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What is Pattern Matching? 

•  Definition: 
– given a text string T and a pattern string P, 

find the pattern inside the text 
•  T:  “the rain in spain stays mainly on the plain” 
•  P: “n th” 



		The Brute Force Algorithm 
					

•  Check each position in the text T to see 
	if the pattern P starts in that position 

T:    a  n  d  r  e  w 
			

	P:   r  e  w 

T:    a  n  d  r  e  w 
			

	P:   r  e  w 

P moves 1 char at a time through T 
	.... 





•  The brute force 



•  Example of a worst case: 
– T: "aaaaaaaaaaaaaaaaaaaaaaaaaah" 
– P: "aaah" 

•  Example of a more average case: 
– T: "a string searching example is standard" 
– P: "store" 



	 	The KMP Algorithm 
			

•  The Knuth-Morris-Pratt (KMP) algorithm 
	looks for the pattern in the text in a left-to- 
	right



•  If a mismatch occurs between the text and 
	pattern P at P[j], what is the most we can 
	shift the pattern to avoid wasteful 
	comparisons? 

Summary 



•  If a mismatch occurs between the text and 
	pattern P at P[j], what is the most we can 
	shift the pattern to avoid wasteful 
	comparisons? 

•  Answer: the largest prefix of P[0 .. j-1] that 
is a suffix of P[1 .. j-1] 

Summary 



k 0 1 23 4 
F(k) 0 0 10 1 

Example 

T: 
		

	P: 



KMP Advantages 

•  KMP runs in optimal time: O(m+n) 
– very fast 

•  The algorithm never needs to move 
backwards in the input text, T 
– this makes the algorithm good for processing 
	very large files that are read in from external 
	devices or through a network stream 



KMP Disadvantages 

•  KMP doesn’t work so well as the size of 
the alphabet increases 
– more chance of a mismatch (more possible 

mismatches) 
– mismatches tend to occur early in the pattern, 
	but KMP is faster when the mismatches occur 
	later 



The Boyer-Moore Algorithm 



The Boyer-Moore Algorithm 

•  The Boyer-Moore pattern matching 
	algorithm is based on two techniques. 

•  1.  The looking-glass technique 
– find P in T by moving backwards through P, 

starting at its end 



•  2. The character-jump technique 
	– when a mismatch occurs at T[i] == x 
	– the character in pattern P[j] is not the 
	 	same as T[i] 

•   There are 3 possible 
	cases. 

T 
									

	P 

		x   a 
			i 
							

b a 
	
	j 



	 	Case 1 
			

•   If P contains x somewhere, then try to 
	shift P right to align the last occurrence 
	of x in P with T[i]. 

T x   a 
i 

P 

j 
x c  b a 

T 

P 

jnew 

x c  b a 

x   a  ?  ? 
	inew and 

move i and 
j right, so 
	j at end 



	 	Case 2 
		

•   If P contains x somewhere, but a shift right to 
	the last occurrence is not possible, then 
	shift P right by 1 character to T[i+1]. 

T 

P 
cw a  x 

	j 

T 

P c w a  x 
	jnew 

and 
move i and 

x  a   x 
	i 

	j right, so 
	 	j at end 

		

x is after 
j position 

x a   x  ? 
	inew 



	 	Case 3 
		

•   If cases 1 and 2 do not apply, then shift P to 
	align P[0] with T[i+1]. 

T x   a 
i 

j 
P  d c  b a 

T 

jnew 

P  d c  b a 

and 
move i and 
	j right, so 
	 	j at end 

No x in P 

x   a  ?  ?  ? 
	inew 

0 



Boyer-Moore Example (1) 

T: 

P: 



	 	 	Last Occurrence Function 
			

•  Boyer-Moore’s algorithm preprocesses the 
	pattern P and the alphabet A to build a last 
	occurrence function L() 
	 	– L() maps all the letters in A to integers 

•  L(x) is defined as: // x is a letter in A 
– the largest index i such that P[i] == x, or 
– -1 if no such index exists 



x a b c d 
L(x) 4 5 3 -1 

L() Example 

•  A = {a, b, c, d} 
•  P: "abacab" 

P   a   b   a   c   a   b 
	

	0   1   2   3   4   5 

L() stores indexes into P[] 



x a b c d 
L(x) 4 5 3 −1 

Boyer-Moore Example (2) 

T: 
		

P: 



Analysis 
•   Boyer-Moore worst case running time is 

O(nm + A) 

•   But, Boyer-Moore is fast when the alphabet (A) 
is large, slow when the alphabet is small. 
	– e.g. good for English text, poor for binary 

•   Boyer-Moore is significantly faster than brute 
force for searching English text. 



