
Introduction	toWeb	Data	Compression	and	Search

Search,	index	construction	and	
compression

Slides	modified	from	Hinrich	Schütze	and	Christina	Lioma	slides

2

Inverted	Index

For	each	term t,	we	store	a	list	of	all	documents	that	contain t.

2

dictionary postings	

Inverted	index	construction
❶ Collect	the	documents	to	be	indexed:	

❷ Tokenize	the	text,	turning	each	document	into	a	list	of	tokens:

❸ Do	linguistic	preprocessing,	producing	a	list	of	normalized	
tokens,	which	are	the	indexing	terms:

❹ Index	the	documents	that	each	term	occurs	in	by	creating	an
inverted	index,	consisting	of	a	dictionary	and	postings.

3

4

Tokenizing	and	preprocessing

4

5

Generate	posting

5

6

Sort	postings

6

7

Create	postings	lists,	determine	document	frequency

7

8

Split	the	result	into	dictionary	and	postings	file

8

dictionary postings	

9

Simple	conjunctive	query	(two	terms)

§ Consider	the	query:	BRUTUS	AND	CALPURNIA
§ To	find	all	matching	documents	using	inverted	index:

❶ Locate	BRUTUS in	the	dictionary
❷ Retrieve	its	postings	list	from	the	postings	file
❸ Locate	CALPURNIA in	the	dictionary
❹ Retrieve	its	postings	list	from	the	postings	file
❺ Intersect	the	two	postings	lists
❻ Return	intersection	to	user

9

10

Intersecting two posting lists

§ This	is	linear	in	the	length	of	the	postings	lists.
§ Note:	This	only	works	if	postings	lists	are	sorted.	

10

11

Intersecting two posting lists

11

12

Typical	query	optimization

§ Example	query:	BRUTUS AND	CALPURNIA AND	CAESAR

§ Simple	and	effective	optimization:	Process	in	order	of	
increasing frequency

§ Start	with	the	shortest	postings	list,	then	keep	cutting	further
§ In	this	example,	first	CAESAR,	then	CALPURNIA,	then	BRUTUS

12

` Lc 2 #) 1) < , &) " # , $ 3 , (#) % "

14

Recall	basic	intersection	algorithm

14

§ Linear	in	the	length	of	the	postings	lists.
§ Can	we do	better?

15

Skip	pointers

15

§ Skip	pointers	allow	us	to	skip postings	that	will	not	figure	in	
the	search	results.

§ This	makes	intersecting	postings	lists	more	efficient.
§ Some	postings	lists	contain	several	million	entries	– so	
efficiency	can	be	an	issue	even	if	basic	intersection	is	linear.

§ Where	do	we	put	skip	pointers?
§ How	do	we	make	sure	intersection	results	are	correct?

16

Basic	idea

16

17

Skip	lists:	Larger	example

17

18

Intersection	with	skip	pointers

18

19

Where	do	we	place	skips?

19

§ Tradeoff:	number	of	items	skipped	vs.	frequency	skip	can	be	
taken

§ More	skips:	Each	skip	pointer	skips	only	a	few	items,	but	we	
can frequently use it.

§ Fewer	skips:	Each	skip	pointer	skips	many	items,	but	we	can	
not	use	it	very	often.

20

Phrase	queries

20

§ We	want	to	answer	a	query	such	as	[stanford	university]	– as	
a	phrase.

§ Thus	The	inventor	Stanford	Ovshinsky	never	went	to	
university	should	not be	a	match.

§ The	concept	of	phrase	query	has	proven	easily	understood	by	
users.

§ About	10%	of	web	queries	are	phrase	queries.
§ Consequence	for	inverted	index:	it	no	longer	suffices	to	store	
docIDs	in	postings	lists.

§ Two	ways	of	extending	the	inverted	index:
§ biword	index	
§ positional	index

21

Positional indexes

21

§ Postings	lists	in	a	nonpositional index:	each	posting	is	just	a	
docID

§ Postings	lists	in	a	positional index:	each	posting	is	a	docID	and	
a	list	of	positions

22

Positional indexes:	Example

22

Query:	“to1 be2 or3 not4 to5 be6”
TO,	993427:

‹	1:	‹7,	18,	33,	72,	86,	231›;
2:	‹1,	17,	74,	222,	255›;
4:	‹8,	16,	190,	429,	433›;
5:	‹363,	367›;
7:	‹13,	23,	191›;	.	.	.	›

BE,	178239:
‹	1:	‹17,	25›;
4:	‹17,	191,	291,	430,	434›;
5:	‹14,	19,	101›;	.	.	.	›	Document	4	is	a	match!

