External Sorting

e Sort n records/elements that reside on a disk.

e Space needed by the n records Is very large.

= nIs very large, and each record may be large or
small.

= ni1s small, but each record Is very large.

e S0, not feasible to input the n records, sort,
and output in sorted order.

Small n But Large File

Input the record keys.

Sort the n keys to determine the sorted order
for the n records.

Permute the records into the desired order
(possibly several fields at a time).

We focus on the case: large n, large file.

New Data Structures/Concepts

Tournament trees.

Huffman trees.

Double-ended priority queues.
Buffering.

ldeas also may be used to speed algorithms
for small instances by using cache more
efficiently.

External Sort Computer Model

MAIN .

AL [—

Disk Characteristics

read/write head
tracks

e Seek time
= Approx. 100,000 arithmetics

e Latency time
= Approx. 25,000 arithmetics

o Transfer time
« Data access by block

Traditional Internal Memory Model

MAIN

AL [—

Matrix Multiplication
for (int1=0; 1<n; I++)
for (intJ =0; J <n; J++)
for (int k =0; k <n; k++)
cli]i] +=ali][k] * bIKID];

* ijk, 1K], Jik, ki, Kij, kji orders of loops yield same result.
 All perform same number of operations.

 But run time may differ significantly!

More Accurate Memory Model

MAIN
L2

> < S < S < S
- > - > - >

8-32 32KB 256KB 1GB
1C 2C 10C 100C

I 1
W

I
l
|

L
o (|

W

' Lo

\

Order
K

IJk Analysis

LN

Block size = width of cache line = w.
Assume one-level cache.

C => n?/w cache misses.

o A =>n3/w cache misses, when n is large.
B => n3cache misses, when n is large.
Total cache misses = n*/w(1/n + 1 + w).

ikj Order
for (int1=0; 1 <n; I++)
for (int k = 0; k <n; k++)
for (intJ =0;] <n; J++)

cli]b] += ali][k] * b[KID];

IK] Analysis

e C =>n’/w cache misses, when n is large.
o A =>n?/w cache misses.

e B =>n3/w cache misses, when n is large.
e Total cache misses = n3/w(2 + 1/n).

IJk Vs. 1k} Comparison

Ijk cache misses = n*/w(1/n + 1 +w).

Ikj cache misses = n3/w(2 + 1/n).

Ijk/ik] ~ (1 +w)/2, when n iIs large.

w = 4 (32-byte cache line, double precision data)
= ratio ~ 2.5.

w = 8 (64-byte cache line, double precision data)
= ratio ~ 4.5.

w = 16 (64-byte cache line, integer data)

= ratio ~ 8.5.

Prefetch

 Prefetch can hide memory latency

 Successful prefetch requires ability to
predict a memory access much in advance

 Prefetch cannot reduce energy as prefetch
does not reduce number of memory
accesses

External Sort Methods

e Base the external sort method on a fast
Internal sort method.

e Average run time
= Quick sort

e \Worst-case run time
= Merge sort

Internal Quick Sort

To sort a large Instance, select a pivot element
from out of the n elements.

Partition the n elements into 3 groups left, middle
and right.

The middle group contains only the pivot element.
All elements In the left group are <= pivot.
All elements In the right group are >= pivot.
Sort left and right groups recursively.

Answer Is sorted left group, followed by middle
group followed by sorted right group.

Internal Quick Sort

61218[15]11]101411]91713

Use 6 as the pivot.

2|514]1[3 M 7] 9]1011] 8

Sort left and right groups recursively.

Quick Sort — External Adaptation
3 Input/output buffers

= Input, small, large

 rest s used for middle group

Quick Sort — External Adaptation

e N

fill middle group from disk
If next record <= middle,;, send to small
If next record >= middle,, ., send to large

else remove middle, ., or middle, ., from middle
and add new record to middle group

Quick Sort — External Adaptation

e N

 Fill input buffer when It gets empty.
* Write small/large buffer when full.
* Write middle group in sorted order when done.

Double-ended priority queue.

Internal Merge Sort Review

e Phase 1

= Create Initial sorted segments
Natural segments
Insertion sort

e Phase 2

= Merge pairs of sorted segments, in merge
passes, until only 1 segment remains.