Worst Case Example 

•  T: "aaaaa…a" 
•  P: "baaaaa" 

	T: 
				

P: 



Regular Expressions 
•   Notation to specify a language 

– Declarative 
– Sort of like a programming language. 

•  Fundamental in some languages like perl and applications 
like grep or lex 

– Capable of describing the same thing as a NFA 
•  The two are actually equivalent, so RE = NFA = DFA 

– We can define an algebra for regular expressions 



• 

	Definition of a Regular 
	 	Expression 

		
R is a regular expression if it is: 

1. 
		
2. 
3. 
4. 
		
5. 
		
6. 

a for some a in the alphabet ∑, standing for the language 
{a} 
ε, standing for the language {ε} 
Ø, standing for the empty language 
R1+R2, where R1 and R2 are regular expressions, and + 
signifies union  (sometimes | is used) 
R1R2, where R1 and R2 are regular expressions and this 
signifies concatenation 
R*, where R is a regular expression and signifies closure 

	7.      (R), where R is a regular expression, then a parenthesized 
	 	R is also a regular expression 

This definition may seem circular, but 1-3 form the basis 
Precedence: Parentheses have the highest precedence, 
followed by *, concatenation, and then union. 



Using Regular Expressions 

•  Regular expressions are a standard 
programmer's tool. 

•  Built in to Java, Perl, Unix, Python, . . . . 



• 
• 
• 
		
• 
• 
• 
• 
		
• 
• 
		
• 
		
• 

	RE Examples 
				
L(001) = {001} 
L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … } 
L(0*10*) = {1, 01, 10, 010, 0010, …}     i.e. {w | w has exactly a single 
1} 
L(∑∑)* = {w | w is a string of even length} 
L((0(0+1))*) = { ε, 00, 01, 0000, 0001, 0100, 0101, …} 
L((0+ε)(1+ ε)) = {ε, 0, 1, 01} 
L(1Ø)  = Ø     ;  concatenating the empty set to any set yields the 
empty set. 
Rε = R 
R+Ø = R 
		
Note that R+ε  may or may not equal R (we are adding ε to the 
language) 
Note that RØ will only equal R if

 



Exercise 1 

•  Let ∑ be a finite set of symbols 
•  ∑ = {10, 11}, ∑* = ? 



Answer 

Answer: ∑* = {є, 10, 11, 1010, 1011, 1110, 
1111, …} 



Exercises 2 

•  L1 = {10, 1}, L2 = {011, 11}, L1L2 = ? 



Answer 

•  L1L2 = {10011, 1011, 111} 



Exercises 3 

•  Write RE for 
– All strings of 0’s and 1’s 
– All strings of 0’s and 1’s with at least 2 
consecutive 0’s 
– All strings of 0’s and 1’s beginning with 1 and 

not having two consecutive 0’s 



Answer 

•  (0|1)* 
All strings of 0’s and 1’s 
•  (0|1)*00(0|1)* 
All strings of 0’s and 1’s with at least 2 
consecutive 0’s 
•  (1+10)* 
All strings of 0’s and 1’s beginning with 1 
and not having two consecutive 0’s 



More Exercises 

•  1) (0|1)*011 
•  2) 0*1*2* 
•  3) 00*11*22* 



More Exercises (Answers) 

1) (0|1)*011 
Answer: all strings of 0’s and 1’s ending in 

011 
2) 0*1*2* 
•  Answer: any number of 0’s followed by 
any number of 1’s followed by any number 
of 2’s 
•  3) 00*11*22* 
Answer: strings in 0*1*2 with at least one of 
each  symbol 



NFA 



• 
• 
• 
• 

	Deterministic Finite Automata (DFA) 
						

Simple machine with N states. 
Begin in start state. 
Read first input symbol. 
Move to new state, depending on current 
	state and input symbol. 

