
Graphs

•  G = (V,E)
•  V is the vertex set.
•  Vertices are also called nodes and points.
•  E is the edge set.
•  Each edge connects two different vertices.
•  Edges are also called arcs and lines.
•  Directed edge has an orientation (u,v).

u v

Graphs

•  Undirected edge has no orientation (u,v).
u v

•  Undirected graph => no oriented edge.

•  Directed graph => every edge has an
 orientation.

•  If (u, v) ∈E(G), we say u and v are
 adjacent and edge (u, v) is incident on
 vertices u and v. If <u, v> is a directed
 edge, then vertex u is adjacent to v, and v
 is adjacent from u, <u, v> is incident to u
 and v	

Undirected Graph

2
3

8
10 1

4
5 9 11

6
7

Directed Graph (Digraph)

2
3

8
10 1

4
5 9 11

6
7

G1:
V(G1)={0,1,2,3}
E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}

0

1 2

3

G2:
V(G2)={0,1,2,3,4,5,6}
E(G2)={(0,1),(0,2),,(1,3),(1,4),(2,5),(2,6)}	

0

1 2

3 4 5 6

G3:
V(G3) = {0,1,2}
E(G3) = {<0,1>,<1,0>,<1,2>} (directed)

0

1

2

Applications—Communication Network

•  Vertex = city, edge = communication link.

Driving Distance/Time Map

•  Vertex = city, edge weight = driving
 distance/time.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Street Map

•  Some streets are one way.

2
3

8
10 1

4
5 9 11

6
7

Restrictions:	

•  (v, v) or <v, v> is not legal, such edges are
 known as self edges

•  Multiple occurrences of the same edges are
 not allowed. If allowed, we get a
 multigraph

Complete Undirected Graph

Has all possible edges.

n = 1 n = 2 n = 3 n = 4

Number Of Edges—Undirected Graph

•  Each edge is of the form (u,v), u != v.
•  Number of such pairs in an n vertex graph is

 n(n-1).
•  Since edge (u,v) is the same as edge (v,u),

 the number of edges in a complete
 undirected graph is n(n-1)/2.

•  Number of edges in an undirected graph is
 <= n(n-1)/2.

Number Of Edges—Directed Graph

•  Each edge is of the form (u,v), u != v.
•  Number of such pairs in an n vertex graph is

 n(n-1).
•  Since edge (u,v) is not the same as edge

 (v,u), the number of edges in a complete
 directed graph is n(n-1).

•  Number of edges in a directed graph is <=
 n(n-1).

Vertex Degree

Number of edges incident to vertex.
degree(2) = 2, degree(5) = 3, degree(3) = 1

2
3

8
10 1

4
5 9 11

6
7

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

8
10

9 11

In-Degree Of A Vertex

in-degree is number of incoming edges
indegree(2) = 1, indegree(8) = 0

2
3

8
10 1

4
5 9 11

6
7

Out-Degree Of A Vertex

out-degree is number of outbound edges
outdegree(2) = 1, outdegree(8) = 2

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of
 some vertex and 1 to the out-degree of
 some other vertex

sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the
 digraph

Graph Operations And
 Representation

Notations	

•  A subgraph of G is a graph G` such that
V(G`) ⊆ V(G) and E(G`) ⊆ E(G).

•  A path from u to v in G is a sequence of
vertices u, i1, i2,…, ik, v such that (u, i1), (i1,
i2),…,(ik, v) are edges in E(G). If G` is
directed, then <u, i1>, <i1, i2>,…,<ik, v> are
edges in E(G`).

Notations	

•  A simple path is a path in which all
vertices except possibly the first and last are
distinct.

•  A cycle is a simple path in which the first
and last vertices are the same.

•  For directed graph, we have directed paths
and cycles.

Notations	

•  The length of a path is the number of edges
on it.

•  The length of a path is the sum of weights
 of edges on it.

Sample Graph Problems

•  Path problems.
•  Connectedness problems.
•  Spanning tree problems.

Path Finding
Path between 1 and 8.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 20.

Another Path Between 1 and 8

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 28.

Example Of No Path

No path between 2 and 9.

2
3

8
10 1

4
5 9 11

6
7

Connected Graph

•  Undirected graph.
•  u and v are connected iff there is a path in

 G from u to v (also from v to u)
•  Connected Graph: There is a path between

 every pair of vertices.

Connected Graph

•  Directed graph.
•  A directed G is strongly connected iff for

 every pair of distinct u and v in V(G), there
 is a directed path from u to v and also from
 v to u.

•  A strongly connected component is a
 maximal subgraph that is strongly
 connected.

Example Of Not Connected

2
3

8
10 1

4
5 9 11

6
7

Connected Graph Example

2
3

8
10 1

4
5 9 11

6
7

Connected Component

•  A maximal subgraph that is connected.
§  Cannot add vertices and edges from original

 graph and retain connectedness.
•  A connected graph has exactly 1

 component.

Not A Component

2
3

8
10 1

4
5 9 11

6
7

Communication Network

Each edge is a link that can be constructed
 (i.e., a feasible link).

Communication Network Problems

•  Is the network connected?
§  Can we communicate between every pair of

 cities?
•  Find the components.
•  Want to construct smallest number of

 feasible links so that resulting network is
 connected.

Cycles And Connectedness

2
3

8
10 1

4
5 9 11

6
7

Removal of an edge that is on a cycle does not affect
 connectedness.

Cycles And Connectedness

Tree

•  Connected graph that has no cycles.
•  n vertex connected graph with n-1 edges.

Spanning Tree

•  Subgraph that includes all vertices of the
 original graph.

•  Subgraph is a tree.
§  If original graph has n vertices, the spanning

 tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

•  Tree cost is sum of edge weights/costs.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

A Spanning Tree

Spanning tree cost = 51.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

Minimum Cost Spanning Tree

Spanning tree cost = 41.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

A Wireless Broadcast Tree

Source = 1, weights = needed power.
Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

2
3

8
10 1

4
5 9 11

6
7

4
8

6

6

7

5

2
4

4 5
3

8
2

46

ADT 6.1 Graph
class Graph
{ // A non empty set of vertices and a set of undirected
 // edges, where each edge is a pair of vertices.
public:
 virtual ~Graph(){ };
 // virtual destructor
 bool IsEmpty() const {return n==0;};
 // return true iff graph has no vertices
 int NumberOfVertices() const {return n;};
 // return the number of vertices in the graph
 int NumberofEdges() const {return e;};
 // return number of edges in the graph
 virtual int Degree(int u) const =0;
 // return number of edges incident to vertex u

47

 virtual bool ExisteEdge(int u, int v) const =0;
 // return true iff graph has edge (u, v)
 virtual void InsertVertex (int v) =0;
 // insert vertex v into graph, v has no incident edges
 virtual void InsertEdge (int u, int v) =0;
 // insert edge (u, v) into graph
 virtual void DeleteVertex (int v);
 // delete v and all edges incident to it
 virtual void DeleteEdge (int u, int v) =0;
 // delete edge (u, v) from the graph
private:
 int n; // number of vertices
 int e; // number of edges
};

Graph Representation

•  Adjacency Matrix
•  Adjacency Lists

§  Linked Adjacency Lists
§ Array Adjacency Lists

Adjacency Matrix
•  0/1 n x n matrix, where n = # of vertices
•  A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

Adjacency Matrix Properties

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 1 0 1 0

1 0 0 0 1

0 0 0 0 1

1 0 0 0 1

0 1 1 1 0

• Diagonal entries are zero.

