
Web Data Management
		

	 	Compression and Search
			

	Lecture 3: Search and basic
	 	 	indexing

.

What is Pattern Matching?

• Definition:
– given a text string T and a pattern string P,

find the pattern inside the text
• T: “the rain in spain stays mainly on the plain”
• P: “n th”

		The Brute Force Algorithm
					

• Check each position in the text T to see
	if the pattern P starts in that position

T: a n d r e w
			

	P: r e w

T: a n d r e w
			

	P: r e w

P moves 1 char at a time through T

• The brute force

• Example of a worst case:
– T: "aaaaaaaaaaaaaaaaaaaaaaaaaah"
– P: "aaah"

• Example of a more average case:
– T: "a string searching example is standard"
– P: "store"

	 	The KMP Algorithm
			

• The Knuth-Morris-Pratt (KMP) algorithm
	looks for the pattern in the text in a left-to-
	right

• If a mismatch occurs between the text and
	pattern P at P[j], what is the most we can
	shift the pattern to avoid wasteful
	comparisons?

Summary

• If a mismatch occurs between the text and
	pattern P at P[j], what is the most we can
	shift the pattern to avoid wasteful
	comparisons?

• Answer: the largest prefix of P[0 .. j-1] that
is a suffix of P[1 .. j-1]

Summary

k 0 1 23 4
F(k) 0 0 10 1

Example

T:
		

	P:

KMP Advantages

• KMP runs in optimal time: O(m+n)
– very fast

• The algorithm never needs to move
backwards in the input text, T
– this makes the algorithm good for processing
	very large files that are read in from external
	devices or through a network stream

KMP Disadvantages

• KMP doesn’t work so well as the size of
the alphabet increases
– more chance of a mismatch (more possible

mismatches)
– mismatches tend to occur early in the pattern,
	but KMP is faster when the mismatches occur
	later

The Boyer-Moore Algorithm

The Boyer-Moore Algorithm

• The Boyer-Moore pattern matching
	algorithm is based on two techniques.

• 1. The looking-glass technique
– find P in T by moving backwards through P,

starting at its end

• 2. The character-jump technique
	– when a mismatch occurs at T[i] == x
	– the character in pattern P[j] is not the
	 	same as T[i]

• There are 3 possible
	cases.

T
									

	P

		x a
			i
							

b a
	
	j

	 	Case 1
			

• If P contains x somewhere, then try to
	shift P right to align the last occurrence
	of x in P with T[i].

T x a
i

P

j
x c b a

T

P

jnew

x c b a

x a ? ?
	inew and

move i and
j right, so
	j at end

	 	Case 2
		

• If P contains x somewhere, but a shift right to
	the last occurrence is not possible, then
	shift P right by 1 character to T[i+1].

T

P
cw a x

	j

T

P c w a x
	jnew

and
move i and

x a x
	i

	j right, so
	 	j at end

		

x is after
j position

x a x ?
	inew

	 	Case 3
		

• If cases 1 and 2 do not apply, then shift P to
	align P[0] with T[i+1].

T x a
i

j
P d c b a

T

jnew

P d c b a

and
move i and
	j right, so
	 	j at end

No x in P

x a ? ? ?
	inew

0

Boyer-Moore Example (1)

T:

P:

	 	 	Last Occurrence Function
			

• Boyer-Moore’s algorithm preprocesses the
	pattern P and the alphabet A to build a last
	occurrence function L()
	 	– L() maps all the letters in A to integers

• L(x) is defined as: // x is a letter in A
– the largest index i such that P[i] == x, or
– -1 if no such index exists

x a b c d
L(x) 4 5 3 -1

L() Example

• A = {a, b, c, d}
• P: "abacab"

P a b a c a b
	

	0 1 2 3 4 5

L() stores indexes into P[]

x a b c d
L(x) 4 5 3 −1

Boyer-Moore Example (2)

T:
		

P:

Analysis
• Boyer-Moore worst case running time is

O(nm + A)

• But, Boyer-Moore is fast when the alphabet (A)
is large, slow when the alphabet is small.
	– e.g. good for English text, poor for binary

• Boyer-Moore is significantly faster than brute
force for searching English text.

