Web Data Compression and Search

Search, index construction and
compression

Slides modified from Hinrich Schiitze and Christina Lioma slides



Inverted Index

For each term t, we store a list of all documents that contain t.

BruTus —s | 1 2 4 11 | 31|45 | 173 | 174
CAESAR —s | 1 2 4 5 6| 16 57 | 132
CALPURNIA | — | 2| 31|54 | 101

\W—/ \——/

dictionary postings



Inverted index construction

@ Collect the documents to be indexed:

iends R , _ ,
10 " DR ’“~-‘> z t TR

@ Tokenize the text, turning each document into a list of tokens:

Friends || Romans || countrymen [|So] . ..

© Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: |friend || roman

countryman ||sof. ..

@O Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.



Tokenizing and preprocessing

et ) in erabcicl uiiaeza! L S :
, } L S 2522 0, v e engct 1ol u2 cassar  wea
wcaka ed "trelzpic: =rutithk ed . - .
kleg v tnecasel ovcivs kleg mie
mea ) - L .
e . L - — 7 a2, solet L be watr coeser the
Uoci 2. 50 et toewint aesar. | be . C
. ~ P02 e orutss ~ats 0 € you Cae53” ARS
noole Zrotus a2t told you Caesar

was amb tious:

amnbk t ous



Generate posting

term  doclD
i 1
did 1
enact 1
julius 1
caes:u 1

1

---------------- UL

’:"/’f:’”“"’""'""{{RRR?Ififfuﬂsﬂﬁﬂﬁ \\rm I g{ e

m.frmm||||||||uuQ{ff‘f{’(mrml‘l]‘l]‘l,]]‘q))\)p\g) }a il (‘; J’[f[l’f[fflf}"}m'

o /jn(u 1) !ljn))iﬁ){:‘;/!":ljf 11 } 'ui'@’fl‘?n’(}
P - R RAL AR I SRR

Dac 1..7 a'd enact jul 0§ caesar’ wigs

killed i* the cap'to Brutis KT'ed me

Dac 2. 50 lst it be with cassyr the: ——p>
noble brutug hatn told you caesar e
amb’tious

MMMUMMMMMMMUMMUHH;““
\0



Sort postings

term  doclD
i

did
enact
Julius
caesar
i

wWas
killed
f

the
capitol
brutus
killed
me

S0

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
Was
ambitious

[ S S S S S G S S S S SV S N N N e e e e e e I S S S S

term  doclD

ambiticus
be
brutus
brutus
capitel
caesar
caesar
caesar
did
anact
hath

i

i

i

it
julius
killed
killed
let
me
noble
S0
the
the
told
you
wias
wias
with

2
2
1
2
1
1
2
2
1
1
1
1
1
1
2
1
1
1
2
1
2
2
1
2
2
2
1
2
2



Create postings lists, determine document frequency

term  doclD

ambiticus 2
be - term doc. freq. — postings lists
brutus 1 ambitious I 1 o ?
brutus 2 I
capitol 1 ==
caesar 1 il 1
caesar 2 - [
caesar 2 - -2
did 1 — 4]
enact 1 — T
hath 1 — ?
i 1 . [l
| ! ~ [1
i 1 B ?
it 2 — et
julius 1 nglus 1 — [
killed 1 killed 1 - A
killed 1 - 2]
let 2 — |1
me 1 - 2]
noble 2 — 2
50 2 ~ [1]-
the 1 B ?
the 2 Y

2 =
o 2 - -
) < — |2
vias 1 —
wias 2
with 2



Split the result into dictionary and postings file

BruTuUs —s | 1 2 4 11 | 31|45 | 173 | 174
CAESAR — | 1 2 4 5 6| 16 57 | 132
CALPURNIA | — | 2| 31|54 | 101

\W—/ \——/

dictionary postings



Simple conjunctive query (two terms)

= Consider the query: BRUTUS AND CALPURNIA
= To find all matching documents using inverted index:
@ Locate BRUTUS in the dictionary
@ Retrieve its postings list from the postings file
@) Locate CALPURNIA in the dictionary
O Retrieve its postings list from the postings file
© Intersect the two postings lists

@ Return intersection to user



Intersecting two posting lists

L R i I ST SRV N P P PR SR L 7,|::__ [a=~1 '—‘l-: |
ALPURNIA — 2 — 31 — 54 = 101 C.
tersection — |2 }—|31 In

= This is linear in the length of the postings lists.

= Note: This only works if postings lists are sorted.

