Amortized Complexity

v Aggregate method.
e Accounting method.
 Potential function method.

Potential Function

P(1) = amortizedCost(1) — actualCost(i) + P(1 — 1)
2(P(1) -P(1-1)) =

>(amortizedCost(1) —actualCost(i))
P(n) — P(0) = Z(amortizedCost(1) —actualCost(1))
P(n)-P(0)>=0
When P(0) = 0, P(1) Is the amount by which the
first | operations have been over charged.

Potential Function Example

a=x+((a+b)*c+d)+y;
actualcost 111111111511117117

amortized cost 222222222 2222222272
potential 123456789 6789105672

Potential = stack size except at end.

Accounting Method

e (Guess the amortized cost.
e Show that P(n) — P(0) >=0.

Accounting Method Example
create an empty stack;
for (int1=1;1<=n; I++)

// n1s number of symbols In statement

processNextSymbol();

o Guess that amortized complexity of
processNextSymbol is 2.

o Start with P(0) = 0.

e Can show that P(i) >= number of elements
on stack after ith symbol Is processed.

Accounting Method Example

a=x+((a+b)*c+d)+y;
actualcost 111111111511117117

amortized cost 222222222 2222222272
potential 123456789 6789105672

 Potential >= number of symbols on stack.
e Therefore, P(1) >= 0 for all I.
 In particular, P(n) >= 0.

Potential Method

* Guess a suitable potential function for
which P(n) — P(0) >= 0 for all n.
e Derive amortized cost of ith operation using
AP =P(1) - P(i-1)
= amortized cost — actual cost
e amortized cost = actual cost + AP

Potential Method Example
create an empty stack;

for (inti=1;1<=n; I++)
// n1s number of symbols In statement

processNextSymbol();

« Guess that the potential function is P(i) =
number of elements on stack after it
symbol is processed (exception is P(n) = 2).

e P(0)=0and P(i) - P(0) >= 0 for all i.

It Symbol Is Not) or

Actual cost of processNextSymbol is 1.

Number of elements on stack increases by 1.

AP =P() - P(1-1) = 1.

amortized cost = actual cost + AP
=1+1=2

it Symbol Is)

Actual cost of processNextSymbol Is
#unstacked + 1.

Number of elements on stack decreases by
#unstacked —1.

AP =P(1) - P(1-1) = 1 — #unstacked.
amortized cost = actual cost + AP
= #unstacked + 1 +
(1 - #unstacked)
=2

It Symbol Is ;

Actual cost of processNextSymbol Is
#unstacked = P(n-1).

Number of elements on stack decreases by
P(n-1).
AP =P(n) - P(n-1) =2 - P(n-1).
amortized cost = actual cost + AP
= P(n-1) + (2 - P(n-1))
=2

e Binary Counter oo

Nn-bit counter

Cost of incrementing counter Is number of
bits that change.

Cost of 001011 => 001100 is 3.
Counter starts at 0.

What is the cost of incrementing the counter
m times?

zeasl - \NMorst-Case Method — ooemm

e \Worst-case cost of an increment IS n.
e Costof 011111 => 100000 is 6.
e S0, the cost of m Increments IS at most mn.

25030419 Aggregate Method

00000
counter

e Each increment changes bit O (i.e., the right
most bit).

o Exactly floor(m/2) increments change bit 1
(1.e., second bit from right).

o Exactly floor(m/4) increments change bit 2.

25030419 Aggregate Method

00000
counter

o Exactly floor(m/8) increments change bit 3.

e S0, the cost of m Increments IS m
+ floor(m/2) + floor(m/4) + <2m

e Amortized cost of an increment Is 2Zm/m = 2.

s Accounting Method ooemm

e (Guess that the amortized cost of an increment Is 2.
* Now show that P(m) — P(0) >= 0 for all m.

e 1stIncrement:

= one unit of amortized cost Is used to pay for the
change in bit O from O to 1.

