B-Trees

 Large degree B-trees used to represent very
large dictionaries that reside on disk.

« Smaller degree B-trees used for internal-
memory dictionaries to overcome cache-miss
penalties.

B-Trees

Main Secondary
Memory Memory
(RAM) (disks)

x ¥ a pointer to some object

operations that access and/or modify the fields of X

DISK - WRITE(X)
others operations that access but do not ™odify the fields of x

AVL Trees

n = 230=10° (approx).
30 <= height <=43.

When the AVL tree resides on a disk, up to
43 disk access are made for a search.

This takes up to (approx) 4 seconds.
Not acceptable.

Red-Black Trees

n = 230=10° (approx).
30 <= height <= 60.

When the red-black tree resides on a disk,
up to 60 disk access are made for a search.

This takes up to (approx) 6 seconds.
Not acceptable.

A Disk Page

an AVL node

I

A Search Tree Node

m-way Search Trees

e Each node has up to m — 1 pairs and m children.
e m = 2 => binary search tree.

4-Way Search Tree

\4 v

k<10 10 <k <30 30<k<35 k> 35

Maximum # Of Pairs

Happens when all internal nodes are m-nodes.
Full degree m tree.
#ofnodes=1+m+m?2+md+ ... + mht
=(m"-1)/(m-1).

Each node has m — 1 pairs.

So, # of pairs = m" - 1.

Capacity Of m-Way Search Tree

i |*10—1 i

- 31 32 %10 -1

Definition Of B-

2-3 And 2-3-4 Trees

e B-tree of order m.
= m-way search tree.
= Not empty => root has at least 2 children.

= Remaining internal nodes (if any) have at least
cell(m/2) children.

= External (or failure) nodes on same level.

e 2-3 tree IS B-tree of order 3.
e 72-3-4 tree IS B-tree of order 4.

B-Trees Of Order 5 And 2

e B-tree of order m.
= m-way search tree.
= Not empty => root has at least 2 children.

= Remaining internal nodes (if any) have at least
cell(m/2) children.

= External (or failure) nodes on same level.

e B-tree of order 5 Is 3-4-5 tree (root may be
2-node though).

o B-tree of order 2 is full binary tree.

Minimum # Of Pairs

e n =# of palrs.
o # of external nodes = n + 1.
e Height = h => external nodes on level h + 1.

level # of nodes
1 1
2 >= 2
3 >= 2*cell(m/2)
h+1 >= 2*ceil(m/2)1

n+1>=2*ceil(m/2)™, h>=1

Minimum # Of Pairs

n+1>=2*ceil(m/2), h>=1

e m = 200.
height # of pairs
2 >= 199
3 >=19,999
A >=2*10°-1
5 >=2*108-1

h <=109 ceiigmiy [(N+1)/2] + 1

Choice Of m

 \Worst-case search time.
= (time to fetch a node + time to search node) * height

search
time

50 400

e convention :
= Root of the B-tree Is always in main memory.
= Any nodes that are passed as parameters must
already have had a DISK_READ operation
performed on them.
e Operations :
= Searching a B-Tree.
= Creating an empty B-tree.
= Splitting a node In a B-tree.
= |nserting a key Into a B-tree.
= Deleting a key from a B-tree.

Node Structure
ncyk,c k,c,... Kk, C,

* C;IS a pointer to a subtree.
ki Is adictionary pair(KEY).

Search
BT Search(x, k)
1<— 0
while 1<n and k>Kk_ [X]
do 1<1+1
If 1<n and k=k_[X]
then return(X,l +1)
If leaf[x] then return NULL

else DISK-READ(C.[X])
return B-Tree-Search(C.[x],k)

* B-Tree-Created(T) :
= Algorithm :
B-Tree-Create(T)
{ x < Allocate — Node()
Leaf[x] < TRUE
n(x] <0
DISK - WRITE(x)

root[T] «— x

J
= {time : o)

Insert

Insert 107

Insert 187
15 20

Insertion into a full leaf triggers bottom-up node
splitting pass.

Split An Overfull Node

mcyK,Cc Kk, C, ... Kk C

C; IS a pointer to a subtree.
ki 1s a dictionary pair(KEY).

cell(m/2)-1 ¢, Ky €1 K, C; ... Kegitmiz)-1 Cesitmiz)-1

m-Cell(M/2) Ceeitimiz) Keeilmiz)+1 Ceeitimiz)+1 -+ Km Cm

* Keeiimso) PIUS pointer to new node Is inserted In
parent.

Insert

=5 I

e Insert a pair with key = 2.

* New pair goes into a 3-node.

Insert Into A Leaf 3-node

* Insert new pair so that the 3 keys are In
ascending order.

29

« Split overflowed node around middle key.

2

L @

 Insert middle key and pointer to new node
Into parent.

Insert

=5 I

e Insert a pair with key = 2.

e Insert a pair with key = 2 plus a pointer into parent.

o ‘
L @w

« Now, Insert a pair with key = 18.

Insert Into A Leaf 3-node

* Insert new pair so that the 3 keys are In
ascending order.

 Split the overflowed node.

 Insert middle key and pointer to new node
Into parent.

e Insert a pair with key = 18.

e Insert a pair with key = 17 plus a pointer into parent.

e Insert a pair with key = 17 plus a pointer into parent.

* Now, Insert a pair with key = 7.

e Insert a pair with key = 6 plus a pointer into parent.

e Insert a pair with key = 4 plus a pointer into parent.

Insert

B

@ {\‘ © ® @ o

e Insert a pair with key = 8 plus a pointer into parent.

 There Is no parent. So, create a new root.

Insert

© /\0 ® @

* Height increases by 1.

30 40

* Btree::InsertNode(Key k, Element e)
{

bool overflow = Insert(root, k, e);

e Bool Insert(node* x, Key k, Element e)
{
If (leaf(x))
InsertLeaf(x, k, e);
If (size(X) > m-1) return true;
else return false;
Idx = keySearch(x, K);
bool overflow = Insert(x->CJ[idx], k, e);

If (overflow)
<Key, Node*> newpair = split(x->C[idx]);
InsertPair(x, newpair);
If(size(x) > m-1)
return true;
else return false;

 Exercises: P609-3

