
Advanced	Data	Structures

Succinct	Data	Structures

Arbitrary Ordered Trees
•  Use parenthesis notation
•  Represent the tree

•  As the binary string (((())())((())()())):
traverse tree as “(“ for node, then subtrees,
then “)”

•  2 Bits per node

Space	for	trees	

• 

Standard	representa9on	

Binary	tree:	each	node	has	two	
pointers	to	its	leE	and	right	children	
	
An	n-node	tree	takes	
2n	pointers	or	2n	lg	n	bits	
	
	
Supports	finding	leE	child	or	right	child	of	a	node	(in	constant	

9me).	
	
For	each	extra	opera9on	(eg.	parent,	subtree	size)	we	have	to	

pay,	roughly,	an	addi9onal	n	lg	n	bits.	

x	

x	x	x	x	

x	 x	x	 x	

Can	we	improve	the	space	bound?	

•  There	are	less	than	22n	dis9nct	binary	trees	on	
n	nodes.	

•  2n	bits	are	enough	to	dis9nguish	between	any	
two	different	binary	trees.	

•  Can	we	represent	an	n	node	binary	tree	using	
2n	bits?	

Heap-like	nota9on	for	a	binary	tree	

		 1	

1	1	 1	

1	 1	

1	

1	

0	0	 0	0	

0	 0	0	0	

0	

Add	external	nodes	

Label	internal	nodes	with	a	1	
and	external	nodes	with	a	0	

Write	the	labels	in	level	order	

1	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0	0	

One	can	reconstruct	the	tree	from	this	sequence	

An	n	node	binary	tree	can	be	represented	in	2n+1	bits.	

What	about	the	opera9ons?	

Heap-like	nota9on	for	a	binary	tree	

		

1		1		1		1		0		1		1		0		1		0			0		 1			0				0			0			0			0		

1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17		

8	

5	 7	6	4	

3	2	

1	

9	

17	16	15	14	

13	12	11	10	

1	

8	7	

6	5	4	

3	2	

1		2		3		4						5		6						7											 8																								

parent(x)	=	[⌊x/2⌋]	

leE	child(x)	=	[2x]	

right	child(x)	=	[2x+1]	

x	→	x:	#	1’s	up	to	x	
	
x	→	x:	posi9on	of	x-th	1	

Rank/Select	on	a	bit	vector	

Given	a	bit	vector	B	

rank1(i)	=	#	1’s	up	to	posi9on	i	in	B	
	
select1(i)	=	posi9on	of	the	i-th	1	in	B		

	 	 	 	 	(similarly	rank0	and	select0)	

				1		2		3		4		5		6		7		8		9	10	11	12	13	14	15		
B:	0		1		1		0		1		0		0		0		1		1			0			1			1				1			1			

rank1(5)	=	3	
select1(4)	=	9		
rank0(5)	=	2	
select0(4)	=	7		

Given	a	bit	vector	of	length	n,	by	storing	
an	addi9onal	o(n)-bit	structure,	we	can	
support	all	four	opera9ons	in	constant	9me.	

An	important	substructure	in	most	succinct	data	structures.	
	
Have	been	implemented.	

Binary	tree	representa9on	

•  A	binary	tree	on	n	nodes	can	be	represented	
using	2n+o(n)	bits	to		support:	

– parent	
–  leE	child	
–  right	child		

					
					in	constant	9me.	

•  1	1	1	1	0	1	1	1	0	0	1	0	0	0	0	0	0	

10	

Heap-like Notation for a Binary Tree

Add	external	nodes	
Enumerate	level	by	level	
	
	
	
	
	
																		
Store	vector	1	1	1	1	0	1	1	1	0	0	1	0	00000	length2n+1	
	 1	2	3	4		5	6	7	8	9	0	1	2	34567	

1

1 1

1 1 1

1
1

0 0

0

0

0

0

0 0

0

1		2	3	4					5		6		7								8

1

2 3

4 5 6

7 8

Ordered	trees	

A	rooted	ordered	tree	(on	n	nodes):	
	
Naviga9onal	opera9ons:	
-	parent(x)	=	a	
-	first	child(x)	=	b	
-	next	sibling(x)	=	c	
	
Other	useful	opera9ons:	
-	degree(x)	=	2	
-	subtree	size(x)	=	4	

x	

a	

b	

c	

Ordered	trees	

•  A	binary	tree	representa9on	taking	2n+o(n)	bits	that	supports	
parent,	leE	child	and	right	child	opera9ons	in	constant	9me.	

•  There	is	a	one-to-one	correspondence	between	binary	trees	
and	rooted	ordered	trees	

•  Gives	an	ordered	tree	representa9on	taking	2n+o(n)	bits	that	
supports	first	child,	next	sibling	(but	not	parent)	opera9ons	in	
constant	9me.	

•  We	will	now	consider	ordered	tree	representa9ons	that	
support	more	opera9ons.	

Level-order	degree	sequence	
				

3		2		0		3		0		1		0		2		0		0		0		0	

But,	this	s9ll	requires	n	lg	n	bits	

				Solu9on:	write	them	in	unary																								
	
				1	1	1	0	1	1	0	0	1	1	1	0	0	1	0	0	1	1	0	0	0	0	0		
	
				Takes	2n-1	bits	

Write	the	degree	sequence	in	level	order	 3	

2	 0	 3	

0	 0	

0	 0	 0	

0	1	 2	

A	tree	is	uniquely	determined	by	its	degree	sequence	

Suppor9ng	opera9ons	
		

1	0	1	1	1	0	1	1	0	0	1	1	1	0	0	1	0	0	1	1	0	0	0	0	0	
1				2	3	4				5	6								7	8	9						10				11	12	

Add	a	dummy	root	so	that	each	node	has	a	corresponding	1						