= the other unit remains as a credit on bit O and 1s used
later to pay for the time when bit O changes from 1 to
0

bits 00000 00001
credits 00000 00001

PIHEIEE] 2nd Increment. 003874

bits 00001 00010
credits 00001 00010

= one unit of amortized cost Is used to pay for the
change inbit 1 fromOto 1

= the other unit remains as a credit on bit 1 and i1s used
later to pay for the time when bit 1 changes from 1 to
0

= the change in bit O from 1 to O Is paid for by the credit
on bit O

PAKICK) 3rd Increment.

bits 00010 00011
credits 00010 00011

= one unit of amortized cost Is used to pay for the
change in bit O fromOto 1

= the other unit remains as a credit on bit O and i1s used
later to pay for the time when bit 1 changes from 1 to
0

Z5I54 Ath Increment.

bits 00011 00100
credits 00011 00100

= one unit of amortized cost Is used to pay for the
change inbit 2 from0Oto 1

= the other unit remains as a credit on bit 2 and i1s used
later to pay for the time when bit 2 changes from 1 to
0

= the change in bits 0 and 1 from 1 to O iIs paid for by
the credits on these bits

Accounting Method

e P(m) — P(0) = X(amortizedCost(i) —actualCost(i))
= amount by which the first m
Increments have been over charged
= number of credits

= number of 1s
>=(

Potential Method

* Guess a suitable potential function for
which P(n) — P(0) >= 0 for all n.
e Derive amortized cost of ith operation using
AP =P(1) - P(i-1)
= amortized cost — actual cost
e amortized cost = actual cost + AP

Potential Method

Guess P(1) = number of 1s In counter after ith
Increment.

P(1) >=0and P(0) =0.

Let g = # of 1s at right end of counter just before ith

Increment (01001111 => g =4).

Actual cost of ith increment Is 1+q.

AP =P()-P(i-1)=1-0g(0100111 => 0101000)

amortized cost = actual cost + AP
=1+g+(1-q0)=2

Amortized analyses: dynamic table

* A nice use of amortized analysis

* Operation
= Table-insertion
= table-deletion.

* Scenario:
= A table — maybe a hash table
* Do not know how large in advance
= May expand with insertion
= May contract with deletion

* Detailed implementation is not
important

Amortized analyses: dynamic table

» Goal:
= O(1) amortized cost.

* Unused space always <
constant fraction of allocated
space.

Dynamic table

Load factor
= = num/size

= where num = # items stored, size =
allocated size.

If size=0,then num=0. Call a=1.
Never allow a > 1.
Keep a> a constant fraction = goal (2).

Dynamic table: expansion with insertion

Table expansion
Consider only insertion.

When the table becomes full, double
its size and reinsert all existing
items.

Guarantees that a = 1/2.

Each time we actually insert an item
into the table, it’s an elementary
insertion.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE-INSERT(T, x)
1 ifsizel[T] =0
2 then allocate table|T]| with 1 slot

3 size[T] < 1

4 if num|T | = size[T]

5 then allocate new-table with 2 - size[T'] slots
6 insert all items in table[T | into new-table
7 free table|T |

..........

Aggregate analysis

 Running time:
= Charge 1 per elementary insertion.
 Count only elementary insertions,

: aII"other costs together are constant per
call.

 ci = actual cost of ith operation
* If not full, ci = 1.

= If full, have i — 1 items in the table at the
start of the ith operation. Have to copy all
I = 1 existing items, then insert ith item

=cCclI=1]

Aggregate analysis

» Cursory analysis:
= n operations =
*ci=0(n) =
= O(n?) time for n operations.

» Of course, we don’t always expand:
“ci= |
. if i—1 is exact power of 2,
1 otherwise.

Aggregate analysis

e So total cost =

2i=olog(n) 2i
= Sn+2n=3n

* Therefore, aggregate analysis
says
=amortized cost per operation = 3.

Accounting analysis

« Charge $3 per insertion of x.
= $1 pays for x’s insertion.
= $1 pays for x to be moved in the future.

= $1 pays for some other item to be
moved.

 Suppose we’ve just expanded

= size = m before next expansion

= size = 2m after next expansion.
 Assume that the expansion used up

all the credit, so that there’s no credit
stored after the expansion

Accounting analysis

Will expand again after another m
insertions.

Each insertion will

= put $1 on one of the m items that were in
the table just after expansion

= put $1 on the item inserted.
Have $2m of credit by next expansion
when there are 2m items to move.

Just enough to pay for the expansion,
with no credit left over!

Potential method

o« @(T)=2xnum[T] - size[T]
* Initially,

num=size=0

= P =0.
* Just after expansion,

" size=2 * num

" = P =0,
* Just before expansion,

" size = num

" = d=num

= enough to pay for moving all items.