• Adjacency matrix of an undirected graph is
 symmetric.

§ A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5

1

2

3

4

5

0 0 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 1

0 1 1 0 0

• Diagonal entries are zero.

• Adjacency matrix of a digraph need not be
 symmetric.

Adjacency Matrix

•  n2 bits of space
•  For an undirected graph, may store only

 lower or upper triangle (exclude diagonal).
§  (n-1)n/2 bits

•  time to find vertex degree and/or vertices
 adjacent to a given vertex？
– O(n)

Adjacency Matrix

•  For an graph
•  d(i) =

•  For a digraph
•  out-d(i) =

•  in-d(j) =

∑
−

=

1

0
]][[

n

j
jia

∑
−

=

1

0
]][[

n

i
jia

∑
−

=

1

0
]][[

n

j
jia

Adjacency Lists
•  Adjacency list for vertex i is a linear list of

 vertices adjacent from vertex i.
•  An array of n adjacency lists.

2
3

1

4
5

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

Linked Adjacency Lists
•  Each adjacency list is a chain.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Linked Adjacency Lists
•  class LinkedGraph {
•  public:
•  LinkedGraph (const int vertices): e(0) {
•  if (vertices < 1) throw “Number of vertices must be > 0”;
•  n = vertices;
•  adjLists = new Chain<int>[n];
•  };
•  private:
•  Chain<int>* adjLists;
•  int n;
•  int e;
•  };

Array Adjacency Lists
•  Each adjacency list is an array list.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Adjacency Lists
•  Digraph

i
…

Inverse Adjacency Lists
•  Digraph

0 1 2

0 0 1 0

1 1 0 1

2 0 0 0
i

…

 1 0 [0]

[1]

[2]
 0 0

 1 0

Orthogonal Adjacency Lists
•  Digraph

 tail head column link row link

0 1 2

0 0 1 0

1 1 0 1

2 0 0 0

 0

 0

 1

 2

 1 2

 0 1 0 0

 1 0 0 1 2 0 0

head nodes

0	

Adjacency Multilists
•  Undirected graph

Each (u, v) is represented by 2 entries.

Visit an edge only once?

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

 m vertex1 vertex2 v1link v2link
path1	 path2	

Adjacency Multilists	
•  class MGraphEdge {
•  private:
•  bool m;
•  int vertex1, vertex2;
• 

Adjacency Multilists	

•  MGraph::MGraph(const int vertices) : e(0)
•  {
•  if (vertices < 1) throw “Number of vertices must be >

 0”;
•  n = vertices;
•  adjMultiLists = new EdgePtr[n];
•  fill(adjMultiLists, adjMultiLists+n,0);
•  }

Adjacency Multilists	

[0]

[1]

[2]

[3]

adjMultiLists

N0 0 1 N1 N3 edge (0,1)

N1 0 2 N2 N3 edge (0,2)

N2 0 3 0 N4 edge (0,3)

N3 1 2 N4 N5 edge (1,2)

N4 1 3 0 N5 edge (1,3)

N5 2 3 0 0 edge (2,3)

Adjacency Multilists	
•  If p points to an MGraphEdge representing (u, v),

 and given u, to get v we need the following test:
•  if (p→vertex1 == u) v = p→vertex2;
•  else v = p→vertex1;

•  And we can insert an edge in O(1):
•  void MGraph::InsertEdge(int u, int v) {	
•  MGraphEdge *p = new MGraphEdge;	
•  p→m = false; p→vertex1 = u; p→vertex2 = v;
•  p→path1 = adjMultiLists[u];
•  p→path2 = adjMultiLists[v];
•  adjMultiLists[u] = adhMultiLists[v] = p;
•  }

Weighted Graphs

•  Cost adjacency matrix.
§  C(i,j) = cost of edge (i,j)

•  Adjacency lists => each list element is a
 pair (adjacent vertex, edge weight)

Number Of Classes Needed
•  Graph representations

§  Adjacency Matrix
§  Adjacency Lists

Ø Linked Adjacency Lists
Ø Array Adjacency Lists

§  3 representations

•  Graph types
§  Directed and undirected.
§  Weighted and unweighted.
§  2 x 2 = 4 graph types

•  3 x 4 = 12 classes

•  Exercises: P340-5, 9

Graph Search Methods	

•  Given G = (V, E), and v in V(G), we wish
 to visit all vertices in G that are reachable
 from v.

•  In the following methods, we assume the
 graphs are undirected, although they work
 on the directed as well.

Graph Search Methods
•  A vertex u is reachable from vertex v iff there is a

 path from v to u.

2
3

8

10

1

4
5 9

11
6

7

Graph Search Methods
•  A search method starts at a given vertex v and

 visits/labels/marks every vertex that is reachable
 from v.

2
3

8

10

1

4
5 9

11
6

7

Graph Search Methods
•  Many graph problems solved using a search

 method.
§  Path from one vertex to another.
§  Is the graph connected?
§  Find a spanning tree.
§  Etc.

•  Commonly used search methods:
§  Breadth-first search.
§ Depth-first search.

Breadth-First Search

•  Visit start vertex and put into a FIFO queue.
•  Repeatedly remove a vertex from the queue, visit

 its unvisited adjacent vertices, put newly visited
 vertices into the queue.

Breadth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5 9

11
6

7

Breadth-First Search Example

Visit/mark/label start vertex and put in a FIFO queue.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

1

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices;
put in Q.

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices;
put in Q.

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4

4

5

5
3

3

6

6

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

5
3

3

6

6

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3
3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3
3

6

6

9

9

7

7

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices;
put in Q.

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3

6

6

9

9

7

7

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3

6

9

9

7

7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

2

4
5

3

6

9

7

FIFO Queue
 9 7

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3

6

9

7

7 8 8

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;
put in Q.

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices;
put in Q.

Breadth-First Search Example

Remove 8 from Q; visit adjacent unvisited vertices;
put in Q.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

Breadth-First Search Example

Queue is empty. Search terminates.

2
3

8

10

1

4
5 9

11
6

7

1

FIFO Queue

2

4
5

3

6

9

7

8

Breadth-First Search Property

•  All vertices reachable from the start vertex
 (including the start vertex) are visited.

