Red Black Trees

Colored Nodes Definition

* Binary search tree.

e Each node is colored red or black.

* Root and all external nodes are black.

* No root-to-external-node path has two
consecutive red nodes.

 All root-to-external-node paths have the
same number of black nodes

Red Black Trees

Colored Edges Definition

* Binary search tree.

« Child pointers are colored red or black.
 Pointer to an external node is black.

* No root to external node path has two
consecutive red pointers.

* Every root to external node path has the
same number of black pointers.

Properties

e The height of a red black tree that has n
(internal) nodes Is between log,(n+1) and
2log,(n+1).

Properties

e Start with a red black tree whose height is h;
collapse all red nodes into thelir parent
black nodes to get a tree whose node
-degrees are between 2 and 4, height Is >=
h/2, and all external nodes are at the same
level.

Properties

Let h’>= h/2 be the height of the collapsed
tree.

Internal nodes of collapsed tree have degree
between 2 and 4.

Number of internal nodes in collapsed tree
>= 2.1,

So, n >=2"-1

So,h<=2log, (n+1)

Properties

e O(1) amortized complexity to restructure
following an insert/delete.

e C++ STL implementation
e Java.util. TreeMap => red black tree

Insert

* New pair Is placed in a new node, which is
Inserted into the red-black tree.

* New node color options.

= Black node => one root-to-external-node path has
an extra black node (black pointer).
Hard to remedy.

= Red node => one root-to-external-node path may
have two consecutive red nodes (pointers).

May be remedied by color flips and/or a rotation.

Classification Of 2 Red Nodes/Pointers
gp

PP

\

e XYz a b
= X => relationship between gp and pp.
pp left child of gp => X = L.
= Y => relationship between pp and p.
pleftchildof pp=>Y = L.

= 7 = b (black) if d = null or a black node.
=7z =r(red) If d Is a red node.

P C

XYT
« Color flip.

PP

* Move p, pp, and gp up two levels.
e Continue rebalancing.

LLDb

e Rotate.

a b ¢ d

e Donel
e Same as LL rotation of AVL tree.

LRD

e Rotate.

a b ¢ d

b C

e Donel
e Same as LR rotation of AVL tree.
 RRb and RLb are symmetric.

Delete

e Delete as for unbalanced binary search tree.
* |If red node deleted, no rebalancing needed.

e |f black node deleted, a subtree becomes
one black pointer (node) deficient.

Delete A Black Leaf

e Delete 8.

Delete A Black Leaf

) /@\
N @\q
o © ® O

* v Is root of deficient subtree.

* py IS parent of y.

Delete A Black Degree 1 Node

-~

 Delete 45.
e v IS root of deficient subtree.

Delete A Black Degree 2 Node

* Not possible, degree 2 nodes are never deleted.

Rebalancing Strategy

 Ifyisared node, make It black.

Rebalancing Strategy

 Now, no subtree iIs deficient. Done!
Py
(L}
/ o

© o @\@@

Rebalancing Strategy

* Vv IS a black root (there Is no py).
e Entire tree i1s deficient. Done!

Rebalancing Strategy
v Is black but not th:e root (there is a py).

n
n
n
L]
"CK
.
L
“
.
L
“
.
.
“
.
*

O

. *
*

* *
* *
* .

a b
e XCN

=y Is right child of py => X =R.
= Pointer to v IS black => ¢ = b.
=vhaslredchild=>n=1.

RbO (case 1, py Is black)

Py

b

« Color change.
* Now, py Is root of deficient subtree.
e Continue!

Py

ad

RbO (case 2, py Is red)

Py

b

« Color change.
 Deficiency eliminated.
e Donel

Py

ad

Rb1 (case 1)

Py _—

b

e LL rotation.
 Deficiency eliminated.
e Donel

Rb1 (case 2)

py — W
V Py
y
a b C

* LR rotation.
 Deficiency eliminated.
e Done!

Py

Rb2

_R rotation.
Deficiency eliminated.

Done!

Py

Rr(n)

* n=# of red children of v’s right child w.