•  Repeat until last input symbol read. 
•  Accept or reject string depending on label 

	of last state. 



DFA 



Theory of DFAs and REs 

•  RE. Concise way to describe a set of 
strings. 

•  DFA. Machine to recognize whether a 
given string is in a given set. 

•  Duality: for any DFA, there exists a 
	regular expression to describe the same 
	set of strings; for any regular expression, 
	there exists a DFA that recognizes the 
	same set. 



	Duality Example 
					

•   DFA for multiple of 3 b’s: 

•   RE for multiple of 3 b’s: 



Fundamental Questions 

•  Which languages CANNOT be described 
by any RE? 

•  Set of all bit strings with equal number of 
0s and 1s. 

•   Set of all decimal strings that represent 
prime numbers. 

•   Many more. . . . 



Problem 1 

•  Make a DFA that accepts the strings in the 
	language denoted by regular expression 
	ab*a 



Solution 

• ab*a: 



Problem 2 

•  Write the RE for the following automata: 



Solution 

•   a(a|b)*a 



DFA to RE: State Elimination 

•  Eliminates states of the automaton and 
replaces the edges with regular 
expressions that includes the behavior of 
the eliminated states. 

•  Eventually we get down to the situation 
	with just a start and final node, and this is 
	easy to express as a RE 



• 
			
• 
• 

	State Elimination 
				
Consider the figure below, which shows





DFA to RE via State Elimination (1) 

•  Starting with intermediate states and then 
	moving to accepting states, apply the state 
	elimination process to produce an 
	equivalent automaton with regular 
	expression labels on the edges. 

•  The result will be a one or two state 
automaton with a start state and accepting 
state. 



	 	DFA to RE State Elimination (2) 
					

•   If the two states are different, we will have an 
	automaton that looks like the following: 

•   We can describe this automaton as: (R | 
	SU*T)*SU* 



	DFA to RE State Elimination (3) 
					

•   If the start state is also an accepting state, then 
	 	we must 



DFA to RE State Elimination (4) 

•  If there are n accepting states, we must 
	repeat the above steps for each accepting 
	states to get n different regular 
	expressions, R1, R2, … Rn. 

•  For each repeat we turn any other 
	accepting state to non-accepting. 

•  The desired regular expression for the 
	automaton is then the union of each of the 
	n regular expressions:  R1 U R2… U RN 



	DFA->RE Example 
					

•   Convert the following to a RE: 

•   First convert the edges to RE’s: 



	DFA -> RE Example (2) 
					

•   Eliminate State 1: 

•   Note edge from 3->3 

•   Answer:  (0+10)*11(0+1)* 



	 	Second Example 
					

•   Automata that 
	accepts even number 
	of 1’s 

•   Eliminate state 2: 



Second Example (2) 

•   Two accepting states, turn off state 3 first 

•   This is just 0*;  can ignore going to state 3 since 
	we would “die” 



Second Example (3) 

•   Turn off state 1 second: 

•   This is just 0*10*1(0|10*1)* 
•   Combine from previous slide to get 0* | 0*10*1(0|10*1)* 



57 

	 	Text search 
			



58

Inverted Index 
				
	For each term t, we store a list of all documents that contain t. 

dictionary 
	58

postings 



59

Create postings lists, determine document 
frequency 

59
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Positional indexes 
								

	§Postings lists in a nonpositional index: each posting
	is just a docID
	§Postings lists in a positional index: each posting is a
	docID and a list of positions



61

Positional indexes: Example 
		

	Query: “to1 be2 or3 not4 to5 be6”  
   TO, 993427:

	 	‹ 1: ‹7, 18, 33, 72, 86, 231›;
	 	 	2: ‹1, 17, 74, 222, 255›;
	 	 	4: ‹8, 16, 190, 429, 433›;
	 	 	5: ‹363, 367›;
	 	 	7: ‹13, 23, 191›; . . . ›
	BE, 178239:
	 	‹ 1: ‹17, 25›;
	 	 	4: ‹17, 191, 291, 430, 434›;
	 	 	5: ‹14, 19, 101›; . . . ›

 Document 4 is a match!



