
Red Black Trees

Colored Nodes Definition
•  Binary search tree.
•  Each node is colored red or black.
•  Root and all external nodes are black.
•  No root-to-external-node path has two

 consecutive red nodes.
•  All root-to-external-node paths have the

 same number of black nodes

Red Black Trees

Colored Edges Definition
•  Binary search tree.
•  Child pointers are colored red or black.
•  Pointer to an external node is black.
•  No root to external node path has two

 consecutive red pointers.
•  Every root to external node path has the

 same number of black pointers.

Example Red-Black Tree
10

7

8

1 5

30

40

20

25

35

45

60

3

Properties

•  The height of a red black tree that has n
 (internal) nodes is between log2(n+1) and
 2log2(n+1).

Properties

•  Start with a red black tree whose height is h;
 collapse all red nodes into their parent
 black nodes to get a tree whose node
-degrees are between 2 and 4, height is >=
 h/2, and all external nodes are at the same
 level.

Properties

•  Let h’>= h/2 be the height of the collapsed
 tree.

•  Internal nodes of collapsed tree have degree
 between 2 and 4.

•  Number of internal nodes in collapsed tree
 >= 2h’-1.

•  So, n >= 2h’-1
•  So, h <= 2 log2 (n + 1)

Properties

•  O(1) amortized complexity to restructure
 following an insert/delete.

•  C++ STL implementation
•  java.util.TreeMap => red black tree

Insert

•  New pair is placed in a new node, which is
 inserted into the red-black tree.

•  New node color options.
§  Black node => one root-to-external-node path has

 an extra black node (black pointer).
•  Hard to remedy.

§  Red node => one root-to-external-node path may
 have two consecutive red nodes (pointers).

•  May be remedied by color flips and/or a rotation.

Classification Of 2 Red Nodes/Pointers

•  XYz
§ X => relationship between gp and pp.

•  pp left child of gp => X = L.
§ Y => relationship between pp and p.

•  p left child of pp => Y = L.
§ z = b (black) if d = null or a black node.
§ z = r (red) if d is a red node.

a b

c
d

gp
pp

p

XYr
•  Color flip.

a b

c
d

gp
pp

p

a b

c
d

gp
pp

p

•  Move p, pp, and gp up two levels.
•  Continue rebalancing.

LLb
•  Rotate.

•  Done!
•  Same as LL rotation of AVL tree.

y

x

a b

z

c d

a b

c
d

gp
pp

p x

y

z

LRb
•  Rotate.

•  Done!
•  Same as LR rotation of AVL tree.
•  RRb and RLb are symmetric.

y

x

a b

z

c d

b c

a
d

gp
pp

p y

x

z

Delete

•  Delete as for unbalanced binary search tree.
•  If red node deleted, no rebalancing needed.
•  If black node deleted, a subtree becomes

 one black pointer (node) deficient.

Delete A Black Leaf
10

7

8

1 5

30

40

20

25

35

45

60

3

•  Delete 8.

Delete A Black Leaf

y

•  y is root of deficient subtree.

•  py is parent of y.

10

7

1 5

30

40

20

25

35

45

60

3

py

Delete A Black Degree 1 Node
10

7

8

1 5

30

40

20

25

35

45

60

3

•  Delete 45.

y

•  y is root of deficient subtree.

py

Delete A Black Degree 2 Node
10

7

8

1 5

30

40

20

25

35

45

60

3

•  Not possible, degree 2 nodes are never deleted.

Rebalancing Strategy
•  If y is a red node, make it black.

10

7

8

1 5

30

40

20

25

35

45

60

3

y

py

Rebalancing Strategy
•  Now, no subtree is deficient. Done!

60

10

7

8

1 5

30

40

20

25

35

45 3

y

py

Rebalancing Strategy
•  y is a black root (there is no py).
•  Entire tree is deficient. Done!

60

10

7

8

1 5

30

40

20

25

35

45 3

y

Rebalancing Strategy
•  y is black but not the root (there is a py).

•  Xcn
§ y is right child of py => X = R.
§ Pointer to v is black => c = b.
§ v has 1 red child => n = 1.

a b

y

py

v

Rb0 (case 1, py is black)

•  Color change.
•  Now, py is root of deficient subtree.
•  Continue!

a b

y

py

v y

a b

py

v

Rb0 (case 2, py is red)

•  Color change.
•  Deficiency eliminated.
•  Done!

a b

y

py

v y

a b

py

v

Rb1 (case 1)

•  LL rotation.
•  Deficiency eliminated.
•  Done!

a b

y

py

v a

b y

v

py

Rb1 (case 2)

•  LR rotation.
•  Deficiency eliminated.
•  Done!

a

y

py

v

b c

w c y

w

py

a b

v

Rb2

•  LR rotation.
•  Deficiency eliminated.
•  Done!

a

y

py

v

b c

w c y

w

py

a b

v

Rr(n)
•  n = # of red children of v’s right child w.

a

y

py

v

b c

w

Rr(0)

•  LL rotation.
•  Done!

a b

y

py

v a

b y

v

py

Rr(1) (case 1)

•  LR rotation.
•  Deficiency eliminated.
•  Done!

a

y

py

v

b

w

c

y c

w

py

a

v

b

Rr(1) (case 2)

•  Rotation.
•  Deficiency eliminated.
•  Done!

a

y

py

v

b

w

c d

x

y d

x

py

a

v

b c

w

Rr(2)

•  Rotation.
•  Deficiency eliminated.
•  Done!

a

y

py

v

b

w

c d

x

d y

x

py

a

v

b c

w

Red-Black Trees—Rank

•  rank(x) = # black pointers on path from x to an
 external node.