•  virtual void Graph::BFS (int v) {
•  visited = new bool[n]; fill(visited, visited + n, false);
•  visited[v] = true;
•  Queue<int> q;
•  q.Push(v);

•  while (!q.IsEmpty()) {
•  v = q.Front(); q.Pop();
•  for (all vertices w adjacent to v)
•  if (!visited[w]) {
•  visited[w] = true;
•  q.Push(w);
•  }
•  } // end of while
•  delete [] visited;
•  }

 m vertex1 vertex2 v1link v2link

Time Complexity
•  Each visited vertex is put on (and so

 removed from) the queue exactly once.
•  When a vertex is removed from the queue,

 we examine its adjacent vertices.
§ O(n) if adjacency matrix used
§ O(vertex degree) if adjacency lists used

•  Total time
§ O(mn), where m is number of vertices in the

 component that is searched (adjacency matrix)

Time Complexity

§ O(n + sum of component vertex degrees) (adj.
 lists)

 = O(n + number of edges in component)

Path From Vertex v To Vertex u

•  Start a breadth-first search at vertex v.
•  Terminate when vertex u is visited or when

 Q becomes empty (whichever occurs first).
•  Time

§ O(n2) when adjacency matrix used
§ O(n+e) when adjacency lists used (e is number

 of edges)

Is The Graph Connected?

•  Start a breadth-first search at any vertex of
 the graph.

•  Graph is connected iff all n vertices get
 visited.

•  Time
§ O(n2) when adjacency matrix used
§ O(n+e) when adjacency lists used (e is number

 of edges)

Connected Components

•  Start a breadth-first search at any as yet
 unvisited vertex of the graph.

•  Newly visited vertices (plus edges between
 them) define a component.

•  Repeat until all vertices are visited.

Connected Components

2
3

8

10

1

4
5 9

11
6

7

Connected Components	
•  virtual void Graph::Components(){
•  visited = new bool[n];
•  fill(visited, visited+n, false);
•  for (int i=0; i<n; i++)
•  if (!visited[i]) {
•  BFS (i); // find a component
•  OutputNewComponent();
•  }
•  delete [] visited;
•  }

Time Complexity

§ O(n2) when adjacency matrix used
§ O(n+e) when adjacency lists used (e

 is number of edges)

Spanning Tree

Breadth-first search from vertex 1.

2
3

8
1

4
5 9

6
7

1

2

4

3

6

5 9

7

8

Breadth-first spanning tree.

Spanning Tree

•  Start a breadth-first search at any vertex of
 the graph.

•  If graph is connected, the n-1 edges used to
 get to unvisited vertices define a spanning
 tree (breadth-first spanning tree).

•  Time
§ O(n2) when adjacency matrix used
§ O(n+e) when adjacency lists used (e is number

 of edges)

Depth-First Search

depthFirstSearch(v)
{
 Label vertex v as reached.
 for (each unreached vertex u
 adjacenct from v)
 depthFirstSearch(u);
}

Depth-First Search Example

Start search at vertex 1.

2
3

8

10

1

4
5 9

11
6

7

Label vertex 1 and do a depth first search
 from either 2 or 4.

1

2

Suppose that vertex 2 is selected.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

Label vertex 2 and do a depth first search
 from either 3, 5, or 6.

1

22

5

Suppose that vertex 5 is selected.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

Label vertex 5 and do a depth first search
 from either 3, 7, or 9.

1

22

55 9

Suppose that vertex 9 is selected.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

Label vertex 9 and do a depth first search
 from either 6 or 8.

1

22

55 99

8

Suppose that vertex 8 is selected.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

Label vertex 8 and return to vertex 9.

1

22

55 99

88

From vertex 9 do a dfs(6).

6

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

Label vertex 6 and do a depth first search from
 either 4 or 7.

66

4

Suppose that vertex 4 is selected.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

Label vertex 4 and return to 6.

66

44

From vertex 6 do a dfs(7).

7

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

66

44

77

Return to 5.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

66

44

77

Do a dfs(3).

3

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

66

44

77

Label 3 and return to 5.

33

Return to 2.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

66

44

77

33

Return to 1.

Depth-First Search Example
2

3
8

10

1

4
5 9

11
6

7

1

22

55 99

88

66

44

77

33

Return to invoking method.

Depth-First Search Properties
•  Same complexity as BFS.
•  Same properties with respect to path

 finding, connected components, and
 spanning trees.

•  Edges used to reach unlabeled vertices
 define a depth-first spanning tree when the
 graph is connected.

•  There are problems for which bfs is better
 than dfs and vice versa.

•  Exercises: P352-3, 5, 6

Minimum-Cost Spanning Tree

•  weighted connected undirected graph
•  spanning tree
•  cost of spanning tree is sum of edge costs
•  find spanning tree that has minimum cost

Example

•  Network has 10 edges.
•  Spanning tree has only n - 1 = 7 edges.
•  Need to either select 7 edges or discard 3.

1 3 5 7

2 4 6 8

2 4 6 3

8 10 14

12 7

9

Greedy Method

•  Solve problem by making a sequence of
 decisions.

•  Decisions are made one by one in some
 order.

•  Each decision is made using a greedy
 criterion.

•  A decision, once made, is (usually) not
 changed later.

Edge Selection Greedy Strategies
•  Start with an n-vertex 0-edge forest.

 Consider edges in ascending order of cost.
 Select edge if it does not form a cycle
 together with already selected edges.
§ Kruskal’s method.

•  Start with a 1-vertex tree and grow it into an
 n-vertex tree by repeatedly adding a vertex
 and an edge. When there is a choice, add a
 least cost edge.
§  Prim’s method.

Edge Selection Greedy Strategies
•  Start with an n-vertex forest. Each

 component/tree selects a least cost edge to
 connect to another component/tree.
 Eliminate duplicate selections and possible
 cycles. Repeat until only 1 component/tree
 is left.
§  Sollin’s method.

Edge Rejection Greedy Strategies
•  Start with the connected graph. Repeatedly

 find a cycle and eliminate the highest cost
 edge on this cycle. Stop when no cycles
 remain.

•  Consider edges in descending order of cost.
 Eliminate an edge provided this leaves
 behind a connected graph.

Kruskal’s Method

•  Edge (7,8) is considered next and added.

1 3 5 7

2 4 6 8
2 3

•  Edge (3,4) is considered next and added.

4

•  Edge (5,6) is considered next and added.

6

•  Edge (2,3) is considered next and added.

7

•  Edge (1,3) is considered next and rejected
 because it creates a cycle.

1 3 5 7

2 4 6 8
2 4 6 3

8 10 14

12 7

9

Kruskal’s Method

•  Edge (2,4) is considered next and rejected
 because it creates a cycle.

1 3 5 7

2 4 6 8
2 34

•  Edge (3,5) is considered next and added.

6

10

•  Edge (3,6) is considered next and rejected.

7

•  Edge (5,7) is considered next and added.

14
1 3 5 7

2 4 6 8
2 4 6 3

8 10 14

12 7

9

Kruskal’s Method

•  n - 1 edges have been selected and no cycle
 formed.

•  So we must have a spanning tree.
•  Cost is 46.
•  Min-cost spanning tree is unique when all

 edge costs are different.

9

1 3 5 7

2 4 6 8
2 34 6

10

7

14

1 3 5 7

2 4 6 8
2 4 6 3

8 10 14

12 7

9

Prim’s Method

•  Start with any single vertex tree.

