111712 8| 910 11|12|13|13|13]| 14

« T (4)=8,itmeansthat Py ), =Pg = Ps5o=Pysi 411 4ms @
Since there is no & for 13 2 < k=12, wesetf (11)=13.°



Suppose that the Suffi 1s obtained. How can
we use 1t to obtain gs; and gs,?

gs; can be obtained b scanning the Suffi
function from right to left.
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Example

S| <
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Example

As for Good Suffi Rule 2, it 1s relativel easier.

10

11

12

10

11

12

o0

10

11

12

13

13

13

14

36



Question: How can we construct the Suffi
function?

To e plain this, let us go back to the prefi
function used in the KMP Algorithm.
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The following figure 1llustrates the prefi
function 1n the KMP Algorithm.

The following figure 1llustrates the suffi
function of the BM Algorithm.
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We now can see that actuall the suffi
function is the same as the prefi . The onl
difference 1s now we consider a suffi . Thus,
the recursive formula for the prefi function in
KMP Algorithm can be slightl modified for
the suffi function in BM Algorithm.

39



The formula of suffi function /° as follows :
Let /()= f'(f" (»))for x>1and f'(y) = f(»)

‘m+ 2, If j=m
f"c (j+1 -1, 1ifl< j=<m-1land thereexiststhe smallest

SU) =5 k =1such that P, =P,

J+1 kG+1)-1"

m+1, otherwise

40



4 6 7 81 9| 10| 11| 12
A A T| CIlAl T| C|lA
14
s
j=m=12,
f =m+2=1
il
4 6 7 81 91 10| 11| 12
A Al T  CIlA| T| C| A
13| 14
No & satisfies /
Pi=Py ki ~77 7 =1

f =m+1=12+1=13

PlZ;é P13
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1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12
A TICIAICIA| T|C A T C| A
12| 13| 13| 13| 14

.-.I)j+]=Pf’ (G+D)-1 => P9=P12,

f =f (+I)-1=13-1=12
1 21 3 41 5 6| 7 81 9 10| 11| 12
A TICIA|CIA| T|IC A T C| A
11| 12| 13| 13| 13| 14

VP =P iy = Ps=Py,

f

=f (+I)-1=12-1=11

43



o1 3] 4] s| 6] 7] 8] 9l 10] 11] 12
TN CIlAICIA| TIC A T C|A
8| o 10| 11| 12] 13| 13| 13] 14

A\ ‘P, =P.1. =>P =P

1 j:;' 6+g§1f'i; 9-1=8
o1 3] 4] s| 6] 7] 8] 9 10] 11] 12
TICIA CIA| TICI A T| C| A
12] 8] ol 1o] 11] 12] 13| 13| 13] 14

\

f =

VP =Pp 360 == Py=Pp 3y = Py,
f (+I)-1=13-1=12
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1 2 3 4 5 6 7 8 O 10| 11| 12
Al T| C CIA| TIC A T| C|A
11| 12 8 9 10 11| 12| 13| 13| 13| 14
VB =Pp oy 1= Ps= P 5= Py,
f =f (+D-1=12-1=11
1 2 4 5 6 7 8 91 10| 11| 12
A TICIA CIA TICI A T C|A
10| 11| 12 8 9 10 11| 12| 13| 13| 13| 14
VP =Pe = P= P o) = Py,
f =f (+1)-1=11-1=10
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Let G' (j), 1 =j=m ,to be the largest number of shifts b
good suffi rules.

First, we set G~ (j) to eros as their initiali ations.

Q> v~

112 (314|516 7|89 10fI11]12
AITICIAICIA|T|C|A|T|C|A
101112 8|9 (1011121313 |13|14
0/0]0[0]0|0O10]0|0]0]0|O0
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Stepl: We scan from right to left and gs,(j) is determined
during the scanning, then gs,(j) >= gs,(j)

Observe:
If P=P,#P=P; 1, we know gs;(f" (j)-1)=m+j-f*(j)+1=9.
Ifz=

> When j=12, =13. t>m.
» When j=11, =12. Since P;,,= ‘C # ‘A’ =P,,,
G ()=m ma gs|0),gs,() =m gs(f)
=f ()-1-j
=G (12)=13-1-11= 1.
j 1| 2| 3| 4

P |A|T|C
£ ol1o0]11]12
G | olo|o

~
o0
\O

6 10 11| 12

AITICIAI T CA
1011121131313 |14
O 0 Of O] O] Of 1 47
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Ift=f ()-1<mandP,#P,, G’ @O= ()-1-J.
£ O=f N ()= 1), k>2

» When j=10, =12. Since P,,= ‘T # ‘A" =P,,, G  (12) #0.