Worst Case Example

• T: "aaaaa…a"
• P: "baaaaa"

	T:
				

P:

Regular Expressions
• Notation to specify a language

– Declarative
– Sort of like a programming language.

• Fundamental in some languages like perl and applications
like grep or lex

– Capable of describing the same thing as a NFA
• The two are actually equivalent, so RE = NFA = DFA

– We can define an algebra for regular expressions

•

	Definition of a Regular
	 	Expression

		
R is a regular expression if it is:

1.
		
2.
3.
4.
		
5.
		
6.

a for some a in the alphabet ∑, standing for the language
{a}
ε, standing for the language {ε}
Ø, standing for the empty language
R1+R2, where R1 and R2 are regular expressions, and +
signifies union (sometimes | is used)
R1R2, where R1 and R2 are regular expressions and this
signifies concatenation
R*, where R is a regular expression and signifies closure

	7. (R), where R is a regular expression, then a parenthesized
	 	R is also a regular expression

This definition may seem circular, but 1-3 form the basis
Precedence: Parentheses have the highest precedence,
followed by *, concatenation, and then union.

Using Regular Expressions

• Regular expressions are a standard
programmer's tool.

• Built in to Java, Perl, Unix, Python,

•
•
•
		
•
•
•
•
		
•
•
		
•
		
•

	RE Examples
				
L(001) = {001}
L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … }
L(0*10*) = {1, 01, 10, 010, 0010, …} i.e. {w | w has exactly a single
1}
L(∑∑)* = {w | w is a string of even length}
L((0(0+1))*) = { ε, 00, 01, 0000, 0001, 0100, 0101, …}
L((0+ε)(1+ ε)) = {ε, 0, 1, 01}
L(1Ø) = Ø ; concatenating the empty set to any set yields the
empty set.
Rε = R
R+Ø = R
		
Note that R+ε may or may not equal R (we are adding ε to the
language)
Note that RØ will only equal R if

Exercise 1

• Let ∑ be a finite set of symbols
• ∑ = {10, 11}, ∑* = ?

Answer

Answer: ∑* = {є, 10, 11, 1010, 1011, 1110,
1111, …}

Exercises 2

• L1 = {10, 1}, L2 = {011, 11}, L1L2 = ?

Answer

• L1L2 = {10011, 1011, 111}

Exercises 3

• Write RE for
– All strings of 0’s and 1’s
– All strings of 0’s and 1’s with at least 2
consecutive 0’s
– All strings of 0’s and 1’s beginning with 1 and

not having two consecutive 0’s

Answer

• (0|1)*
All strings of 0’s and 1’s
• (0|1)*00(0|1)*
All strings of 0’s and 1’s with at least 2
consecutive 0’s
• (1+10)*
All strings of 0’s and 1’s beginning with 1
and not having two consecutive 0’s

More Exercises

• 1) (0|1)*011
• 2) 0*1*2*
• 3) 00*11*22*

More Exercises (Answers)

1) (0|1)*011
Answer: all strings of 0’s and 1’s ending in

011
2) 0*1*2*
• Answer: any number of 0’s followed by
any number of 1’s followed by any number
of 2’s
• 3) 00*11*22*
Answer: strings in 0*1*2 with at least one of
each symbol

NFA

•
•
•
•

	Deterministic Finite Automata (DFA)
						

Simple machine with N states.
Begin in start state.
Read first input symbol.
Move to new state, depending on current
	state and input symbol.

• Repeat until last input symbol read.
• Accept or reject string depending on label

	of last state.

DFA

Theory of DFAs and REs

• RE. Concise way to describe a set of
strings.

• DFA. Machine to recognize whether a
given string is in a given set.

• Duality: for any DFA, there exists a
	regular expression to describe the same
	set of strings; for any regular expression,
	there exists a DFA that recognizes the
	same set.

	Duality Example
					

• DFA for multiple of 3 b’s:

• RE for multiple of 3 b’s:

Fundamental Questions

• Which languages CANNOT be described
by any RE?