5

•  Get a 2-vertex tree by adding a cheapest edge.

6

6

•  Get a 3-vertex tree by adding a cheapest edge.

3
10

•  Grow the tree one edge at a time until the tree
 has n - 1 edges (and hence has all n vertices).

4

4

2

7
1

2

7
14

8

31 3 5 7

2 4 6 8
2 4 6 3

8 10 14

12 7

9

Sollin’s Method

•  Start with a forest that has no edges.

1 3 5 7

2 4 6 8

•  Each component selects a least cost edge
 with which to connect to another
 component.
•  Duplicate selections are eliminated.
•  Cycles are possible when the graph has
 some edges that have the same cost.

2 4 6 31 3 5 7

2 4 6 8
2 4 6 3

8 10 14

12 7

9

Sollin’s Method

1 3 5 7

2 4 6 8

•  Each component that remains selects a
 least cost edge with which to connect to
 another component.
•  Beware of duplicate selections and cycles.

7
2

2

Greedy Minimum-Cost Spanning Tree Methods

•  Can prove that all result in a minimum-cost
 spanning tree.

•  See Text Book

Pseudocode For Kruskal’s Method

Start with an empty set T of edges.
while (E is not empty && |T| != n-1)
{
 Let (u,v) be a least-cost edge in E.
 E = E - {(u,v)}. // delete edge from E
 if ((u,v) does not create a cycle in T)
 Add edge (u,v) to T.
}
if (| T | == n-1) T is a min-cost spanning tree.
else Network has no spanning tree.

Data Structures For Kruskal’s Method

Edge set E.
Operations are:

§  Is E empty?
§  Select and remove a least-cost edge.

Use a min heap of edges.
§  Initialize. O(e) time.
§  Remove and return least-cost edge. O(log e) time.

Data Structures For Kruskal’s Method

Set of selected edges T.
Operations are:

§ Does T have n - 1 edges?
§ Does the addition of an edge (u, v) to T result in a

 cycle?
§ Add an edge to T.

Data Structures For Kruskal’s Method
Use an array linear list for the edges of T.

§ Does T have n - 1 edges?
•  Check size of linear list. O(1) time.

§ Does the addition of an edge (u, v) to T result in a
 cycle?

•  Not easy.
§ Add an edge to T.

•  Add at right end of linear list. O(1) time.

Just use an array rather than ArrayLinearList.

Data Structures For Kruskal’s Method
Does the addition of an edge (u, v) to T result in

 a cycle?

1 3 5 7

2 4 6 8
2 34 67

•  Each component of T is a tree.
•  When u and v are in the same component, the

 addition of the edge (u,v) creates a cycle.
•  When u and v are in the different components,

 the addition of the edge (u,v) does not create
 a cycle.

Data Structures For Kruskal’s Method
1 3 5 7

2 4 6 8
2 34 67

•  Each component of T is defined by the
 vertices in the component.

•  Represent each component as a set of
 vertices.
§ {1, 2, 3, 4}, {5, 6}, {7, 8}

•  Two vertices are in the same component iff
 they are in the same set of vertices.

Data Structures For Kruskal’s Method

•  When an edge (u, v) is added to T, the two
 components that have vertices u and v
 combine to become a single component.

1 3 5 7

2 4 6 8
2 34 67

•  In our set representation of components, the
 set that has vertex u and the set that has
 vertex v are united.
§ {1, 2, 3, 4} + {5, 6} => {1, 2, 3, 4, 5, 6}

Data Structures For Kruskal’s Method
•  Initially, T is empty.

1 3 5 7

2 4 6 8

•  Initial sets are:
§  {1} {2} {3} {4} {5} {6} {7} {8}

•  Does the addition of an edge (u, v) to T result
 in a cycle? If not, add edge to T.

s1 = find(u); s2 = find(v);

if

Data Structures For Kruskal’s Method
•  Use FastUnionFind.
•  Initialize.

§ O(n) time.
•  At most 2e finds and n-1 unions.

§ Very close to O(n + e).
•  Min heap operations to get edges in increasing order

 of cost take O(e log e).
•  Overall complexity of Kruskal’s method is O(n + e

 log e).

Greedy Minimum-Cost Spanning Tree Methods

•  Prim’s method is fastest.
§ O(n2) using an implementation similar to that of

 Dijkstra’s shortest-path algorithm.
§ O(e + n log n) using a Fibonacci heap.

•  Kruskal’s uses union-find trees to run in
 O(n + e log e) time.

•  Exercises: P359-1

•  Implement a full version algorithm of
 Kruskal’s Method (Experiment)

•  Implement a BFS algorithm using
 Adjacency Multilists	

•  virtual void Graph::BFS (int v) {
•  visited = new bool[n]; fill(visited, visited + n, false);
•  visited[v] = true;
•  Queue<int> q;
•  q.Push(v);

•  while (!q.IsEmpty()) {
•  v = q.Front(); q.Pop();
•  ADNode * p = Alist[v];
•  while(p != null){	

 m vertex1 vertex2 v1link v2link Alist[i]	

Adjacency Multilists	

•  int w ;
•  if(p->v1 == v) {
•  w = p->v2;
•  p = p->v1link;}
•  else{
•  w = p->v1;
•  p = p->v2link;}
•  if (!visited[w]) {
•  q.Push(w);
•  visited[w] = true;}
•  } // end of while(p)
•  } // end of while(q)
• 

Shortest Path Problems

•  Directed weighted graph.
•  Path length is sum of weights of edges on path.
•  The vertex at which the path begins is the

 source vertex.
•  The vertex at which the path ends is the

 destination vertex.

Example

A path from 1 to 7.

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1
1

7

Path length is 14.

Example

Another path from 1 to 7.

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

Path length is 11.

Shortest Path Problems

•  Single source single destination.
•  Single source all destinations.
•  All pairs (every vertex is a source

 and destination).

Single Source Single Destination

Possible greedy algorithm:
§ Leave source vertex using cheapest/shortest

 edge.
§ Leave new vertex using cheapest edge subject to

 the constraint that a new vertex is reached.
§ Continue until destination is reached.

Greedy Shortest 1 To 7 Path

1

2

3

4

5

6

7

3

3

3

383

3

3 3 3 3

Single Source All Destinations

Need to generate up to n (n is number of vertices)
 paths (including path from source to itself).

Greedy method:
§  Construct these up to n paths in order of increasing

 length.
§ Assume edge costs (lengths) are >= 0.
§  So, no path has length < 0.
§  First shortest path is from the source vertex to itself.

 The length of this path is 0.

Greedy Single Source All Destinations

1

2

3

4

5

6

7

6

Greedy Single Source All Destinations
Path Length

1 0

1 3 2

1 3 5 5

1 2 6

1 3 9 5 4

1 3 10 6

1 3 11 6 7

•  Each path (other than
 first) is a one edge
 extension of a previous
 path.

• Next shortest path is
 the shortest one edge
 extension of an already
 generated shortest path.