» When j=9, =12. P,= ‘A’ =P,,.

» When j=8, =11. P,.= 'C =P,,.

> When =7, =10. P,= ‘T =P,

» When j=6,=9. P,= ‘A’ =P,

» When j=5,=8. P;= 'C =P,

» When j=4,+=7.Since P,= ‘A #P,=T, G(7)=8—1-4=3
Besides, t=f"?(4) 1=f(f(4) 1)—1=10. Since P,= A #
P,= T ,G (10)=f () 1-/=11 1 4=6.

Joltl23|4|5|6]7][89]|10]11]I
PIA|ITICIA|CIA|T|C|A|T|CA
11071112 8 |9 [10|11|12|13|13|13 |14
G10/0/0/0]|0]|0]3]0]|0|6]|0]]1 46




Ift=f ()-1<mandP,#P, G’ (= ()-1-j.
£ O=f N ()= 1), k>2

» When =3, =11. P= ‘'C =P,
» When j=2,+=10. P= T =P,
» When j=1,=9. P= ‘A’ =P,

jolv|2|3|4|s5]|6]|7]|8]9]10[I1]I2
PIA|TICIAICIA|T|C|A|T|C|A
1101112 8|9 (1011|1213 |13]13|14
G10/0[{0|0|0[0O]|3]0|6][0]|O0]]1

B the above discussion, we can obtain the values using the
Good Suffi Rule 1 b scanning the pattern from right to left.



Step2: Continuousl , we will tr to obtain the values using
Good Suffix Rule 2 and those values are still eros now and scan
from left to right.

jolir|2|3|4|s|6|7|8]9]10]11]12
PIA|TICIAICIA|T|C|A|T|C|A
101112 8|9 [10|11|12]13|13]13|14
G10(0]0[0|0O|0O[3]0|0]6]0]1
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Let kX bethesmallest kin 1,
andf~ ®(1)-1<=m.

NI such that Pf’ (k)(l)-]_: Pl

If G* (j) is not determined in the first scan and 1<=j<=f * )
(1)-2, thus, in the second scan, we set G (j)=m - ma  gs,(j),

gs,(j) =m - gs,()=f & )(1)-2.

undetermined value of G to m 1n the second scan.

k=1=k
Jolrl2|3|4|s|6|7][89]|10]11]I
PIA|TICIAICIA|T|IC|A|IT|C|A
110711121 8 | 9 [10|11|12|13|13|13|14
G|8|8|8|8[8[8[3[8[0|6|0]]1

If no such k e 1sts, set each

51



Letzbe f” * )(1)-2. Let k” be the largest value & such that f'®
(z)-1<=m.

Thenweset G (j)=m-gs,())=m-(m — f'O=)-1)=/"(z)- 1,
where 1<=ij<=k”and fD( )< j <= fO(2)-1 and f"O)(z) = z.

For e ample, z=8 :
> k=1, O8)-1=11=m=12
» k=2, 'P®)-1=12=m=12 =>k"=2
> =1, fO8)-1=7<j = f1(8)-1=11.
> =2, fU(8)-1 =11< j = fO(8)-1=12.
»We set G(9) and G(11)=7"D(8) 1=12-1=11.

Jolv| 234|567 [8]9]10]11]12
PIA|TICIAICIA|T|IC|IA|T|C|A
1101112819 (10|11|12]13[13|13]14
G'|8(8[8|8|8[8|3|8]|11]6]|11]1 >




We essentiall have to decide the ma 1mum number of steps.
We can move the window right when a mismatch occurs. This
1s decided b the following function:

ma G (),j-B(T,.)
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10 [ 11 | 12

—_—
[\
(O8)
AN
(9]
N
~J
o0

Shift

We compare T and P from right to left. Since 7,,= “T" #P,= “A” , the largest
movement=ma G ()),j-B(T,,,;) =ma G (I12),12-B(T;;) =ma 1,12-10
== 2. 54




1 2 3 4 5 6 7 8 9 10111 (1213114 15|16 [17 118119 (20 (21 22123 |24
nGlalT|clglalT|clalclalTlalTlclalclA|T|clAlT|ClA
mismatch I