10



Intersecting two posting lists

INTERSECT(p1, p2)
1 answer «— ()

11



Typical query optimization

= Example query: BRUTUS AND CALPURNIA AND CAESAR

= Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further
In this example, first CAESAR, then CALPURNIA, then BRUTUS

73[[174| BRUTUS = 5 [1[[2 {411 3145 1
CarpirNiA. ——  12]=131 =54 l.—»|1ﬂ]]__|].,.._‘.

-

o | EREAANES . . 5 |
i\ CAESAR TN E} =3t \5.

12






Recall basic intersection algorithm

BRruTUS — 1

CALPURNIA — |2

Intersection — |2

= Linear in the length of the postings lists.

= Can we do better?

|2 | =4 |—|11 [—={ 31 |—=|45 =173 |—|174
5[ 31 |—[54 |—| 101
—{ 31

14



Skip pointers

= Skip pointers allow us to skip postings that will not figure in
the search results.

= This makes intersecting postings lists more efficient.

= Some postings lists contain several million entries — so
efficiency can be an issue even if basic intersection is linear.

= Where do we put skip pointers?

= How do we make sure intersection results are correct?

15



asic idea

89 92 (CAESAR

1

3

5

8

“17 2131

75

8l 84

16



Skip lists: Larger example

17



Intersection with skip pointers

INTERSECTWITHSKIPS(p1, p2)
1 answer — ()
S il
4
'3




Where do we place skips?

= Tradeoff: number of items skipped vs. frequency skip can be
taken

= More skips: Each skip pointer skips only a few items, but we
can frequently use it.

= Fewer skips: Each skip pointer skips many items, but we can
not use it very often.

19



Phrase queries

We want to answer a query such as [stanford university] — as
a phrase.

Thus The inventor Stanford Ovshinsky never went to
university should not be a match.

The concept of phrase query has proven easily understood by
users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store
doclDs in postings lists.

Two ways of extending the inverted index:
= biword index

= positional index
20



Positional indexes

= Postings lists in a nonpositional index: each posting is just a
doclD

= Postings lists in a positional index: each posting is a docID and
a list of positions

21



Positional indexes: Example

Query: “to, be, or; not, to. be,”
TO, 993427.

«1:¢7,18, 33,72, 86, 231,
2:<1,17, 74, 222, 255»;
4:<8, 16,190, 429, 433»;
5:¢363, 367>;
7:¢13,23,191»;...»

BE, 178239:

«1: <17, 25»;
4:<17,191, 291, 430, 434>,
5:¢14, 19, 101»;...> Document 4 is a match!

22



Inverted index

__Cr\y Qq_o-'b dAavenn + sann rhovAa A 4 Ac,—\ll ﬁlt\”f-nn:\nf\n‘-n__-ﬁ_l-\]\.‘-r_ﬂ_f\(r_\_f—'\.,:vl\. #_ .
Lo R TN R L W W - > AT S R e R I

I"‘u “~, “.

Noow ~ . . e Wby = i DT e s T v re.
K] : U I S K [ LA I N .
& e LI ' ;:t Loy P & LA e st 1»»' w2 . . -

al ®1T al1al rR7 1120 1T 11 Caggan | 111 21

CALPURNIA | — | 21 31| 54 | 101

\‘,—/ \—,—/
dictionary postings



Dictionaries

= The dictionary is the data structure for storing the term
vocabulary.

= Term vocabulary: the data

= Dictionary: the data structure for storing the term vocabulary

24



Dictionary as array of fixed-width entries

= For each term, we need to store a couple of items:

= document frequency
= pointer to postings list

= Assume for the time being that we can store this information
in a fixed-length entry.

= Assume that we store these entries in an array.

25



Dictionary as array of fixed-width entries

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20 bytes 4 bytes 4 bytes

How do we look up a query term g;in this array at query time?
That is: which data structure do we use to locate the entry (row)
in the array where g;is stored?

26



Data structures for looking up term

= Two main classes of data structures: hashes and trees
= Some IR systems use hashes, some use trees.
= Criteria for when to use hashes vs. trees:

= |s there a fixed number of terms or will it keep growing?

= What are the relative frequencies with which various keys will
be accessed?

= How many terms are we likely to have?

27



Hashes

= Each vocabulary term is hashed into an integer.
= Try to avoid collisions

= At query time, do the following: hash query term, resolve
collisions, locate entry in fixed-width array

" Pros: Lookup in a hash is faster than lookup in a tree.