Greedy Single Source All Destinations

•  Let d(i) (distanceFromSource(i)) be the length of
 a shortest one edge extension of an already
 generated shortest path, the one edge extension
 ends at vertex i.

•  The next shortest path is to an as yet unreached
 vertex for which the d() value is least.

•  Let p(i) (predecessor(i)) be the vertex just before
 vertex i on the shortest one edge extension to i.

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

1

2

3

4 7

6
1

2
1

16
1

-
-

-
-

14
1

2

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3

2

5

6

5
3

10
3

5

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3
5
3

10
3

1 3 5

4 7

 9
5

6

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

-
-

14
1

1 3
5
3

10
3

1 3 5

1 2

4

9

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

10
-

14
1

1

Greedy Single Source All Destinations

1

2

3

4

5

6

7

2

6
16 7

8

10
3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

6
1

2
1

9
5

-
-

-
-

14
1

5

Greedy Single Source All Destinations
Path

1 0

1 3 2

1 3 5 5

1 2 6

1 3 9 5 4

1 3 10 6

1 3 11 6 7

Length

[1] [2] [3] [4] [5] [6] [7]
0
-

6
1

2
1

9
5

-
-

-
-

14
1

5
3

10
3

12
4
11
6

Single Source Single Destination

Terminate single source all destinations
 greedy algorithm as soon as shortest path to
 desired vertex has been generated.

v u

w

S

v u

w

S
x

Correctness

Data Structures For Dijkstra’s Algorithm

•  The greedy single source all destinations
 algorithm is known as Dijkstra’s algorithm.

•  Implement d() and p() as 1D arrays.
•  Keep a linear list L of reachable vertices to

 which shortest path is yet to be generated.
•  Select and remove vertex v in L that has smallest

 d() value.
•  Update d() and p() values of vertices adjacent to

 v.

•  1 void MatrixDigraph::ShortestPath(int n, int v){
•  2 for (int i=0; i<n; i++) {
•  3 L[i]=false; dist[i]=length[v][i];}
•  4 L[v]=true;
•  5 dist[v]=0;
•  6 for (i=0; i<n-2; i++) { //determine n-1 paths from v
• 
int

Complexity
•  O(n) to select next destination vertex.
•  O(out-degree) to update d() and p() values

 when adjacency lists are used.
•  O(n) to update d() and p() values when

 adjacency matrix is used.
•  Selection and update done once for each

 vertex to which a shortest path is found.
•  Total time is O(n2 + e) = O(n2).

Complexity

•  When a min heap of d() values is used in
 place of the linear list L of reachable
 vertices, total time is O((n+e) log n),
 because O(n) remove min operations and
 O(e) change key (d() value) operations are
 done.

•  When e is O(n2), using a min heap is worse
 than using a linear list.

•  When a Fibonacci heap is used, the total
 time is O(n log n + e).

All-Pairs Shortest Paths

•  Given an n-vertex directed weighted graph,
 find a shortest path from vertex i to vertex j
 for each of the n2 vertex pairs (i,j).

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

Dijkstra’s Single Source Algorithm

•  Use Dijkstra’s algorithm n times, once with
 each of the n vertices as the source vertex.

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

Performance

•  Time complexity is O(n3) time.
•  Works only when no edge has a cost < 0.

Dynamic Programming Solution
•  Time complexity is Theta(n3) time.
•  Works so long as there is no cycle whose length

 is < 0.
•  When there is a cycle whose length is < 0, some

 shortest paths aren’t finite.
§  If vertex 1 is on a cycle whose length is -2, each time

 you go around this cycle once you get a 1 to 1 path
 that is 2 units shorter than the previous one.

•  Simpler to code, smaller overheads.
•  Known as Floyd’s shortest paths algorithm.

Decision Sequence

•  First decide the highest intermediate vertex (i.e.,
 largest vertex number) on the shortest path from i
 to j.

•  If the shortest path is i, 2, 6, 3, 8, 5, 7, j, the first
 decision is that vertex 8 is an intermediate vertex
 on the shortest path and no intermediate vertex is
 larger than 8.

•  Then decide the highest intermediate vertex on the
 path from i to 8, and so on.

i j

Problem State

•  (i,j,k) denotes the problem of finding the shortest
 path from vertex i to vertex j that has no
 intermediate vertex larger than k.

•  (i,j,n) denotes the problem of finding the shortest
 path from vertex i to vertex j (with no restrictions
 on intermediate vertices).

i j

Cost Function

•  Let c(i,j,k) be the length of a shortest path from
 vertex i to vertex j that has no intermediate vertex
 larger than k.

i j

c(i,j,n)
•  c(i,j,n) is the length of a shortest path from

 vertex i to vertex j that has no intermediate
 vertex larger than n.

•  No vertex is larger than n.
•  Therefore, c(i,j,n) is the length of a shortest

 path from vertex i to vertex j.

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

c(i,j,0)
•  c(i,j,0) is the length of a shortest path from vertex i

 to vertex j that has no intermediate vertex larger
 than 0.
§  Every vertex is larger than 0.
§  Therefore, c(i,j,0) is the length of a single-edge path

 from vertex i to vertex j.

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

Recurrence For c(i,j,k), k > 0

•  The shortest path from vertex i to vertex j that has
 no intermediate vertex larger than k may or may
 not go through vertex k.

•  If this shortest path does not go through vertex k,
 the largest permissible intermediate vertex is k-1.
 So the path length is c(i,j,k-1).

i j

< k

Recurrence For c(i,j,k)), k > 0
•  Shortest path goes through vertex k.

i j

k

•  We may assume that vertex k is not repeated
 because no cycle has negative length.

•  Largest permissible intermediate vertex on i to k
 and k to j paths is k-1.

Recurrence For c(i,j,k)), k > 0

i j

k

•  i to k path must be a shortest i to k path that
 goes through no vertex larger than k-1.

•  If not, replace current i to k path with a shorter i
 to k path to get an even shorter i to j path.

Recurrence For c(i,j,k)), k > 0

i j

k

•  Similarly, k to j path must be a shortest k to j
 path that goes through no vertex larger than
 k-1.

•  Therefore, length of i to k path is c(i,k,k-1), and
 length of k to j path is c(k,j,k-1).

•  So, c(i,j,k) = c(i,k,k-1) + c(k,j,k-1).

Recurrence For c(i,j,k)), k > 0

•  Combining the two equations for c(i,j,k), we get
 c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}.

•  We may compute the c(i,j,k)s in the order k = 1,
 2, 3, …, n.

i j

Floyd’s Shortest Paths Algorithm
for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 c(i,j,k) = min{c(i,j,k-1),
 c(i,k,k-1) + c(k,j,k-1)};

•  Time complexity is O(n3).

•  More precisely Theta(n3).
•  3) .

Space Reduction
•  c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
•  When neither i nor j equals k, c(i,j,k-1) is used

 only in the computation of c(i,j,k).
column k

row k

(i,j)

•  So c(i,j,k) can overwrite c(i,j,k-1).