23

Inverted index

23

24

Dictionaries

§ The	dictionary	is	the	data	structure	for	storing	the	term	
vocabulary.

§ Term	vocabulary:	the data
§ Dictionary:	the	data	structure	for	storing	the	term	vocabulary

24

25

Dictionary	as	array	of	fixed-width	entries

§ For	each	term,	we	need	to	store	a	couple	of	items:
§ document frequency
§ pointer to postings list
§ .	.	.

§ Assume	for	the	time	being	that	we	can	store	this	information	
in	a	fixed-length entry.

§ Assume	that	we	store	these	entries	in	an	array.

25

26

Dictionary	as	array	of	fixed-width	entries

space	needed:			20	bytes			4	bytes												4	bytes
How do	we	look	up	a	query	term	qi in	this	array	at	query	time?	
That	is:	which	data	structure	do	we	use	to	locate	the	entry	(row)	
in	the	array	where	qi is	stored?

26

27

Data	structures	for	looking	up	term

§ Two	main	classes	of	data	structures:	hashes	and	trees
§ Some	IR	systems	use	hashes,	some	use	trees.
§ Criteria	for	when	to	use	hashes	vs.	trees:

§ Is	there	a	fixed	number	of	terms	or	will	it	keep	growing?
§ What	are	the	relative	frequencies	with	which	various	keys	will	
be accessed?

§ How	many	terms	are	we	likely	to	have?

27

28

Hashes

§ Each	vocabulary	term	is	hashed	into	an	integer.
§ Try	to	avoid	collisions
§ At	query	time,	do	the	following:	hash	query	term,	resolve	
collisions,	locate	entry	in	fixed-width	array

§ Pros:	Lookup	in	a	hash	is	faster	than	lookup	in	a	tree.
§ Lookup	time	is	constant.

§ Cons
§ no	way	to	find	minor	variants	(resume vs.	résumé)
§ no	prefix	search	(all	terms	starting	with	automat)
§ need	to	rehash	everything	periodically	if	vocabulary	keeps	
growing

28

29

Trees

§ Trees	solve	the	prefix	problem	(find	all	terms	starting	with	
automat).

§ Simplest tree:	binary tree
§ Search	is	slightly	slower	than	in	hashes:	O(logM),	where	M is	
the	size	of	the	vocabulary.

§ O(logM)	only	holds	for balanced	trees.
§ Rebalancing	binary	trees	is	expensive.
§ B-trees mitigate	the	rebalancing	problem.
§ B-tree	definition:	every	internal	node	has	a	number	of	
children	in	the	interval	[a, b]	where	a,	b are	appropriate	
positive	integers,	e.g.,	[2,	4].

29

30

Sort-based index construction
§ As	we	build	index,	we	parse	docs	one	at	a	time.
§ The	final	postings	for	any	term	are	incomplete	until	the	end.
§ Can	we	keep	all	postings	in	memory	and	then	do	the	sort	in-
memory	at	the	end?

§ No,	not	for	large	collections
§ At	10–12	bytes	per	postings	entry,	we	need	a	lot	of	space	for	
large	collections.

§ But	in-memory	index	construction	does	not	scale	for	large	
collections.

§ Thus:	We	need	to	store	intermediate	results	on	disk.

30

31

Same algorithm for disk?

§ Can	we	use	the	same	index	construction	algorithm	for	larger	
collections,	but	by	using	disk	instead	of	memory?

§ No:	Sorting	for	example 100,000,000	records	on	disk	is	too	
slow	– too	many	disk	seeks.

§ We	need	an	external sorting	algorithm.

31

32

“External” sorting	algorithm
(using	few	disk	seeks)

§ We	must	sort	100,000,000	non-positional	postings.
§ Each	posting	has	size	12	bytes	(4+4+4:	termID,	docID,	document	
frequency).

§ Define	a	block to	consist	of	10,000,000	such	postings
§ We	can	easily	fit	that	many	postings	into	memory.
§ We	will	have	10	such	blocks.

§ Basic	idea	of	algorithm:
§ For	each	block:	(i)	accumulate	postings,	(ii)	sort	in	memory,	(iii)	
write	to	disk

§ Then	merge	the	blocks	into	one	long	sorted	order.