= Lookup time is constant.

Cons
= no way to find minor variants (resume vs. résumé)
= no prefix search (all terms starting with automat)

= need to rehash everything periodically if vocabulary keeps
growing

28



Trees

" Trees solve the prefix problem (find all terms starting with
automat).

= Simplest tree: binary tree

= Search is slightly slower than in hashes: O(logM), where M is
the size of the vocabulary.

* O(logM) only holds for balanced trees.
= Rebalancing binary trees is expensive.
= B-trees mitigate the rebalancing problem.

= B-tree definition: every internal node has a number of
children in the interval [a, b] where a, b are appropriate
positive integers, e.g., [2, 4].

29



Sort-based index construction

As we build index, we parse docs one at a time.
The final postings for any term are incomplete until the end.

Can we keep all postings in memory and then do the sort in-
memory at the end?

No, not for large collections

At 10-12 bytes per postings entry, we need a lot of space for
large collections.

But in-memory index construction does not scale for large
collections.

Thus: We need to store intermediate results on disk.

30



Same algorithm for disk?

= Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

= No: Sorting for example 100,000,000 records on disk is too
slow —too many disk seeks.

= We need an external sorting algorithm.

31



“External” sorting algorithm
(using few disk seeks)

= We must sort 100,000,000 non-positional postings.

= Each posting has size 12 bytes (4+4+4: termID, docID, document
frequency).

= Define a block to consist of 10,000,000 such postings
= We can easily fit that many postings into memory.
= We will have 10 such blocks.

= Basic idea of algorithm:

= For each block: (i) accumulate postings, (ii) sort in memory, (iii)
write to disk

= Then merge the blocks into one long sorted order.

32



Merging two blocks

postings
to be merged brutus  d2
Block 1 Block 2 brutus  d3
brutus  d3 brutus  d2 caesar di
caesar d4 merged
: cae%riﬁv-g%!' w‘" - ] : it 3 A AN

e




Blocked Sort-Based Indexing

BSBINDEXCONSTRUCTION()

1 n<0

2 while (all documents have not been processed)
3 don—n+1

(&)

34



Problem with sort-based algorithm

= Qur assumption was: we can keep the dictionary in memory.

* We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

= Actually, we could work with term,doclID postings instead of
termID,doclID postings . ..

" ...butthen intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)

35



Single-pass in-memory indexing

= Abbreviation: SPIMI

= Key idea 1: Generate separate dictionaries for each block — no
need to maintain term-termID mapping across blocks.

= Keyidea 2: Don’t sort. Accumulate postings in postings lists as
they occur.

= With these two ideas we can generate a complete inverted
index for each block.

= These separate indexes can then be merged into one big
index.

36



SPIMI-Invert

SPIMI-INVERT( token_stream)
1 output_file < NEWFILE()
2 dictionary « NEWHASH()
3 while (free memory available)
4 do token <« next(token_stream)
5 if term(token) ¢ dictionary
6 then postings_list < ADDToODICTIONARY(dictionary,term(token))
7 else postings_list « GETPOSTINGSLIST(dictionary,term(token))

37



Why compression in

38



Dictionary compression

= The dictionary is small compared to the postings file.
= But we want to keep it in memory.

= Also: competition with other applications, cell phones,
onboard computers, fast startup time

= So compressing the dictionary is important.

39



Recall: Dictionary as array of fixed-width entries

term document pointer to

freauency. ., nnstines ligt, |

Space needed: 20 bytes 4 bytes 4 bytes
for Reuters: (20+4+4)*400,000 = 11.2 MB

40



Fixed-width entries are bad.

Most of the bytes in the term column are wasted.
= We allot 20 bytes for terms of length 1.

We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

= Average length of a term in English: 8 characters

= How can we use on average 8 characters per term?

41



Dictionary as a string

42



Space for dictionary as a string

= 4 bytes per term for frequency
= 4 bytes per term for pointer to postings list
= 8 bytes (on average) for term in string

= 3 bytes per pointer into string (need log28 - 400000 < 24
bits to resolve 8 - 400,000 positions)

= Space: 400,000 X (4 +4 +3 + 8) = 7.6MB (compared to 11.2
MB for fixed-width array)

43



Dictionary as a string with blocking

...7systile9svzygetic8syzvegial6syzygvilszaibelvite6szecin, ..

\h
\\\k

freq. postings ptr. term ptr.