Space Reduction

•  c(i,j,k) = min{c(i,j,k-1), c(i,k,k-1) + c(k,j,k-1)}
•  When i equals k, c(i,j,k-1) equals c(i,j,k).

§  c(k,j,k) = min{c(k,j,k-1), c(k,k,k-1) + c(k,j,k-1)}
 = min{c(k,j,k-1), 0 + c(k,j,k-1)}
 = c(k,j,k-1)

•  So, when i equals k, c(i,j,k) can overwrite
 c(i,j,k-1).

•  Similarly when j equals k, c(i,j,k) can overwrite
 c(i,j,k-1).

•  So, in all cases c(i,j,k) can overwrite c(i,j,k-1).

Floyd’s Shortest Paths Algorithm
for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 c(i,j) = min{c(i,j), c(i,k) + c(k,j)};

•  Initially, c(i,j) = c(i,j,0).
•  Upon termination, c(i,j) = c(i,j,n).
•  Time complexity is Theta(n3).

•  Theta(n2) space is needed for c(*,*).

Building The Shortest Paths
•  Let kay(i,j) be the largest vertex on the shortest

 path from i to j.
•  Initially, kay(i,j) = 0 (shortest path has no

 intermediate vertex).

for (int k = 1; k <= n; k++)
 for (int i = 1; i <= n; i++)
 for (int j = 1; j <= n; j++)
 if (c(i,j) > c(i,k) + c(k,j))
 {kay(i,j) = k; c(i,j) = c(i,k) + c(k,j);}

1 0

2

4

6

3 2
A-1 0 1 2
0 0 4 11

1 6 0 2
2 3 ∞ 0

A0 0 1 2
0 0 4 11

1 6 0 2
2 3 7 0

A1 0 1 2
0 0 4 6

1 6 0 2
2 3 7 0

A2 0 1 2
0 0 4 6

1 5 0 2
2 3 7 0

11

Example

- 7 5 1 - - - -
- - - - 4 - - -
- 7 - - 9 9 - -
- 5 - - - - 16 -
- - - 4 - - - 1
- - - - - - 1 -
2 - - - - - - 4
- - - - - 2 4 -

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

Initial Cost Matrix
 c(*,*) = c(*,*,0)

Final Cost Matrix c(*,*) = c(*,*,n)
 0 6 5 1 10 13 14 11
10 0 15 8 4 7 8 5
12 7 0 13 9 9 10 10
15 5 20 0 9 12 13 10
 6 9 11 4 0 3 4 1
 3 9 8 4 13 0 1 5
 2 8 7 3 12 6 0 4
 5 11 10 6 15 2 3 0

kay Matrix

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

Shortest Path

Shortest path from 1 to 7.

1

2

3

4

5

6

7

5

7
1 7

9

1
9

4
4

5 16

4

2

8

1 2

Path length is 14.

Build A Shortest Path

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

•  The path is 1 4 2 5 8 6 7.

•  kay(1,7) = 8

1 8 7
•  kay(1,8) = 5

1 5 8 7
•  kay(1,5) = 4

1 5 8 7 4

Build A Shortest Path

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

•  The path is 1 4 2 5 8 6 7.
1 5 8 7 4

•  kay(1,4) = 0
1 5 8 7 4

•  kay(4,5) = 2
1 5 8 7 2 4

•  kay(4,2) = 0
1 5 8 7 2 4

Build A Shortest Path

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

•  The path is 1 4 2 5 8 6 7.
1 5 8 7 2 4

•  kay(2,5) = 0
1 5 8 7 2 4

•  kay(5,8) = 0
1 5 8 7 2 4

•  kay(8,7) = 6
1 5 8 6 2 4 7

Build A Shortest Path

0 4 0 0 4 8 8 5
8 0 8 5 0 8 8 5
7 0 0 5 0 0 6 5
8 0 8 0 2 8 8 5
8 4 8 0 0 8 8 0
7 7 7 7 7 0 0 7
0 4 1 1 4 8 0 0
7 7 7 7 7 0 6 0

•  The path is 1 4 2 5 8 6 7.
1 5 8 6 2 4 7

•  kay(8,6) = 0
1 5 8 6 2 4 7

•  kay(6,7) = 0
1 5 8 6 2 4 7

Output A Shortest Path

void outputPath(int i, int j)
{// does not output first vertex (i) on path
 if (i == j) return;
 if (kay[i][j] == 0) // no intermediate vertices on path
 print(j + " ");
 else {// kay[i][j] is an intermediate vertex on the path
 outputPath(i, kay[i][j]);
 outputPath(kay[i][j], j);
 }
}

Time Complexity Of outputPath
O(number of vertices on shortest path)

Exercises: P372-1, P373-2, 5, P375-17

Directed Graphs Usage	

•  Directed graphs are often used to represent order
-dependent tasks

•  Cannot start a task before another task finishes
•  Model this task dependent constraint using arcs
•  An arc (i,j) means task j cannot start until task i is

 finished

•  For the system not to hang, the graph must be acyclic.

i j
Task j cannot start

until task i is finished

Activity Networks

Activity-on-Vertex (AOV) Networks
•  A directed graph G
•  Vertices

– Tasks or activities
•  Edges

– Precedence relations between tasks

 Course-No. Course-Name Prerequisites
C1 Programming Ⅰ None
C2 Discrete Mathematics none
C3 Data Structures C1, C2
C4 Calculus Ⅰ none
C5 Calculus Ⅱ C4
C6 Linear Algebra C5
C7 Analysis of Algorithms C3, C6
C8 Assembly Language C3
C9 Operating System C7, C8
C10 Programming Languages C7
C11 Compiler Design C10
C12 Artificial Intelligence C7
C13 Computational Theory C7
C14 Parallel Algorithm C13
C15 Numerical Analysis C5

AOV	

C1

C2

C4

C3

C5 C6 C15

C7

C8

C9

C13

C12

C10

C14

C11

Definitions	
•  Vertex i in an AOV network G is a predecessor of

 j iff there is a directed path from i to j. If <i, j> is
 an edge in G then i is an immediate predecessor
 of j and j immediate successor of i.

•  A precedence relation that is both transitive and
 irreflexive is a partial order.

•  A directed graph with no cycle is an acyclic
 graph.	

Problem	

•  Given an AOV network G

– whether or not it is irreflexive, i.e.,
 acyclic.

•  Solution

– Generate the topological order of

Topological order	

•  A topological order is a linear ordering of
 vertices of a graph
– For any two vertices i and j, if i is a predecessor

 of j in the network, then i precedes j in the
 linear ordering

•  It can be thought of as a way to linearly
 order the vertices so that the linear order
 respects the ordering relations implied by
 the arcs(edges)

Topological order	

0
1 2

234

15

6 178

19

Whether a Digraph is acyclic?	

•  Same to:
–  Does every task can be executed?

•  Idea:
–  Tasks have no predecessor can be executed
–  Tasks with all predecessors finished can be

 executed
–  Starting point must have zero indegree!
–  If it doesn’t exist, the graph would not be

 acyclic

Whether a Digraph is acyclic?	