Potential method

* Need
=20, always.

* Always have
*size 2 num 2 /2 size =
=2 - nhum 2 size =
Pp20.

Potential method

« Amortized cost of it" operation:
= num; = num after it" operation ,
= size; = size after it" operation ,
= ¢, = @ after i operation .

* If no expansion:

" size; =

. size;_, ,

" num; =

. num._, +1,
“c;=1.

° Ci’ — Ci + ¢i - ¢i—1
= =1+ (2num; -size;) - (2num,_, =size,_,)
s =3

Potential method
* If expansion:

" Size; =

. 2size;_, ,

" Size;_, =

. num,_, = num; -1,

" c;=num;_, +1 = num.
e C’=c; + cb d._,
"= num, + (2num —size,-) = (2num__,
—size,-_1)
"= npum; + (2num; -2(num; -1)) -
(2(num;-=1) = (num;-1))
*"=npum;+2-(num;-1)=3

Expansion and contraction

* When a drops too low, contract the
table.

= Allocate a new, smaller one.
= Copy all items.

e Still want

= a bounded from below by a constant,
= amortized cost per operation = O(1).

 Measure cost in terms of elementary
Insertions and deletions.

Obvious strategy

* Double size when inserting into a full
table (when a =1, so that after
insertion a would become <1).

 Halve size when deletion would make
table less than half full (when a = 1/2,
SO tl)zat after deletion a would become
>= 1/2).

 Then always have 12 a s 1.

 Something BAD happened...

Obvious strategy

» Suppose we fill table.
" insert=
double
= 2 deletes =
halve
= 2 Inserts =
double

= 2 deletes =
halve

= Cost of each expansion or contraction is
©(n), so total n operation will be ©(n?).

Obvious strategy

* Problem is that:

= Not performing enough operations after
expansion or contraction to pay for the
next one.

 Want to make sure that we perform
enough operations between
consecutive expansions/contractions
to pay for the change in table size.

Simple solution

* Double as before: when inserting with
a=1
= = after doubling, a = 1/2.

 Halve size
= when deleting with a = 1/4
= = after halving, a = 1/2.

* Thus, immediately after either
expansion or contraction
a=1/2.

 Always have 1/4 = a=1.

Simple solution

Suppose we’ve just expanded/contracted

Need to delete half the items before
contraction.

Need to double number of items before
expansion.

Either way, number of operations
between expansions/contractions is at
least a constant fraction of number of
items copied.

Potential function

dD(T) = 2numl[T] — size[T] ifaz-
size[T]/2 =num[T] ifa <.

Tempty = &= 0.

az1/2 =

 num 2 1/2size =

= 2num 2 size =

= d20.
a<12 =

= num < 1/2size =
= d20.

intuition

e measures how far from a=1/2
we are.

a=12 =
d=2num-2num = 0.
ag=1=
d=2num-num
= num.
a=1/4 =

D= size/2 - num =
=4num/2 — num = num.

intuition

 Therefore, when we double or
halve, have enough potential to
pay for moving all num items.

* Potential increases linearly
between a=1/2 and a =1, and it

also increases linearly between a =
1/2 and a = 1/4.

« Since a has different distances to go

to get to 1 or 1/4, starting from 1/2,
rate of increase differs.

intuition
o @(T)= 2num|T] - size[T] ifaz":

 For ato go from 1/2 to 1,

= num increases from size/2 to size, for
a total increase of size/2.

= @ increases from 0 to size.

= @ needs to increase by 2 for each
item Inserted.

* That’s why there’s a coefficient of 2 on
the num|[T] term in the formula for

when a 2 1/2.

intuition
o @(T) = size[T)/2 —num[T] ifa<-.

 For ato gofrom1/2to Y,

= num decreases from size/2 to size /4,
for a total decrease of size/4.

= @ increases from 0 to size/A.

= @ needs to increase by 1 for each
item deleted.

* That’s why there’s a coefficient of —1
on the num|[T] term in the formula for

when a < 1/2.

Amortized cost for each operation

« Amortized costs: more cases
= Insert, delete

az21/2, a<1/2 (use qa;, since a
can vary a lot)

* size does/doesn’t change
* Exercise