• Set of all bit strings with equal number of
0s and 1s.

• Set of all decimal strings that represent
prime numbers.

• Many more. . . .

Problem 1

• Make a DFA that accepts the strings in the
	language denoted by regular expression
	ab*a

Solution

• ab*a:

Problem 2

• Write the RE for the following automata:

Solution

• a(a|b)*a

DFA to RE: State Elimination

• Eliminates states of the automaton and
replaces the edges with regular
expressions that includes the behavior of
the eliminated states.

• Eventually we get down to the situation
	with just a start and final node, and this is
	easy to express as a RE

•
			
•
•

	State Elimination
				
Consider the figure below, which shows

DFA to RE via State Elimination (1)

• Starting with intermediate states and then
	moving to accepting states, apply the state
	elimination process to produce an
	equivalent automaton with regular
	expression labels on the edges.

• The result will be a one or two state
automaton with a start state and accepting
state.

	 	DFA to RE State Elimination (2)
					

• If the two states are different, we will have an
	automaton that looks like the following:

• We can describe this automaton as: (R |
	SU*T)*SU*

	DFA to RE State Elimination (3)
					

• If the start state is also an accepting state, then
	 	we must

DFA to RE State Elimination (4)

• If there are n accepting states, we must
	repeat the above steps for each accepting
	states to get n different regular
	expressions, R1, R2, … Rn.

• For each repeat we turn any other
	accepting state to non-accepting.

• The desired regular expression for the
	automaton is then the union of each of the
	n regular expressions: R1 U R2… U RN

	DFA->RE Example
					

• Convert the following to a RE:

• First convert the edges to RE’s:

	DFA -> RE Example (2)
					

• Eliminate State 1:

• Note edge from 3->3

• Answer: (0+10)*11(0+1)*

	 	Second Example
					

• Automata that
	accepts even number
	of 1’s

• Eliminate state 2:

Second Example (2)

• Two accepting states, turn off state 3 first

• This is just 0*; can ignore going to state 3 since
	we would “die”

Second Example (3)

• Turn off state 1 second:

• This is just 0*10*1(0|10*1)*
• Combine from previous slide to get 0* | 0*10*1(0|10*1)*

57

	 	Text search
			

58

Inverted Index
				
	For each term t, we store a list of all documents that contain t.

dictionary
	58

postings

59

Create postings lists, determine document
frequency

59

60

Positional indexes
								

	§Postings lists in a nonpositional index: each posting
	is just a docID
	§Postings lists in a positional index: each posting is a
	docID and a list of positions

61

Positional indexes: Example
		

	Query: “to1 be2 or3 not4 to5 be6”
 TO, 993427:

	 	‹ 1: ‹7, 18, 33, 72, 86, 231›;
	 	 	2: ‹1, 17, 74, 222, 255›;
	 	 	4: ‹8, 16, 190, 429, 433›;
	 	 	5: ‹363, 367›;
	 	 	7: ‹13, 23, 191›; . . . ›
	BE, 178239:
	 	‹ 1: ‹17, 25›;
	 	 	4: ‹17, 191, 291, 430, 434›;
	 	 	5: ‹14, 19, 101›; . . . ›

 Document 4 is a match!

62

	 	 	 	 	Signature files
		
• Definition

	– Word-oriented index structure based on hashing.
	– Use liner search.
	– Suitable for not very large texts.

• Structure
	– Based on a Hash function that maps words to bit
	 	masks.
	– The text is divided in blocks.
	 	 	• Bit mask of block is obtained by bitwise ORing the
	 	 	 	signatures of all the words in the text block.
	 	 	• Word not found, if no match between all 1 bits in the
	 	 	 	query mask and the block mask.