Rr(0)

e | L rotation.
e Donel

Rr(1) (case 1)

* LR rotation.
 Deficiency eliminated.
e Donel

Rr(1) (case 2)

 Rotation.
d » Deficiency eliminated.
e Done!

o Rotation.
d » Deficiency eliminated.
e Donel

Red-Black Trees—Rank

o rank(x) = # black pointers on path from x to an
external node.

e Same as #black nodes (excluding x) from x to an
external node.

* rank(external node) = 0.

An Example

Properties Ot rank(x)

e rank(x) = 0 for x an external node.
o rank(x) = 1 for x parent of external node.

Properties Ot rank(x)

e p(x) exists => rank(x) <= rgnk(p(xs)) <= rank(x) + 1.
e g(X) exists => rank(x) < rank(g(x)).

Red-Black Tree

» A binary search tree Is a red-black tree iff
Integer ranks can be assigned to its nodes
SO as to satisfy the stated 4 properties of
rank.

Relationship Between rank() And Color

e Root is black.

e Other nodes:
= Red Iiff pointer from parent is red.
= Black Iff pointer from parent is black.

Relationship Betweenyank() And Color

| /@\ 2

e Glven rank(root) and node/pointer colors, remaining
ranks may be computed on way down.

rank(root) & tree height

2 * rank(root).

e Height <

rank(root) & tree height

* No external nodes at levels 1, 2, ..., rank(root).
= S0, #nodes >= 2%, __; - rank(root) 2! = 2 rank(rooh — 1,
= S0, rank(root) <= log,(n+1).

* 50, height(root) <= 2log,(n+1).

Join(S,m,B)

e Input
= Dictionary S of pairs with small keys.
= Dictionary B of pairs with big keys.
= An additional pair m.
= All keys In S are smaller than m.key.
= All keys In B are bigger than m.key.

e QOutput

= A dictionary that contains all pairs in S and B
plus the pair m.

= Dictionaries S and B may be destroyed.

Join Binary Search Trees

a\

S B

e O(1) time.

Join Red-black Trees

* When rank(S) = rank(B), use binary search tree

method.

S B

 rank(root) = rank(S) + 1 =rank(B) + 1.

rank(S) > rank(B)

* Follow right child pointers from root of S to first node
X whose rank equals rank(B). ‘

‘ ‘
* .

0‘ X
p(X) ., P

rank(S) > rank(B)

 |f there are now 2 consecutive red pointers/nodes,
perform bottom-up rebalancing beginning at m.

e O(rank(S) — rank(B)). o

*
*
*

*
*
*

pX);

rank(S) < rank(B)

* Follow left child pointers from root of B to first
node x whose rank equals rank(S).

o Similar to case when rank(S) > rank(B).

Split(k)

 Inverse of join.

e Obtain
= S ... dictionary of pairs with key < k.
= B ... dictionary of pairs with key > k.
= m ... pair with key = k (if present).

Split A Binary Search Tree
B s

Split A Binary Search Tree

)

Split A Binary Search Tree

> L

a b

Split A Binary Search Tree

N

b

Split A Binary Search Tree

>

"2

f g

Split A Binary Search Tree
B
p g
a D) b
o d

f g

Split A Binary Search Tree

Split A Red-Black Tree

e Previous strategy does not split a red-black
tree into two red-black trees.

* Must do a search for m followed by a
traceback to the root.

 During the traceback use the join operation
to construct S and B.

Split A Red-Black Tree
S = B = g

Split A Red-Black Tree
= B = g

(A

Split A Red-Black Tree
S=f B=g

S = join(e, E, §)

Split A Red-Black Tree
(A) S=f B =g

(=3 S = join(e, E, §)
& b B = join(B, D, d)

Split A Red-Black Tree
S=f B=g

S = join(e, E, §)

b B = join(B, D, d)

S = join(c, C, §)

Split A Red-Black Tree

B=g
/‘\‘— = join(e, E, S)

= join(B, D, d)
S = join(c, C, §)
B = join(B, B, b)

Split A Red-Black Tree
(A)e—— S=1 B=g
a S = join(e, E, §)
B = join(B, D, d)

S = join(c, C, §)
B = join(B, B, b)

S = join(a, A, S)

