
Red Black Trees 

Colored Nodes Definition 
•  Binary search tree. 
•  Each node is colored red or black. 
•  Root and all external nodes are black. 
•  No root-to-external-node path has two

 consecutive red nodes. 
•  All root-to-external-node paths have the

 same number of black nodes 



Red Black Trees 

Colored Edges Definition 
•  Binary search tree. 
•  Child pointers are colored red or black. 
•  Pointer to an external node is black. 
•  No root to external node path has two

 consecutive red pointers. 
•  Every root to external node path has the

 same number of black pointers. 



Example Red-Black Tree 
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Properties 

•  The height of a red black tree that has n
 (internal) nodes is between log2(n+1) and
 2log2(n+1). 



Properties 

•  Start with a red black tree whose height is h;
 collapse all red nodes into their parent
 black nodes to get a tree whose node
-degrees are between 2 and 4, height is >=
 h/2, and all external nodes are at the same
 level. 





Properties 

•  Let h’>= h/2 be the height of the collapsed
 tree.  

•  Internal nodes of collapsed tree have degree
 between 2 and 4. 

•  Number of internal nodes in collapsed tree
 >= 2h’-1. 

•  So, n >= 2h’-1 
•  So, h <= 2 log2 (n + 1) 



Properties 

•  O(1) amortized complexity to restructure
 following an insert/delete. 

•  C++ STL implementation 
•  java.util.TreeMap => red black tree 



Insert 

•  New pair is placed in a new node, which is
 inserted into the red-black tree. 

•  New node color options. 
§  Black node => one root-to-external-node path has

 an extra black node (black pointer). 
•  Hard to remedy. 

§  Red node => one root-to-external-node path may
 have two consecutive red nodes (pointers). 

•  May be remedied by color flips and/or a rotation. 



Classification Of 2 Red Nodes/Pointers 

•  XYz 
§ X => relationship between gp and pp. 

•  pp left child of gp => X = L. 
§ Y => relationship between pp and p. 

•  p left child of pp => Y = L. 
§ z = b (black) if d = null or a black node. 
§ z = r (red) if d is a red node. 
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XYr 
•  Color flip. 
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•  Move p, pp, and gp up two levels. 
•  Continue rebalancing. 



LLb 
•  Rotate. 

•  Done! 
•  Same as LL rotation of AVL tree. 
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LRb 
•  Rotate. 

•  Done! 
•  Same as LR rotation of AVL tree. 
•  RRb and RLb are symmetric. 
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Delete 

•  Delete as for unbalanced binary search tree. 
•  If red node deleted, no rebalancing needed. 
•  If black node deleted, a subtree becomes

 one black pointer (node) deficient. 



Delete A Black Leaf 
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•  Delete 8. 



Delete A Black Leaf 

y 

•  y is root of deficient subtree. 

•  py is parent of y. 
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Delete A Black Degree 1 Node 
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•  Delete 45. 

y 

•  y is root of deficient subtree. 
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Delete A Black Degree 2 Node 
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•  Not possible, degree 2 nodes are never deleted. 



Rebalancing Strategy 
•  If y is a red node, make it black. 
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Rebalancing Strategy 
•  Now, no subtree is deficient.  Done! 
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Rebalancing Strategy 
•  y is a black root (there is no py). 
•  Entire tree is deficient. Done! 
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Rebalancing Strategy 
•  y is black but not the root (there is a py). 

•  Xcn 
§ y is right child of py => X = R. 
§ Pointer to v is black => c = b. 
§ v has 1 red child => n = 1. 
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Rb0 (case 1, py is black) 

•  Color change. 
•  Now, py is root of deficient subtree. 
•  Continue! 
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Rb0 (case 2, py is red) 

•  Color change. 
•  Deficiency eliminated. 
•  Done! 
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Rb1 (case 1) 

•  LL rotation. 
•  Deficiency eliminated. 
•  Done! 
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Rb1 (case 2) 

•  LR rotation. 
•  Deficiency eliminated. 
•  Done! 
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Rb2 

•  LR rotation. 
•  Deficiency eliminated. 
•  Done! 
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Rr(n) 
•  n = # of red children of v’s right child w. 
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Rr(0) 

•  LL rotation. 
•  Done! 
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Rr(1) (case 1) 

•  LR rotation. 
•  Deficiency eliminated. 
•  Done! 
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Rr(1) (case 2) 

•  Rotation. 
•  Deficiency eliminated. 
•  Done! 
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Rr(2) 

•  Rotation. 
•  Deficiency eliminated. 
•  Done! 
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Red-Black Trees—Rank 

•  rank(x) = # black pointers on path from x to an
 external node. 