AalT|clalclalT|clAalTclA
1 2 3 4 5 6 7 8 9 10 111 | 12
shift plAlT|ClAlC|A|IT|ClAIT|ClA
1 2 3 4 5 6 7 8 9 10 | 11 | 12
J 1 2| 3| 4| 5| 6 7| 8| 91 10| 11| 12 S |IAICIGIT
P Al T| C| Al C| A| T| C| A| T| C| A g [12]11 |o 10
f 10 11| 12 8 Oy 10| 11| 12| 13| 13| 13| 14
G’ 8 8 8 8 8 8 3 g 11 6 11 1

After moving, we compare 7 and P from right to left. Since 7, = “T" #P,= “A” ,

the largest movement=ma G (j), j-B(Ts+j-1) =ma G (12), 12-B(T,))
1,12-10 =2.

= ma
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Time Complexity

The preprocessing phase 1n O(m+X) time and space
comple 1t and searching phase in O(mn) time
comple 1t .

The worst case time comple 1t for the Boyer-Moore
method would be O((n-m+1)m).

It was proved that this algorithm has O(m) comparisons
when P 1s not in 7. However, this algorithm has O(mn)
comparisons when P 1s in 7.
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Sutti

trees and suffi

arra S
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String/Pattern Matching

You are given a source string S.

Answer queries of the form: 1s the string p. a
substring of S?

Knuth-Morris-Pratt (KMP) string matching.
—O(S + p, ) time per quer .

—O(MmS +S. p;, ) time for n queries.

Suffi tree solution.

—O(S +S, p; ) time for n queries.



String/Pattern Matching

* KMP/BM preprocesses the quer string p.,
whereas the suffi tree method preprocesses
the source string S.



Trie

A tree representing a set of strings.

acef

bbfe
bbfg
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Compressed Trie

Compress unar nodes, label edges b strings




Suffi tree

Given a string s a suffi treeof sisa
compressed trie of all suffi es of s

To make these suffi es prefi -free we

70



The suffi tree Tree(T) of T

data structure suffi tree, Tree(T), 1s
compacted trie that represents all the suffi es
of string T

linear s1 e: Tree(T) =O(T)

can be constructed 1n linear time O( T )

has myriad virtues (A. Apostolico)
1s well-known: Google hits






Trivial algorithm to build a Suffi tree

Put the largest suffi in

a
b
a
b
$

Put the suffi bab$ in
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Put the suffi ab$ in
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Put the suffi

$ in
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We will also label each leaf with the starting point of the corres. suffi .




On-line construction of Trie(T)

e T=tt,..t5
P.=tt, ..t

i:th prefixof T
on-line idea: update Trie(P,) to Trie(P,,,)

=> very simple construction
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Trie(abaab)

b 0
d
a







Trie(abaab)

7



Trie(abaab)

b 0
d
a







What happens in Trie(P) => Trie(P,,,) ?

e time: O(size of Trie(T))

e suffix links:
slink(node(aa)) = node(a)



What can we do with 1t ?

E act string matching:

Givena Text T, | T| = n, preprocess it such

that when a patternP, |P|=m, arrives
you can quickly decide when it occurs in
T.

W e may also want to find all occurrences
of PinT
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E act string matching

In preprocessing we just build a suffi tree in O(n) time

Given a pattern P = ab we traverse the tree according to the pattern.
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E act string matching

In preprocessing we just build a suffi tree in O(n) time

Given a pattern P = ab we traverse the tree according to the pattern.
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If we did not get stuck traversing the pattern then the pattern occurs in the te t.

Each leaf in the subtree below the node we reach corresponds to an occurrence.

B traversing this subtree we get all k occurrences in O(n+k) time
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Generali ed suffi tree

G1ven a set of strings S a generali ed suffi
tree of S 1s a compressed trie of all suffi es of

SE S

To make these suffi1 es prefi -free we add a
special char, sa §, at the end of s

To associate each suffi  with a unique string
in S add a different special char to each s
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Generali ed suffi tree (E ample)

Let si=abab and s2=aab here 1s a general1 ed
suffi tree for siand s2

#

a o
$ # im ! 4 1§ \
b$ b# ’
ab$  ab# #
bab$ aab# b a a
o~ #Ez S 2 4, |

abab$
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So what can we do with it ?

Matching a pattern against a database of
strings
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Longest common substring (of two strings)

Ever node with a leaf descendant from

string S| and a leaf descendant from string

S2 represents a ma imal common substring

and vice versa.