•  Vertices with zero indegree
–  Can start right away
–  Output it first in the linear order

•  A vertex i is output
–  Its outgoing arcs (i, j) are no longer useful
–  Since tasks j does not need to wait for i anymore

•  Remove all i’s outgoing arcs
•  Vertex i removed

–  new graph is still a directed acyclic graph
•  Repeat step 1-2 until no 0-indegree vertex left

Topological Sort	

Example

0
1

2

3

4
5

6

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
1
2
1
1
2
1
1
2
2

Indegree

start

Q = { 0 }

OUTPUT: 0

Example

0
1

2

3

4
5

6

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
1
2
1
1
2
1
1
2
2

Indegree

Dequeue 0 Q = { }
 -> remove 0’s arcs – adjust
 indegrees of neighbors
 OUTPUT:

Decrement 0’s
neighbors

-1

-1

-1

Example

0
1

2

3

4
5

6

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
2
1
0
2
0
1
2
2

Indegree

Dequeue 0 Q = { 6, 1, 4 }
 Enqueue all starting points

OUTPUT: 0

Enqueue all
new start points

Example

1
2

3

4
5

6

7

8

9

Example

1
2

3

4
5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
1
0
0
2
0
1
2
2

Indegree

Dequeue 6 Q = { 1, 4, 3 }
 Enqueue 3

OUTPUT: 0 6

Enqueue new
start

Example

1
2

3

4
5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
1
0
0
2
0
1
2
2

Indegree

Dequeue 1 Q = { 4, 3 }
 Adjust indegrees of neighbors

OUTPUT: 0 6 1

Adjust neighbors
of 1

-1

Example

2

3

4
5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
2
0
1
2
2

Indegree

Dequeue 1 Q = { 4, 3, 2 }
 Enqueue 2

OUTPUT: 0 6 1

Enqueue new
starting points

Example

2

3

4
5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
2
0
1
2
2

Indegree

Dequeue 4 Q = { 3, 2 }
 Adjust indegrees of neighbors

OUTPUT: 0 6 1 4

Adjust 4’s
neighbors

-1

Example

2

3

5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
1
0
1
2
2

Indegree

Dequeue 4 Q = { 3, 2 }
 No new start points found

OUTPUT: 0 6 1 4

NO new start
points

Example

2

3

5

7

8

9

0

1

2 3 4 5 6

7

8 9 2

6

1 4

7

5

8

5

3

2

8

9

9

0
1

2 3 4 5 6

7

8 9

0
0

0 0 0 1 0

1

2 2

I

n

d

e

g

r

e

e

Example

2

5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
1
0
1
1
2

Indegree

Dequeue 3 Q = { 2 }
 No new start points found

OUTPUT: 0 6 1 4 3

Example

2

5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
1
0
1
1
2

Indegree

Dequeue 2 Q = { }
 Adjust 2’s neighbors

Example

5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
1
2

Indegree

Dequeue 2 Q = { 5, 7 }
 Enqueue 5, 7

OUTPUT: 0 6 1 4 3 2

Example

5

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
1
2

Indegree

Dequeue 5 Q = { 7 }
 Adjust neighbors

OUTPUT: 0 6 1 4 3 2 5

-1

Example

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
1
1

Indegree

Dequeue 5 Q = { 7 }
 No new starts

OUTPUT: 0 6 1 4 3 2 5

Example

7

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
1
1

Indegree

Dequeue 7 Q = { }
 Adjust neighbors

OUTPUT: 0 6 1 4 3 2 5 7

-1

Example

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
0
1

Indegree

Dequeue 7 Q = { 8 }
 Enqueue 8

OUTPUT: 0 6 1 4 3 2 5 7

Example

8

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
0
1

Indegree

Dequeue 8 Q = { }
 Adjust indegrees of neighbors

OUTPUT: 0 6 1 4 3 2 5 7 8

-1

Example

9

0
1
2
3
4
5
6
7
8
9

2

6 1 4

7 5

8

5

3 2

8

9

9

0
1
2
3
4
5
6
7
8
9

0
0
0
0
0
0
0
0
0
0

Indegree

Dequeue 8 Q = { 9 }
 Enqueue 9
Dequeue 9 Q = { }
 STOP – no neighbors

 OUTPUT: 0 6 1 4 3 2 5 7 8 9

Example

OUTPUT: 0 6 1 4 3 2 5 7 8 9

0
1

2

3

4
5

6

7

8

9

Is output topologically correct?

Topological Sort: Complexity
•  We never visited a vertex more than one time

•  For each vertex, we had to examine all

 outgoing edges
– Σ outdegree(v) = m
– This is summed over all vertices, not per vertex

•  So, our running time is exactly
– O(n + m)

•  Can we use a stack instead of a queue?

•  1 Input the AOV network, let n be the number of
vertices;

•  2 for (int i=0; i<n; i++) // output the vertices
•  3 {
•  4 if (every vertex has a predecessor) return;
•  5 // network has a cycle and is infeasible.
•  6 pick a vertex v that has no predecessors;
•  7 cout << v;
•  8 delete v and all edges leading out of v from the

network;
•  9 }

•  void LinkedGraph::TopologicalOrder() { // count[i] = indegree(i)
•  int top = -1, pos = 0;
•  for (int i=0; i<n; i++) //create a linked stack of vertices with
•  if (count[i]==0) { count[i]=top; top=i;} //no predecessors
•  for (i=0; i<n; i++)
•  if (top==-1) throw “network has a cycle.";
•  int j=top; top=count[top]; //unstack a vertex
•  t[pos++] = j; // store vertex j in topological order
•  Chain<int>::ChainIterator ji=adjLists[j].begin();
•  while (ji != adjLists[j].end()) { // decrease the count of
•  count[*ji]--; // the successor vertices of j	
•  if (count[*ji]==0) {count[*ji]=top; top=*ji;} //add to stack
•  ji++; // next successor
•  }
•  }

Project Planning Problem	

•  A project
– Several tasks
– Task time
– Task dependencies

•  Problem
– How long at least to finish the project (all

 tasks)?
– What tasks are critical to the finish time?

An example	

Tasks Time Succ
a1 6 a4
a2 4 a5
a3 5 a6
a4 1 a7

a8
a5 1 a7

a8
a6 2 a9

a7 9 a10
a8 7 a11

a9 4 a11

a10 2

a11 4

Problem Analysis	

•  Problem
– How long at least to finish the project (all

 tasks)?
– What tasks are critical to the finish time?

•  Key words
– At Least

•  No delay
– Critical

•  Delay is not allowed

•  Problem
– How long at least to finish the

 project (all tasks)?
– What tasks are critical to the

 finish time?

a1 6 a4
a2 4 a5
a3 5 a6
a4 1 a7 a8

a5 1 a7 a8
a6 2 a9
a7 9 a10

a8 7 a11
a9 4 a11

a10 2
a11 4

AOV	

a1 a4

a2 a5

a3 a6

a7

a8

a9

a10

a11

Possible Solution	

•  Topological Sort on AOV?
– Output task
– Does not know whether the project is finished

 or not

a1 a4

a2 a5

a3 a6

a7

a8

a9

a10

a11

•  Analysis
– We should know what tasks are finished at a

 given time point
– Time point

•  Project Phase
•  E.g : after phase 1, task1, 2, 3 are finished
 after phase 2, task1, 2, 3,4,5,6 are finished

Possible Solution	

•  If the outputs of topological sort are project
 phases…
– We did it!