External Merge Sort

Sort 10,000 records.
Enough memory for 500 records.
Block size 1s 100 records.
t,, = time to input/output 1 block
(includes seek, latency, and transmission times)
t,s = time to internally sort 1 memory load
t,, = time to internally merge 1 block load

External Merge Sort

e Two phases.

= Run generation.
A run Is a sorted sequence of records.

= Run merging.

Run Generation

 [nput 5 blocks.
e Sort.

Run Merging

 Merge Pass.
= Pairwise merge the 20 runs into 10.

= |n a merge pass all runs (except possibly one)
are pairwise merged.

e Perform 4 more merge passes, reducing the
number of runs to 1.

Merge 20 Runs

T?Z Ri 5> R6 v VORl\/IZ W14 R15 R16R17\F\78R19 R20
S1 S2 S3

S4 35 S 10

v \/ VARV
\/)
\/ v
\/

W1

Merge R1 and R2

Fill 10 (Input 0) from R1 and I1 from R2.
Merge from 10 and |1 to output buffer.
Write whenever output buffer full.

Read whenever input buffer empty.

Time To Merge R1 and R2

Each 1s 5 blocks long.
Input time = 10t,,,.
Write/output time = 10t,..
Merge time = 10t,,,.

Total time = 20t,, + 10t,,,.

Time For Pass 1 (R—YS)

e Time to merge one pair of runs
= 20t,, + 10t .

* Time to merge all 10 pairs of runs
= 200t,, + 100t,,, .

Time To Merge S1 and S2

Each 1s 10 blocks long.
Input time = 20t,,..
Write/output time = 20t,..
Merge time = 20t,,,.

Total time = 40t,, + 20t,,,.

Time For Pass 2 (S—T)

e Time to merge one pair of runs
= 40t,, + 20t,,, .

* Time to merge all 5 pairs of runs
= 200t,, + 100t,,, .

Time For One Merge Pass

Time to input all blocks = 100t,.

Time to output all blocks = 100t,,.
Time to merge all blocks = 100t,,, .
Total time for a merge pass = 200t,, + 100t,,,.

Total Run-Merging Time

 (time for one merge pass) * (number of passes)
= (time for one merge pass)
* ceil(log,(number of initial runs))
= (200t,, + 100t,,,) * ceil(log,(20))
= (200t,, + 100t,,,) * 5

Factors In Overall Run Time

* Run generation. 200t,, + 20t
= Internal sort time.
= |nput and output time.

* Run merging. (200t,, + 100t,,,) * ceil(log,(20))
= |Internal merge time.
= |nput and output time.
= Number of initial runs.

= Merge order (number of merge passes Is
determined by number of runs and merge
order)

Improve Run Generation

e Overlap input, output, and internal sorting.

MEMORY

Improve Run Generation

» Generate runs whose length (on average)
exceeds memory size.

 Equivalent to reducing number of runs
generated.

Improve Run Merging

e Overlap input, output, and internal merging.

MEMORY

Improve Run Merging

e Reduce number of merge passes.
= Use higher-order merge.

= Number of passes
= cell(log,(number of initial runs))
where Kk Is the merge order.

Merge 20 Runs Using 5-Way Merging

R1 R2\R3Rjﬁ5 RGQF;FQ R1I0R11 R12 R13R14 R15 R GRIW
S4

T1

Number of passes = 2

/0 Time Per Merge Pass

Number of input buffers needed Is linear In
merge order K.

Since memory size is fixed, block size
decreases as k increases (after a certain k).

So, number of blocks Increases.

So, number of seek and latency delays per
pass Increases.

/0 Time Per Merge Pass

/0O
time
per
pass

merge orderk —

Total I/O Time To Merge Runs

e (1/O time for one merge pass)
* ceil(log, (number of initial runs))

Total 1/0
time to
merge
runs

merge orderk —

Internal Merge Time

O

R1 R2 R3 R4 RS R6

Naive way => k — 1 compares to determine next record to
move to the output buffer.

Time to merge n records is c(k — 1)n, where c Is a constant.
Merge time per pass Is c(k — 1)n.

Total merge time Is c(k — 1)nlog,r ~ cn(k/log,k) log.r.

Merge Time Using A Tournament Tree

O

R1 R2 R3 R4 RS R6

e Time to merge n records Is dnlog,k, where d Is a
constant.

* Merge time per pass Is dnlog,k.
» Total merge time is (dnlog,k) log,r = dnlog,r.