•  Same as #black nodes (excluding x) from x to an
 external node.

•  rank(external node) = 0.

An Example
10

7

8

1 5

30

40

20

25

35

45

60

3

0 0 0 0

0 0

0
0 0

0 0

0

0 0

1 1

1 1

1

1 1 1

2 1

2
2

3

Properties Of rank(x)

•  rank(x) = 0 for x an external node.
•  rank(x) = 1 for x parent of external node.

10

7

8

1 5

30

40

20

25

35

45

60

3

0 0 0 0

0 0

0
0 0

0 0

0

0 0

1 1

1 1

1

1 1 1

2 1

2
2

3

Properties Of rank(x)

•  p(x) exists => rank(x) <= rank(p(x)) <= rank(x) + 1.
•  g(x) exists => rank(x) < rank(g(x)).

10

7

8

1 5

30

40

20

25

35

45

60

3

0 0 0 0

0 0

0
0 0

0 0

0

0 0

1 1

1 1

1

1 1 1

2 1

2
2

3

Red-Black Tree

Ø A binary search tree is a red-black tree iff
 integer ranks can be assigned to its nodes
 so as to satisfy the stated 4 properties of
 rank.

Relationship Between rank() And Color

•  (p(x),x) is a red pointer iff rank(x) = rank(p(x)).
•  (p(x),x) is a black pointer iff rank(x) = rank(p(x)) – 1.

Relationship Between rank() And Color

•  Root is black.
•  Other nodes:

§  Red iff pointer from parent is red.
§  Black iff pointer from parent is black.

Relationship Between rank() And Color

•  Given rank(root) and node/pointer colors, remaining
 ranks may be computed on way down.

10

7

8

1 5

30

40

20

25

35

45

60

3

0 0 0 0

0 0

0
0 0

0 0

0

0 0

1 1

1 1

1

1 1 1

2 1

2
2

3

rank(root) & tree height

•  Height <= 2 * rank(root).

10

7

8

1 5

30

40

20

25

35

45

60

3

0 0 0 0

0 0

0
0 0

0 0

0

0 0

1 1

1 1

1

1 1 1

2 1

2
2

3

rank(root) & tree height

•  No external nodes at levels 1, 2, …, rank(root).

rank(root) & tree height

•  No external nodes at levels 1, 2, …, rank(root).
§  So, #nodes >= Σ1 <= i <= rank(root) 2i -1 = 2 rank(root) – 1.
§  So, rank(root) <= log2(n+1).

•  So, height(root) <= 2log2(n+1).

Join(S,m,B)
•  Input

§ Dictionary S of pairs with small keys.
§ Dictionary B of pairs with big keys.
§ An additional pair m.
§ All keys in S are smaller than m.key.
§ All keys in B are bigger than m.key.

•  Output
§ A dictionary that contains all pairs in S and B

 plus the pair m.
§ Dictionaries S and B may be destroyed.

Join Binary Search Trees

•  O(1) time.

S

m

B

Join Red-black Trees

•  When rank(S) = rank(B), use binary search tree
 method.

S

m

B

•  rank(root) = rank(S) + 1 = rank(B) + 1.

rank(S) > rank(B)
•  Follow right child pointers from root of S to first node

 x whose rank equals rank(B).

a b

x

p(x)

S

a b

x

p(x)

m

B

rank(S) > rank(B)
•  If there are now 2 consecutive red pointers/nodes,

 perform bottom-up rebalancing beginning at m.
•  O(rank(S) – rank(B)).

a b

x

p(x)

S

a b

x

p(x)

m

B

rank(S) < rank(B)

•  Follow left child pointers from root of B to first
 node x whose rank equals rank(S).

•  Similar to case when rank(S) > rank(B).

Split(k)

•  Inverse of join.
•  Obtain

§  S … dictionary of pairs with key < k.
§  B … dictionary of pairs with key > k.
§ m … pair with key = k (if present).

Split A Binary Search Tree

b

A

a B

c

C

d

D

e

E

f

m

g

S B

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f

m

g

B S

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f

m

g

B S

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f

m

g

B S

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f

m

g

B S

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f

m

g

B S

Split A Binary Search Tree

b

A

a

B

c

C

d

D

e

E

f
m

g

B S

Split A Red-Black Tree

•  Previous strategy does not split a red-black
 tree into two red-black trees.

•  Must do a search for m followed by a
 traceback to the root.

•  During the traceback use the join operation
 to construct S and B.

Split A Red-Black Tree

b

A

a B

c

C

d

D

e

E

f

m

g

S = f B = g

Split A Red-Black Tree

b

A

a B

c

C

d

D

e

E

S = f B = g

Split A Red-Black Tree

b

A

a B

c

C

d

D

e

E

S = f B = g

S = join(e, E, S)

Split A Red-Black Tree

b

A

a B

c

C

d

D

S = f B = g

S = join(e, E, S)

B = join(B, D, d)

Split A Red-Black Tree

b

A

a B

c

C

S = f B = g

S = join(e, E, S)

B = join(B, D, d)
S = join(c, C, S)

Split A Red-Black Tree

b

A

a B

S = f B = g

S = join(e, E, S)

B = join(B, D, d)
S = join(c, C, S)
B = join(B, B, b)

Split A Red-Black Tree
A

a

S = f B = g

S = join(e, E, S)

B = join(B, D, d)
S = join(c, C, S)
B = join(B, B, b)

S = join(a, A, S)