•  How to make it happen
– Network with project phase as vertex
– Edges?

• Tasks!

Possible Solution	

a1 6 a4
a2 4 a5
a3 5 a6
a4 1 a7 a8

a5 1 a7 a8
a6 2 a9
a7 9 a10

a8 7 a11
a9 4 a11

a10 2
a11 4

T W Pre

a1 6

a2 4

a3 5

a4 1 a1

a5 1 a2

a6 2 a3

a7 9 a4
a5

a8 7 a4
a5

a9 4 a6

a10 2 a7

a11 4 a8
a9

v1
a1

v2

a2
v3 a3

v4

a4

a5

a6

a5
v5

a7

a8

v6

v7

v8
a11

v11

T W Pre

a1 6

a2 4

a3 5

a4 1 a1

a5 1 a2

a6 2 a3

a7 9 a4
a5

a8 7 a4
a5

a9 4 a6

a10 2 a7

a11 4 a8
a9

Activity-on-Edge (AOE)
 Networks	

•  directed edges --- tasks to be performed

•  vertices --- events, signaling the completion
 of certain activities.

•  activities represented by edges leaving a
 vertex cannot be started until the event at
 that vertex has occurred.

•  an event occurs only when all activities
 entering it have been completed.

Revisit of Project planning	

•  Problem
– How long at least to finish the project (all

 tasks)?
– What tasks are critical to the finish time?

•  Since activities in an AOE network can be carried
 out in parallel, the minimum time to complete the
 project is the length of the longest path from
 the start to the finish.

•  A path of longest length is a critical path.	

Another example	

•  Path 0, 1, 4, 6, 8
•  Path 0, 1, 4, 7, 8

1

2

3

0 4

5

a2=4

6

7

8

a1=6

a3=5

a6=2

a4=1

a5=1

a7=9

a8=7

a9=4

a10=2

a11=4

finish start

Critical Activity	

•  Critical activity
– Edges in a critical path
– Cannot delay
– Starts as soon as possible

•  How to identify critical tasks?
– Given a project time
– An earliest start time
– A latest start time
–  If e(i) == l(i), then it is critical

Calculation of Early Activity
 Times	

•  How to obtain e(i) and l(i)?

•  a7?
•  If we know

– Event 5’s earliest time
– Event 7’s latest time

9

8

7

6 4

5

3

2

1

E2s

Calculation of Early Activity
 Times	

•  If ai is edge <k, l>, then
•  （1）e(i)=
•  Ve(k)
•  （2）l(i)=
•  Vl(l)-dut(<k,l>)

Calculation of Event Times	

•  E(1) = ?
–  0

•  E(2) = ?
–  6

9

8

7

6 4

5

3

2

1

a6=2

•  E(3) = ?

Calculation of Event Times	

• P(j) is the set of all vertices adjacent to j.

• ee[0]=0 (suppose 0 is the start)

• ee[j]= max {ee[i]+duration of <i, j>},
 i ∈P(j)

• Topological Order!

i

j
.
.
.

P
(
j
)

Calculation of Event Times	

•  L(9) = ?
– E(9)

•  L(7) = ?
– L(9) – a10

9

8

7

6 4

5

3

2

1

Calculation of Event Times	
• 

Revisit of Project planning	

•  Problem
– How long at least to finish the project (all

 tasks)?
– What tasks are critical to the finish time?

•  critical Path
–  Path length

–  Edges in path

Critical Path	

•  Ve(i)
•  Vl(i)
•  E(i)
•  L(i)
•  L(i) – E(i)	

9

8

7

6 4

5

3

2

1

9

8

7

6 4

5

3

2

1

a6=2

V1
V2
V3
V4
V5
V6
V7
V8
V9

Vertex Ve Vl
0
6
4
5
7
7
16
14
18

0
6
6
8
7
10
16
14
18

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10
a11

Activity e l l-e
ü

ü

ü
ü

ü
ü

0 0 0
0 2 2

6 6 0
4 6 2
5 8 3
7 7 0
7 7 0
7 10 3
16 16 0
14 14 0

0 3 3

•  struct Pair
•  {
•  int vertex;
•  int dur; //activity duration
•  };

•  class LinkedGraph {
•  private:
•  Chain<Pair> *adjLists;
•  int *count, *t, *ee, *le;
•  int n;
•  public:
•  LinkedGraph (const int vertices) : {
•  if (vertices < 1) throw “Number of vertices must be > 0”;
•  n = vertices;
•  adjLists = new Chain<Pair>[n];
•  count = new int[n]; t = new int[n];
•  ee = new int[n]; le = new int[n];
•  };
•  void TopologicalOrder();
•  void EarliestEventTime();
•  void LatestEventTime();
•  void CriticalActivities();
•  };

•  void LinkedGraph::EarliestEventTime()
•  { // assume a topological order has already been in t,
•  // compute ee[j] according to t
•  fill(ee, ee+n, 0); // initialize ee
•  for (i=0; i<n; i++) {
•  int j=t[i];
•  Chain<Pair>::ChainIterator ji=adjLists[j].begin();
•  while (ji!=adjLists[j].end()) {
•  int k=ji→vertex; //k is successor of j
•  if (ee[k]<ee[j]+ji→dur) ee[k]=ee[j]+ji→dur; 	
•  ji++;
•  }
•  }	

•  void LinkedGraph::LatestEventTime()
•  { // assume a topological order in t, ee has
•  // been computed, compute le[j] in the reverse order of t
•  fill(le, le+n, ee[n-1]); // initialize le
•  for (i=n-2; i>=0; i--) {	
• 
i

•  void LinkedGraph::CriticalActivities()
•  { // compute e[i] and l[i], output critical activities
•  int i=1; // the numbering counter for activities
•  int u, v, e, l; // e, l are the earliest, latest start time of <u, v>
•  for (u=0; u<n; u++) { // scan the adjacency lists.
•  Chain<Pair>::ChainIterator ui=adjLists[u].begin();
•  while (ui!=adjLists[u].end()) {
•  int v=ui→vertex; // <u, v> is an edge numbered i
•  e=ee[u]; l=le[v]-ui→dur;
•  if (l==e) cout <<“a”<<i<<“<“<<u<<“,”<<v<<“>”
•  <<“is a critical activity”<<endl; 	
•  ui++; i++;
•  }
•  }
•  }

Exercises: P389-2, p390-5

Graph	

•  Definitions
•  Representations
•  Search algorithms
•  Spanning tree
•  Shortest path
•  AOV
•  AOE

 0

 1

 2

 0 2

 1 2 0 1 3 0 0

 3

 0 3 0