62 

	 	 	 	 	Signature files 
		
•   Definition 

	– Word-oriented index structure based on hashing. 
	– Use liner search. 
	– Suitable for not very large texts. 

•   Structure 
	– Based on a Hash function that maps words to bit 
	 	masks. 
	– The text is divided in blocks. 
	 	 	•  Bit mask of block is obtained by bitwise ORing the 
	 	 	 	signatures of all the words in the text block. 
	 	 	•  Word not found, if no match between all 1 bits in the 
	 	 	 	query mask and the block mask. 



63 

000101 110101 100100 101101 

	 	 	Signature files 
			

•  Example: 
			

	 	block 1                  block 2                       block3                          block 4 
	This  is  a  text.  A  text  has  many  words.  Words  are  made  from  letters 

Text signature 

h(text) 
h(many) 
h(words) 
h(made) 
h(letters) 

= 000101 
= 110000 
= 100100 
= 001100 
= 100001 

Signature function 
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000101 110101 100100 101101 

	 	 	Signature files 
			

•  Example: 
			

	 	block 1                  block 2                       block3                          block 4 
	This  is  a  text.  A  text  has  many  words.  Words  are  made  from  letters 

Text signature 

h(text) 
h(many) 
h(words) 
h(made) 
h(letters) 

= 000101 
= 110000 
= 100100 
= 001100 
= 100001 

Signature function 



634
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000101 110101 100100 101101 

	 	 	Signature files 
			

•  Example: 
			

	 	block 1                  block 2                       block3                          block 4 
	This  is  a



64 

	 	 	 	 	Signature files 
			

•  False drop Problem 
	– The corresponding bits are set even though 
	 	the word is not there! 
	– The design should insure that the 
	 	probability of false drop is low. 
	 	 	• Also the Signature file should be as short as 
	 	 	 	possible. 
	– Enhance the hashing function to minimize 
	 	the error probability. 



in the block. 

• 
																							

• 

	 	 	 	Signature files 
		

	Searching 
1.   For a single word, Hash word to a bit mask W. 
2.   For phrases, 
	 	1)   Hash words in query to a bit mask. 
	 	2)   Bitwise OR of all the query masks to a bit mask W. 

3.   Compare W to the bit masks Bi of all the text blocks. 
	 	•     If all the bits set in W are also in Bi, then text block may 
	 	 	contain the word. 
4.   For all candidate text blocks, an online traversal must 
	 	be performed to verify if the actual matches are there. 
	Construction 
1.   Cut the text in blocks. 
2.   Generate an entry of the signature file for each block. 

• This entry is the bitwise OR of the signatures of all the words 
	65 
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Suffix trees and suffix arrays 
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	Trie 
			

•  A tree representing a set of strings. 

a 

c 

b 

c 

e 

e 

f 

d b 

f 

e g 
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aeef 
ad 
bbfe 
bbfg 
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	Compressed Trie 
			

•   Compress unary nodes, label edges by strings 

a 

c 

b 

c 

e 

e 

f 

d b 

f 

e g 

a 

c 

bbf 

c 

eef 
d 

e g 

è 
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	Suffix tree 
		

Given a string s a suffix tree of s is a 
compressed trie of all suffixes of s 
			

To make these suffixes prefix-free we 





72 

Trivial algorithm to build a Suffix tree 

Put the largest suffix in 
																
Put the suffix bab$ in 

		 						a 
		 					b 
		 				a 
		 			b 
		 		$ 
								
		 			a 
		 	b 
		a 
	b 
$ 

b 
	$ 

b 
	a 
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Put the suffix ab$ in 

		 	 	a 
		 	b 
		a 
	b 
$ 

b 
	$ 

b 
	a 

	a 
b 

	 	a 
	b 
$ 

b 
	$ 

b 
	a 

$ 
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Put the suffix $ in 

	a 
b 

	 	a 
	b 
$ 

a 
	b 

b 

$ 

	$ 
				
$ 

	a 
b 

	 	a 
	b 
$ 

a 
	b 

b 

$ 

	$ 
				
$ 

$ 
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	a 
b 

	 	a 
	b 
$ 

a 
	b 

b 

$ 

	$ 
				
$ 

$ 

	a 
b 

			a 
	b 
$ 
	
		1 

a 
b 
	$ 
		
2 

b 

	$ 
		
3 

4 

$ 

5 

We will also label each leaf with the starting point of the corres. suffix. 
		