Find such node with largest Vo # 8
string depth %

(O 5 3 2
= 1
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Longest common substring (of two strings)

Ever node with a leaf descendant from

string S| and a leaf descendant from string

S2 represents a ma imal common substring

and vice versa.

Find such node with largest
string depth
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Lowest common ancestor

A lot more can be gained from the suffi tree
1f we preprocess 1t so that we can answer

LCA queries on 1t

O O 55




Lowest common ancestor

A lot more can be gained from the suffi tree
1f we preprocess 1t so that we can answer

LCA queries on 1t

O OF 85



Lowest common ancestor

A lot more can be gained from the suffi tree
1f we preprocess it so that we can answer

LCA queries on 1t
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Wh ?

The LCA of two leaves represents the longest
common preft (LCP) of these 2 suffi es




Wh ?

The LCA of two leaves represents the longest
common preft (LCP) of these 2 suffi es




Wh ?

The LCA of two leaves represents the longest
common prefi (LCP) of these 2 suffi es

#

WAL= E=F
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Ma 1mal palindromes algorithm

Prepare a generali ed suffi tree for
s = cbaaba$ and sr = abaabc#

For ever 1 find the LCA of suffi 1of s and
suffi m-1+1 of sr
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Let s = cbaaba$ then sr = abaabc#




Let s = cbaaba$ then sr = abaabc#




Let s = cbaaba$ then sr = abaabc#




Anal sis

O(n) time to 1dentif all palindromes
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Drawbacks

Suffi trees consume a lot of space
It 1s O(n) but the constant 1s quite big

Notice that 1f we indeed want to traverse
an edge 1n O(1) time then we need an
arra of ptrs. of s1 ¢ X in each node
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Suffi arra

We loose some of the functionalit but we
save space.

et s=abab

Sort the suffi es le 1cographicall :
ab, abab, b, bab

The suffi arra gives the indices of the
suffi es in sorted order

3 1 4 2




How do we build 1t ?

Build a suffi tree

Traverse the tree 1n DFS, le 1cographicall
picking edges outgoing from each node
and fill the suffi arra .

O(n) time
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How do we search for a pattern ?

If P occurs in T then all 1ts occurrences are
consecutive 1n the suffi arra .

Do a binar search on the sufti arra

Takes O(mlogn) time
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E ample

Eet—S=-muisstssipp1

L | 1
s | 1ppl1
[Let P=1issa 5 | 1551ppl

2 | 1SS1SSIpp1

1 | mississippl

M 10| p1

PPl

S1pp1

S1S1pP1

SS1ppl

SS1SS1pp1 95
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Supra 1inde

Structure

Suffix arrays are space efficient implementation of suffix
trees.

Simpl an arra containing all the pointers to the te t suffi es
listed in le icographical order.
Supra-indices:
If the suffi arra is large, this binar search can perform
poorly because of the number of random disk accesses.

Suffi arra s are designed to allow binary searches done b
comparing the contents of each pointer.

To remed this situation, the use of supra-indices over the
suffi arra has been proposed.
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Supra 1inde

E ample

1 6 911 1719 24 28 33 40 46 50 55 60

This 1s a te t. A te t has man words. Words are made from letters

60 |50 28 |19 |11 40 | 33 Suffi Arra

lett text |/ word | | Supra-Inde

/ / |

60 |50 |28 |19 | 11 | 40 |33 | Suffi Ama
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Supra 1inde

E ample

1 6 911 1719 24 28 33 40 46 50 55 60

This is a te t. A te t has man words. Words are made from letters

suffix tree

60 50 28 |19 |11 40 | 33 Suffi Arra

lett text |/ word | | Supra-Inde

60 | 50 28 |19 | 11 40 | 33 Suffi Arra
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Tree(hattivatti)

I E N
I+, 1+
+ 1+
g

e
A+

! +I|



*!+,!+Il

!+,!+II

Tree(hattivatti)

*!+’!+II

, !+|I

.’!+u

_,!+|I

substring labels of edges
represented as pairs of

*!+ !+|I ]
’ pointers
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*!+,!+II
I+, 1+
+ 14

_ ! +II

! +Il

] ! +II

! +Il

Tree(hattivatti)

112



Tree(T) is full text index

/\




Find att from Tree(hattivatti)

*!+’!+I|

!+’!+I|



Linear time construction of Tree(T)

ol e o & o
1+ 1+
+, 1+
- 14
LT Weiner McCreight
NS (1973), (1976)
a "algorithm
+' of the
_ year’

‘on-line’” algorithm
(Ukkonen 1992) — 115