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a text. A text has many words. Words are made from letters

Text signature

h(text)
h(many)
h(words)
h(made)
h(letters)

= 000101
= 110000
= 100100
= 001100
= 100001

Signature function

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a text. A text has many words. Words are made from letters

Text signature

h(text)
h(many)
h(words)
h(made)
h(letters)

= 000101
= 110000
= 100100
= 001100
= 100001

Signature function

634

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a text. A text has many words. Words are made from letters

Text signature

h(text)
h(many)
h(words)
h(made)
h(letters)

= 000101
= 110000
= 100100
= 001100
= 100001

Signature function

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a text. A text has many words. Words are made from letters

Text signature

h(text)
h(many)
h(words)
h(made)
h(letters)

= 000101
= 110000
= 100100
= 001100
= 100001

Signature function

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a text. A text has many words. Words are made from letters

Text signature

h(text)
h(many)
h(words)
h(made)
h(letters)

= 000101
= 110000
= 100100
= 001100
= 100001

Signature function

63

000101 110101 100100 101101

	 	 	Signature files
			

• Example:
			

	 	block 1 block 2 block3 block 4
	This is a

64

	 	 	 	 	Signature files
			

• False drop Problem
	– The corresponding bits are set even though
	 	the word is not there!
	– The design should insure that the
	 	probability of false drop is low.
	 	 	• Also the Signature file should be as short as
	 	 	 	possible.
	– Enhance the hashing function to minimize
	 	the error probability.

in the block.

•
																							

•

	 	 	 	Signature files
		

	Searching
1. For a single word, Hash word to a bit mask W.
2. For phrases,
	 	1) Hash words in query to a bit mask.
	 	2) Bitwise OR of all the query masks to a bit mask W.

3. Compare W to the bit masks Bi of all the text blocks.
	 	• If all the bits set in W are also in Bi, then text block may
	 	 	contain the word.
4. For all candidate text blocks, an online traversal must
	 	be performed to verify if the actual matches are there.
	Construction
1. Cut the text in blocks.
2. Generate an entry of the signature file for each block.

• This entry is the bitwise OR of the signatures of all the words
	65

66

Suffix trees and suffix arrays

67

	Trie
			

• A tree representing a set of strings.

a

c

b

c

e

e

f

d b

f

e g

{
aeef
ad
bbfe
bbfg
c }

!!	Each33 3labeled 3byal

e

t

t

e

r

,

3

no3two3edges 3outgoing33

t

h

e3node3are 3l

a

b
e
l

e
d

3the3 same.3Each33c
o

r

r

e

s

p

o

n

d

s

to33l
e

a

f
.
3

69

	Compressed Trie
			

• Compress unary nodes, label edges by strings

a

c

b

c

e

e

f

d b

f

e g

a

c

bbf

c

eef
d

e g

è

70

	Suffix tree
		

Given a string s a suffix tree of s is a
compressed trie of all suffixes of s
			

To make these suffixes prefix-free we

72

Trivial algorithm to build a Suffix tree

Put the largest suffix in
																
Put the suffix bab$ in

		 						a
		 					b
		 				a
		 			b
		 		$
								
		 			a
		 	b
		a
	b
$

b
	$

b
	a

73

Put the suffix ab$ in

		 	 	a
		 	b
		a
	b
$

b
	$

b
	a

	a
b

	 	a
	b
$

b
	$

b
	a

$

75

Put the suffix $ in

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

$

76

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

$

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

We will also label each leaf with the starting point of the corres. suffix.
		

	$

77

	Analysis
			

Takes O(n2) time to build.

We will see how to do it in O(n) time

78

What can we do with it ?

Exact string matching:
Given a Text T, |T| = n, preprocess it such

that when a pattern P, |P|=m, arrives
you can quickly decide when it occurs in
T.

W e may also want to find all occurrences
of P in T

79

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

	Exact string matching
		
In preprocessing we just build a suffix tree in O(n) time
	

	 	$

Given a pattern P =

79

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		

80

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

$

If we did not get stuck traversing the pattern then the pattern occurs in the text.
					
Each leaf in the subtree below the node we reach corresponds to an occurrence.
					