	$ 
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	Analysis 
			

Takes O(n2) time to build. 

We will see how to do it in O(n) time 
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What can we do with it ? 

Exact string matching: 
Given a Text T, |T| = n, preprocess it such 

that when a pattern P, |P|=m, arrives 
you can quickly decide when it occurs in 
T. 

W e may also want to find all occurrences 
of P in T 
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	a 
b 

			a 
	b 
$ 
	
		1 

a 
b 
	$ 
		
2 

b 

	$ 
		
3 

4 

$ 

5 

	Exact string matching 
		
In preprocessing we just build a suffix tree in O(n) time 
	

	 	$ 

Given a pattern P =
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	a 
b 

			a 
	b 
$ 
	
		1 

a 
b 
	$ 
		
2 

b 

	$ 
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	a 
b 

			a 
	b 
$ 
	
		1 

a 
b 
	$ 
		
2 

b 

	$ 
		
3 

4 

$ 

5 

$ 

If we did not get stuck traversing the pattern then the pattern occurs in the text. 
					
Each leaf in the subtree below the node we reach corresponds to an occurrence. 
					
By traversing this subtree we get all k occurrences in O(n+k) time 
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Generalized suffix tree 
Given a set of strings S a generalized suffix 
tree of S is a compressed trie of all suffixes of 
s ∈ S 
To make these suffixes prefix-free we add a 
special char, say $, at the end of s 

To associate each suffix with a unique string 
in S add a different special char to each s 
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# 
b# 
ab# 
aab# 

$ 
b$ 
ab$ 
bab$ 
abab$ 

{ 
										
} 

1 

2 

a 

b 

	 	a 
	b 
$ 

a 
	b 
	$ 

$ 
		
	3 

$ 

5 

$ 

1 

b 
									
# 

a 
	b 

2 

# 

3 

	# 
				
4 

4 

	Generalized suffix tree (Example) 
			

Let s1=abab and s2=aab here is a generalized 
suffix tree for s1and s2 
	

	 	# 
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	So what can we do with it ? 
				

Matching a pattern against a database of 
strings 
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Longest common substring (of two strings) 
			
	Every node with a leaf descendant from 

string s1 and a leaf descendant from string 

1 

2 

a 

b 

	 	a 
	b 
$ 

a 
	b 
	$ 

$ 
		
	3 

$ 

5 

$ 

1 

b 
									
	# 

a 
	b 

2 

# 

3 

	# 
				
4 

4 

# 

S2 represents a maximal common substring  

and vice versa. 
					
Find such node with largest 
“string depth” 



84 

Longest common substring (of two strings) 
			
	Every node with a leaf descendant from 

string s1 and a leaf descendant from string 

1 

2 

a 

b 

	 	a 
	b 
$ 

a 
	b 
	$ 

$ 
		
	3 

$ 

5 

$ 

1 

b 
									
	# 

a 
	b 

2 

# 

3 

	# 
				
4 

4 

# 

S2 represents a maximal common substring  

and vice versa. 
					
Find such node with largest 
“string depth” 



85 

	Lowest common ancestor 
		

A lot more can be gained from the suffix tree 
if we preprocess it so that we can answer 
LCA queries on it 
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	Lowest common ancestor 
		

A lot more can be gained from the suffix tree 
if we preprocess it so that we can answer 
LCA queries on it 
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2 

a 

b 

	 	a 
	b 
$ 

a 
	b 
	$ 

b 

$ 
		
	3 

$ 

5 

$ 

1 

# 

a 
	b 

2 

# 

3 

	# 
				
4 

4 

	Why? 
		