0 —
92 —
5 —
71 —

12 —



Space for dictionary as a string with blocking

= Example block size k =4

* Where we used 4 X 3 bytes for term pointers without
blocking . ..

= . ..we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

= We save 12 - (3 + 4) =5 bytes per block.
= Total savings: 400,000/4 * 5 = 0.5 MB

= This reduces the size of the dictionary from 7.6 MB to 7.1
MB.

45



46



Lookup of a term with blocking: (slightly) slower

47



Front coding

One block in blocked compression (k=4) . ..

8automata8automate9automaticl0automation
U

... further compressed with front coding.
8automat*a l¢e 2¢ic3%ion

48



Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9

49



Postings compression

50



Key idea: Store gaps instead of doclDs

= Each postings list is ordered in increasing order of doclID.

= Example postings list: COMPUTER: 283154, 283159, 283202, ...
It suffices to store gaps: 283159-283154=5, 283202-283154=43
= Example postings list using gaps : COMPUTER: 283154, 5, 43, . ..

Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.

51



Gap encoding

encoding postings list

THE doclDs . 283042 283043 283044 283045 ...
gaps 1 1 1 e
NI TR wes s L EIELF SEE Y EPEEF TREEGE
S LG5 = 4 —

g

52



Variable length encoding

= Aim:
= For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
= For THE and other very frequent terms, we will use only a
few bits per gap (= posting).
= |n order to implement this, we need to devise some form
of variable length encoding.
= Variable length encoding uses few bits for small gaps and

many bits for large gaps.

53



Variable byte (VB) code

= Used by many commercial/research systems

= Good low-tech blend of variable-length coding and
sensitivity to alignment matches (bit-level codes, see later).

= Dedicate 1 bit (high bit) to be a continuation bit c.

= |If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

= Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

= At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).

54



VB code examples

doclDs 824

gaps
VB code 00000110 10111000

829
5
10000101

215406
214577
00001101 00001100 10110001

55



VB code encoding algorithm

VBENCODENUMBER(n) VBENCODE(numbers)

- I . . no.. ~ l-!' fooan o - fr— s - v
. - . -l AN LS < e R I e ety
s S S ™ 5 Py 3 'c"-'. "l".-’; 2 ':' * [l"_"_ '.-’.""]'. |
T ANy ¢ ey .fflﬂ S LN B IR (L { [
7 R ~ .. - = - — . T NGS - ’ P
e BIyeoneY e nenbado o e Juie Porpevnfaans oomed DY 3 ool e,
qon Log s 1D . ' A~ e ' . ~ S S Lt ene! . i" e
AT Deegiesasn gemient o osr el i :] Aviesiesgen — [U%
L : : A 2
-~ . 4.
A P - . PR P . dar .~ e [ e B ata ]
ey LN AN A A S FPRLIFDT DSO8R0
[« LT o
’ e, ~ \
f1— 20N AT

-J 3

bytes[ LENGTE! byves]| += 128

4
& rwier Sytes

56



VB code decoding algorithm

VBDECODE(bytestream)

1 numbers — ()
2 n<—20

57



Gamma codes for gap encoding

= You can get even more compression with another type of
variable length encoding: bitlevel code.

= Gamma code is the best known of these.

= First, we need unary code to be able to introduce gamma
code.

= Unary code
= Represent n as n 1s with a final O.
* Unary code for 3is 1110

* Unary code for 40 is
111111111211112111221112117121112111111111110

= Unary code for 70 is:
11111111111111111111111111111111111111111111111111111111111111111111110

58



Gamma code

= Represent a gap G as a pair of length and offset.

= Offsetis the gap in binary, with the leading bit chopped off.
" For example 13 - 1101 - 101 = offset

= Length is the length of offset.

= For 13 (offset 101), the length is 3.

= Encode length in unary code: 1110.

= Gamma code of 13 is the concatenation of length and offset:
1110101.

59



Gamma code examples

number unary code length offset v code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

60



Properties of gamma code

= Gamma code is prefix-free

= The length of offset is |log, G| bits.

= The length of length is |log, G| + 1 bits,

= So the length of the entire code is 2 x |log, G| + 1 bits.
= Y codes are always of odd length.

= Gamma codes are within a factor of 2 of the optimal
encoding length log, G.

61



Gamma codes: Alignment

= Machines have word boundaries — 8, 16, 32 bits

= Compressing and manipulating at granularity of bits can be
slow.

= Variable byte encoding is aligned and thus potentially more
efficient.

= Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost.

62



Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, gamma encoded 101.0

63