By traversing this subtree we get all k occurrences in O(n+k) time

81

Generalized suffix tree
Given a set of strings S a generalized suffix
tree of S is a compressed trie of all suffixes of
s ∈ S
To make these suffixes prefix-free we add a
special char, say $, at the end of s

To associate each suffix with a unique string
in S add a different special char to each s

82

b#
ab#
aab#

$
b$
ab$
bab$
abab$

{
										
}

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									

a
	b

2

3

	#
				
4

4

	Generalized suffix tree (Example)
			

Let s1=abab and s2=aab here is a generalized
suffix tree for s1and s2
	

	 	#

83

	So what can we do with it ?
				

Matching a pattern against a database of
strings

84

Longest common substring (of two strings)
			
	Every node with a leaf descendant from

string s1 and a leaf descendant from string

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									
	#

a
	b

2

3

	#
				
4

4

S2 represents a maximal common substring

and vice versa.
					
Find such node with largest
“string depth”

84

Longest common substring (of two strings)
			
	Every node with a leaf descendant from

string s1 and a leaf descendant from string

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									
	#

a
	b

2

3

	#
				
4

4

S2 represents a maximal common substring

and vice versa.
					
Find such node with largest
“string depth”

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

87

	 	Finding maximal palindromes
			

	• A palindrome: caabaac, cbaabc
	• Want to find all maximal palindromes in a
	 		string s
				

	Let s = cbaaba
					
The maximal palindrome with center between i-1 and i is the LCP of the suffix at position

i of s and the suffix at position m-i+1 of sr

88

	Maximal palindromes algorithm
		

Prepare a generalized suffix tree for
s = cbaaba$ and sr = abaabc#
				

For every i find the LCA of suffix i of s and
suffix m-i+1 of sr

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

90

	Analysis
			

O(n) time to identify all palindromes

91

	 	Drawbacks
			

• Suffix trees consume a lot of space
					

• It is O(n) but the constant is quite big
					

• Notice that if we indeed want to traverse
	an edge in O(1) time then we need an
	array of ptrs. of size |Σ| in each node

92

	 	 	Suffix array
			

• We loose some of the functionality but we
	 	save space.
			

	Let s = abab
	Sort the suffixes lexicographically:
	ab, abab, b, bab
	

	The suffix array gives the indices of the
	suffixes in sorted order

3 1 4 2

93

	 	How do we build it ?
			

• Build a suffix tree
• Traverse the tree in DFS, lexicographically

	picking edges outgoing from each node
	and fill the suffix array.

					

• O(n) time

94

	How do we search for a pattern ?
				

• If P occurs in T then all its occurrences are
		consecutive in the suffix array.

					

• Do a binary search on the suffix array
					

• Takes O(mlogn) time

95

	Example
	

Let S = mississippi
i
ippi
issippi
ississippi

5
	
2

11
	
	8

	1
	
10
	
	9
	
	7 	
	4
	
	6
	
	3

mississippi
pi
ppi
sippi
sisippi
	ssippi
		ssissippi

L

Let P = issa

	M
														
R

•

	 	 	 	 	Supra index
			
Structure
	– Suffix arrays are space efficient implementation of suffix
	 	trees.
	– Simply an array containing all the pointers to the text suffixes
	 	listed in lexicographical order.
	– Supra-indices:
	 	 	• If the suffix array is large, this binary search can perform
	 	 	 	poorly because of the number of random disk accesses.
	 	 	• Suffix arrays are designed to allow binary searches done by
	 	 	 	comparing the contents of each pointer.
	 	 	• To remedy this situation, the use of supra-indices over the
	 	 	 	suffix array has been proposed.
							
	 	 	 	 	 	96

97

	 	 	Supra index
			

• Example
		
																			1 6 9 11 17 19 24 28 33 40 46 50 55 60

	This is a text. A text has many words. Words are made from letters

60 50 28 19 11 40 33 SuffixArray

60 50 28 19 11 40 33

lett text word

SuffixArray

Supra-Index

97

	 	 	Supra index
			

• Example
		

	1 6 9 11 17 19 24 28 33 40 46 50 55 60
	This is a text. A text has many words. Words are made from letters

60 50 28 19 11 40 33 SuffixArray

50 19 11 33

lett
				
	60

	text
	