The LCA of two leaves represents the longest 
common prefix (LCP) of these 2 suffixes 
				

	 	# 
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3 
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	 	# 
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	 	Finding maximal palindromes 
			

	•  A palindrome:  caabaac, cbaabc 
	•  Want to find all maximal palindromes in a 
	 		string s 
				

	Let  s = cbaaba 
					
The maximal palindrome with center between i-1 and i is the LCP of the suffix at position 

i of s and the suffix at position m-i+1 of sr 
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	Maximal palindromes algorithm 
		

Prepare a generalized suffix tree for 
s = cbaaba$ and sr = abaabc# 
				

For every i find the LCA of suffix i of s and 
suffix m-i+1 of sr 



a b 

c# 

89 

3 

a 

ba 
	ab 
	 	a$ 

b 

3 

$ 

7 

$ 

	b 
			
a 

7 

# 

c 

1 

6 	a 
b 

c 
# 

5 

2 2 

	a 
$ 

c 
# 

a 

5 

6 

$ 

4 

4 

1 
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# 
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$ 

$ 

		abc# 

Let s = cbaaba$ then sr = abaabc# 



a b 

c# 

89 

3 

a 

ba 
	ab 
	 	a$ 

b 

3 

$ 

7 

$ 

	b 
			
a 

7 

# 

c 

1 

6 	a 
b 

c 
# 

5 

2 2 

	a 
$ 

c 
# 

a 

5 

6 

$ 

4 

4 

1 

c 
# 

a 
$ 

$ 

		abc# 
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Let s = cbaaba$ then sr = abaabc# 
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	Analysis 
			

O(n) time to identify all palindromes 



91 

	 	Drawbacks 
			

•  Suffix trees consume a lot of space 
					

•  It is O(n) but the constant is quite big 
					

•  Notice that if we indeed want to traverse 
	an edge in O(1) time then we need an 
	array of ptrs. of size |Σ| in each node 



92 

	 	 	Suffix array 
			

•  We loose some of the functionality but we 
	 	save space. 
			

	Let  s = abab 
	Sort the suffixes lexicographically: 
	ab, abab, b, bab 
	

	The suffix array gives the indices of the 
	suffixes in sorted order 

3 1 4 2 



93 

	 	How do we build it ? 
			

•  Build a suffix tree 
•  Traverse the tree in DFS, lexicographically 

	picking edges outgoing from each node 
	and fill the suffix array. 

					

•  O(n) time 
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	How do we search for a pattern ? 
				

•  If P occurs in T then all its occurrences are 
		consecutive in the suffix array. 

					

•  Do a binary search on the suffix array 
					

•  Takes O(mlogn) time 
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	Example 
	

Let  S = mississippi 
i 
ippi 
issippi 
ississippi 

5 
	
2 

11 
	
	8 

	1 
	
10 
	
	9 
	
	7 	
	4 
	
	6 
	
	3 

mississippi 
pi 
ppi 
sippi 
sisippi 
	ssippi 
		ssissippi 

L 

Let  P = issa 

	M 
														
R 



• 

	 	 	 	 	Supra index 
			
Structure 
	–  Suffix arrays are space efficient implementation of suffix 
	 	trees. 
	–  Simply an array containing all the pointers to the text suffixes 
	 	listed in lexicographical order. 
	–  Supra-indices: 
	 	 	•  If the suffix array is large, this binary search can perform 
	 	 	 	poorly because of the number of random disk accesses. 
	 	 	•  Suffix arrays are designed to allow binary searches done by 
	 	 	 	comparing the contents of each pointer. 
	 	 	•  To remedy this situation, the use of supra-indices over the 
	 	 	 	suffix array has been proposed. 
							
	 	 	 	 	 	96 
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	 	 	Supra index 
			

•  Example 
		
																			1        6   9 11     17 19   24   28       33         40        46   50       55      60 

	This  is  a  text.  A  text  has  many  words.  Words  are  made  from  letters 

60 50 28 19 11 40 33 SuffixArray 

60 50 28 19 11 40 33 

lett text word 

SuffixArray 

Supra-Index 
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	 	 	Supra index 
			

•  Example 
		

	1        6   9 11    17 19   24   28        33        40        46   50       55      60 
	This  is  a  text.  A  text  has  many  words.  Words  are  made  from  letters 

60 50 28 19 11 40 33 SuffixArray 

50 19 11 33 

lett 
				
	60 

	text 
	  