32

33

Merging two blocks

33

34

Blocked Sort-Based Indexing

34

35

Problem	with sort-based algorithm

§ Our	assumption	was:	we	can	keep	the	dictionary	in	memory.
§ We	need	the	dictionary	(which	grows	dynamically)	in	order	to	
implement	a	term	to	termID mapping.

§ Actually,	we	could	work	with	term,docID postings	instead	of	
termID,docID postings .	.	.

§ .	.	.	but	then	intermediate	files	become	very	large.	(We	would	
end	up	with	a	scalable,	but	very	slow	index	construction	
method.)

35

36

Single-pass	in-memory indexing

§ Abbreviation:	SPIMI
§ Key	idea	1:	Generate	separate	dictionaries	for	each	block	– no	
need	to	maintain	term-termID	mapping	across	blocks.

§ Key	idea	2:	Don’t	sort.	Accumulate	postings	in	postings	lists	as	
they	occur.

§ With	these	two	ideas	we	can	generate	a	complete	inverted	
index	for	each	block.

§ These	separate	indexes	can	then	be	merged	into	one	big	
index.

36

37

SPIMI-Invert

37

38

Why compression in	

39

Dictionary compression

§ The	dictionary	is	small	compared	to	the	postings	file.
§ But	we	want	to	keep	it	in	memory.
§ Also:	competition	with	other	applications,	cell	phones,	
onboard	computers,	fast	startup	time

§ So	compressing	the	dictionary	is	important.

39

40

Recall:	Dictionary	as	array	of	fixed-width	entries

Space	needed:	20	bytes						4	bytes												4	bytes
for	Reuters:	(20+4+4)*400,000	=	11.2	MB

40

41

Fixed-width entries are bad.

§ Most	of	the	bytes	in	the	term	column	are	wasted.
§ We	allot	20	bytes	for	terms	of	length	1.

§ We	can’t	handle	HYDROCHLOROFLUOROCARBONS	and	
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

§ Average	length	of	a	term	in	English:	8	characters
§ How	can	we	use	on	average	8	characters	per	term?

41

42

Dictionary as a	string

42

43

Space	for	dictionary	as	a	string

§ 4	bytes	per	term	for	frequency
§ 4	bytes	per	term	for	pointer	to	postings	list
§ 8	bytes	(on	average)	for	term	in	string
§ 3	bytes	per	pointer	into	string	(need	log2	8	·	400000	<	24	
bits	to	resolve	8	·	400,000	positions)

§ Space:	400,000	× (4	+4	+3	+	8)	=	7.6MB	(compared	to	11.2	
MB	for	fixed-width	array)

43

44

Dictionary	as	a	string	with	blocking

44

45

Space	for	dictionary	as	a	string	with	blocking

§ Example	block	size	k	=	4
§ Where	we	used	4	× 3	bytes	for	term	pointers	without	
blocking		.	.	.

§ .	.	.we	now	use	3	bytes	for	one	pointer	plus	4	bytes	for	
indicating	the	length	of	each	term.

§ We	save	12	−	(3	+	4)	=	5	bytes	per	block.
§ Total	savings:	400,000/4	∗ 5	=	0.5	MB
§ This	reduces	the	size	of	the	dictionary	from	7.6	MB	to	7.1	
MB.

45

46

47

Lookup	of	a	term	with	blocking:	(slightly)	slower

47

48

Front	coding

One	block	in	blocked	compression	(k =	4)	.	.	.
8	a	u	t	o	m	a	t	a 8	a	u	t	o	m	a	t	e	9 a	u	t	o	m	a	t	i	c	10 a	u	t	o	m	a	t	i	o	n

⇓
.	.	.	further	compressed	with	front	coding.

8 a	u	t	o	m	a	t	∗ a		1 ⋄ e 2	⋄ i	c		3 ⋄ i	o	n

48

49

Dictionary	compression	for	Reuters:	Summary

49

data	structure size	in	MB
dictionary,	fixed-width
dictionary,	term	pointers	into	string
∼,	with	blocking,	k	=	4
∼,	with	blocking	&	front	coding

11.2
7.6
7.1
5.9

50

Postings compression

§

51

Key	idea:	Store	gaps	instead	of	docIDs

§ Each	postings	list	is	ordered	in	increasing	order	of	docID.
§ Example postings list:	COMPUTER:	283154,	283159,	283202,	.	.	.
§ It	suffices	to	store	gaps:	283159-283154=5,	283202-283154=43
§ Example	postings	list	using	gaps	:	COMPUTER:	283154,	5,	43,	.	.	.
§ Gaps	for	frequent	terms	are	small.
§ Thus:	We	can	encode	small	gaps	with	fewer	than	20	bits.