•  Same as #black nodes (excluding x) from x to an
 external node. 

•  rank(external node) = 0. 



An Example 
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Properties Of rank(x) 

•  rank(x) = 0 for x an external node. 
•  rank(x) = 1 for x parent of external node. 
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Properties Of rank(x) 

•  p(x) exists => rank(x) <= rank(p(x)) <= rank(x) + 1. 
•  g(x) exists => rank(x) <  rank(g(x)). 
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Red-Black Tree 

Ø A binary search tree is a red-black tree iff
 integer ranks can be assigned to its nodes
 so as to satisfy the stated 4 properties of
 rank. 



Relationship Between rank() And Color 

•  (p(x),x) is a red pointer iff rank(x) = rank(p(x)). 
•  (p(x),x) is a black pointer iff rank(x) = rank(p(x)) – 1. 



Relationship Between rank() And Color 

•  Root is black. 
•  Other nodes: 

§  Red iff pointer from parent is red. 
§  Black iff pointer from parent is black. 



Relationship Between rank() And Color 

•  Given rank(root) and node/pointer colors, remaining
 ranks may be computed on way down. 
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rank(root) & tree height 

•  Height <= 2 * rank(root). 
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rank(root) & tree height 

•  No external nodes at levels 1, 2, …, rank(root). 



rank(root) & tree height 

•  No external nodes at levels 1, 2, …, rank(root). 
§  So, #nodes >= Σ1 <= i <= rank(root) 2i -1 = 2 rank(root) – 1. 
§  So, rank(root) <= log2(n+1). 

•  So, height(root) <= 2log2(n+1). 



Join(S,m,B) 
•  Input 

§ Dictionary S of pairs with small keys. 
§ Dictionary B of pairs with big keys. 
§ An additional pair m. 
§ All keys in S are smaller than m.key. 
§ All keys in B are bigger than m.key. 

•  Output 
§ A dictionary that contains all pairs in S and B

 plus the pair m. 
§ Dictionaries S and B may be destroyed. 



Join Binary Search Trees 

•  O(1) time. 
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Join Red-black Trees 

•  When rank(S) = rank(B), use binary search tree
 method. 
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•  rank(root) = rank(S) + 1 = rank(B) + 1. 



rank(S) > rank(B) 
•  Follow right child pointers from root of S to first node

 x whose rank equals rank(B). 

a b 

x 

p(x) 

S 

a b 

x 

p(x) 

m 

B 



rank(S) > rank(B) 
•  If there are now 2 consecutive red pointers/nodes,

 perform bottom-up rebalancing beginning at m. 
•  O(rank(S) – rank(B)). 
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rank(S) < rank(B) 

•  Follow left child pointers from root of B to first
 node x whose rank equals rank(S). 

•  Similar to case when rank(S) > rank(B). 



Split(k) 

•  Inverse of join. 
•  Obtain 

§  S … dictionary of pairs with key < k. 
§  B … dictionary of pairs with key > k. 
§ m … pair with key = k (if present). 



Split A Binary Search Tree 
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Split A Binary Search Tree 
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Split A Binary Search Tree 

b 

A 

a 

B 

c 

C 

d 

D 

e 

E 

f 

m 

g 

B S 



Split A Binary Search Tree 
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Split A Binary Search Tree 

b 

A 

a 

B 

c 

C 

d 

D 

e 

E 

f 

m 

g 

B S 



Split A Binary Search Tree 
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Split A Red-Black Tree 

•  Previous strategy does not split a red-black
 tree into two red-black trees. 

•  Must do a search for m followed by a
 traceback to the root. 

•  During the traceback use the join operation
 to construct S and B. 



Split A Red-Black Tree 
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Split A Red-Black Tree 
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Split A Red-Black Tree 
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Split A Red-Black Tree 
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Split A Red-Black Tree 
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Split A Red-Black Tree 
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Split A Red-Black Tree 
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S = f B = g 

S = join(e, E, S) 

B = join(B, D, d) 
S = join(c, C, S) 
B = join(B, B, b) 

S = join(a, A, S) 