51

52

Gap	encoding

52

53

Variable	length encoding

§ Aim:
§ For	ARACHNOCENTRIC and	other	rare	terms,	we	will	use	
about	20	bits	per	gap	(=	posting).

§ For	THE and	other	very	frequent	terms,	we	will	use	only	a	
few	bits per	gap (=	posting).

§ In	order	to	implement	this,	we	need	to	devise	some	form	
of	variable	length encoding.

§ Variable	length	encoding	uses	few	bits	for	small	gaps	and	
many	bits	for	large	gaps.

53

54

Variable	byte (VB)	code
§ Used	by	many	commercial/research	systems
§ Good	low-tech	blend	of	variable-length	coding	and	
sensitivity	to	alignment	matches	(bit-level	codes,	see	later).

§ Dedicate	1	bit	(high	bit)	to	be	a	continuation	bit	c.
§ If	the	gap	G fits	within	7	bits,	binary-encode	it	in	the	7	
available	bits	and	set	c =	1.

§ Else:	encode	lower-order	7	bits	and	then	use	one	or	more	
additional	bytes	to	encode	the	higher	order	bits	using	the	
same	algorithm.

§ At	the	end	set	the	continuation	bit	of	the	last	byte	to	1									
(c	=	1)	and	of	the	other	bytes	to	0	(c =	0).

54

55

VB	code examples

55

docIDs
gaps
VB	code

824

00000110		10111000

829
5
10000101

215406
214577
00001101	00001100	10110001

56

VB	code encoding algorithm

56

57

VB	code decoding algorithm

57

58

Gamma	codes	for	gap	encoding
§ You	can	get	even	more	compression	with	another	type	of	
variable	length encoding: bitlevel code.

§ Gamma	code	is	the	best	known	of	these.
§ First,	we	need	unary	code	to	be	able	to	introduce	gamma	
code.

§ Unary code
§ Represent n	as	n 1s	with	a	final	0.
§ Unary	code	for	3	is	1110
§ Unary	code	for	40	is	
110

§ Unary	code	for	70	is:	
110

58

59

Gamma	code

§ Represent	a	gap	G	as	a	pair	of	length and	offset.
§ Offset	is	the	gap	in	binary,	with	the	leading	bit	chopped	off.
§ For	example	13	→	1101	→	101	=	offset
§ Length	is	the	length	of	offset.
§ For	13	(offset	101),	the	length	is	3.
§ Encode	length	in	unary code:	1110.
§ Gamma	code	of	13	is	the	concatenation	of	length	and	offset:	
1110101.

59

60

Gamma	code examples

60

61

Properties	of	gamma	code

§ Gamma	code	is	prefix-free
§ The	length	of	offset	is	⌊log2 G⌋ bits.
§ The	length	of	length	is	⌊log2 G⌋ +	1	bits,
§ So	the	length	of	the	entire	code	is	2	x	⌊log2 G⌋ +	1	bits.
§ ϒ codes	are	always	of	odd	length.
§ Gamma	codes	are	within	a	factor	of	2	of	the	optimal	
encoding	length	log2 G.

61

62

Gamma	codes:	Alignment

§ Machines	have	word	boundaries	– 8,	16,	32	bits
§ Compressing	and	manipulating	at	granularity	of	bits	can	be	
slow.

§ Variable	byte	encoding	is	aligned	and	thus	potentially	more	
efficient.

§ Regardless	of	efficiency,	variable	byte	is	conceptually	
simpler	at	little	additional	space	cost.

62

63

Compression of Reuters

63

data	structure size	in	MB
dictionary,	fixed-width
dictionary,	term	pointers	into	string
∼,	with	blocking,	k	=	4
∼,	with	blocking	&	front	coding
collection	(text,	xml	markup	etc)
collection	(text)
T/D	incidence	matrix
postings,	uncompressed	(32-bit	words)
postings,	uncompressed	(20	bits)
postings,	variable	byte	encoded
postings,	gamma	encoded

11.2
7.6
7.1
5.9

3600.0
960.0

40,000.0
400.0
250.0
116.0
101.0

