>hapter 4
Linked Lists

4.1 Singly Linked lists Or Chains

The representation of simple data structure using an
array and a sequential mapping has the property:

Successive nodes of the data object are stored at
fixed distance apart.

This makes it easy to access an arbitrary node in
O(@).

Disadvantage of sequential mapping:

It makes insertion and deletion of arbitrary elements
expensive.

For example:

Insert GAT into or delete LAT from

(BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT, OAT, PAT, RAT,
SAT, TAT,VAT,WAT)

need data movement.

Solution---linked representation:

items of a list may be placed anywhere in the
memory.

Associated with each item is a point (link) to the next
item.

first

BAT -+ CAT + EAT - -« —WAT |0

In linked list, insertion (deletion) of arbitrary elements
is much easier:

first

BAT | 4— --- —|FAT

\.

{HAT | +—--

(== == = o =

The above structures are called singly linked lists or

chains in which each node has exactly one pointer
field.

list elements are stored, In
memory, In an arbitrary order

. explicit information (called a
link) Is used to go from one
element to the next

Memory Layout

Layout offf= (a,b,c,d,e) using an array representation

a a ab a a

" Linked Representation ™

a b

/‘ 1]
/

N
pointer (or link) in e is null

a a ab N

Normal Way Draw A Linked List

1 link or pointer field of node

dd

W Eain R

mlinl=

oA chain is a linked list in which each node
represents one element.

 There is a link or pointer from one element to
the next.

e The last node has a null pointer.

t(0)

checklindex(0);

desiredNode = firstNode; // gets you to first node

return desiredNode—>element;

t(1)

checkindex(1);

desiredNode = firstNode = next; // gets you to second node

return desiredNode =2 element;

t(2)

checklindex(2);

desiredNode = firstNode = next = next; // gets you to third
node

return desiredNode =2 element;

t(5)

mlinl=

checkindex(5); // throws exception
desiredNode =firstNodenextnext—=> next—=> next—2> next;
// desiredNode = null

return desiredNode—2>element; // null=2element

NullPojErException

desiredNode =

firstNode—2> next—=> next—=>next—=>next—2>next;
// gets the computer mad

// you get a NullPointerException

n Element

mlinl=

Remo
N
A

a

remove(0)

N = N = .

T

b N
first get to node just before node to be removed

b N — N 9 ;

ve(2)

e

now change pointer in beforeNode

b N . =b N

T

b N

One- add(0,’f’)

< mEEE

T

N

firstNode = new ChainNode(
new Character(‘f’), firstNode);

.

first find node whose index is 2

d 4da a dda
a N N = Ca N (Caa (),
b N =2>1)
a b N N

Assume a chain node is defined as:

classC a N {
private:

int a a;

Ca N R

Ca N * g
— aa

will cause a compiler error because a private data
member cannot be accessed from outside of the object.

Definition: a data object of Type A HAS-A data object
of Type B if A conceptually contains B or B is a part of

A.
A composite of two classes: ChainNode and Chain.

Chain HAS-A ChainNode.

il ChainNode
first " 12 - 8 > .. ——50 0

class C a |/
class C a {
friend clajg C a ;V/
/] a

Public:

C a NIl (int

aa=

private:

int aa;

Ca N -
class C a {
public:

/[C a a a

private:
Ca N * :

d a

Null pointer constant 0 is used to indicate no node.

Pointer manipulation in C++:

Y |p e X1 Y |p

(a) (b) x=y (c) "x="y

Chain manipulation:

Example 4.3 insert a node with data field 50 following
the node x.

"fi rst l first l X
50 I . R . w..—— b
1 -
t S
4 /
t 4 50 'I

(a) first=0 (b) First =0

(50, —

void C a :I
{
if()
// a
—> = ne
else
/l a

—new (a N

‘-

Exercises: P183-1,2

(50);

)5

4.3 The Template Class Chain

We shall enhance the chain class of the previous section
to make it more reusable.

4.3.1 Implementing Chains with Templates

template <class
class C a {
public:

Ca (O
// C a

private:
Ca N

[]
) I

a

A container class is a class that represents a data
structure that contains or stores a number of data
objects.

An iterator is an object that is used to access the
elements of a container class one by one.

Why we need an iterator?

Consider the following operations that might be
performed on a container class C, all of whose elements
are integers:

(1) Output all integers in C.

(2) Obtain the sum, maximum, minimum, mean, median of all
integers in C.

(3) Obtain the integer x from C such that f(x) is maximum.

These operations have to be implemented as member
functions of C to access its private data members.

Consider the container class Chain<T>, there are,
however, some drawbacks to this:

(1) All operations of Chain<T> should preferably be
independent of the type of object to which T is
initialized. However, operations that make sense for
one instantiation of T may not for another
instantiation.

(2) The number of operations of Chain<T> can become
too large.

Consider the container class Chain<T>, there are,
however, some drawbacks to this:

(3) Even if it is acceptable to add member functions,
the user would have to learn how to sequence through
the container class.

These suggest that container class be equipped with
iterators that provide systematic access the
elements of the object.

User can employ these iterators to implement their own
functions depending upon the particular application.

Typically, an iterator is implemented as a nested
class of the container class.

A forward Iterator class for Chain may be
implemented as in the next slides, and it is required

that Chainlterator be a public nested member class of
Chain.

a (Ca N =0)
= a N
a
*() const { rptyrn — aa;}

T* a —()const { gethirn & — aa;}

a

a |l a
| e 1
° ° ,J
cofistC a I a

.
)]

9

) const

) const

Additionally, we add the following public member
functions to Chain:

Chainlterator begin() {return Chainlterator(first);}
Chainlterator end() {return Chainlterator(0);}

We may initialize an iterator object yi to the start of a
chain of integers y using the statement:

Chain<int>::Chainlterator yi = y.begin();

And we may sum the elements in y using the statement:

sum = accumulate(y.begin(), y.end(), 0);
// note sum does not require access to private members

Chain ch;
ChainNode * p, *pre;

P = ch.first;

Pre = 0O;

While(p != 0)

{
cout<< p->data;
pre = p,
D = p->next;

39

Chain<int> ch:

[T init(ch);
Chain<int>::terator<int> It;

Int sum = 0O;

For(lt = ch.begin();it != ch.end(); it ++)
{

. Sum += *it;

}

40

Exercises: P194-3, 4

Operations provided in a reusable class should be
enough but not too many.

Normally, include: constructor, destructor, operator=,
operator==, operator>>, operator<<, etc.

A chain class should provide functions to insert and
delete elements.

Another useful function is reverse that does an in
-place reversal of the elements in a chain.

To be efficient, we add a private member last to

Chain<T>, which points to the last node in the chain.

InsertBack

template <class T

void C a <T>:I Ba (constT&)

d
if () {// a
a — =ngwC a N <T>();
a =a —>
\
else =a =newC a N <T>();

S

The complexity: O(1).

a (Ca <T>&bDb)
*this

; a =b.a ;}

{ =b. sa =b.a ;);}

‘- e

The complexity: O(1).

—

) r previous current

‘-

For a chain with m = 1 nodes, the computing time of
Reverse is O(m).

Write an algorithm to construct a Chain from an
Array.

Write an algorithm to print all data of a Chain.

Exercises: P184-6

4.4 Circular Lists

A circular list can be obtained by making the link
field point to the first node of a chain.

data link

first

Xl = X2 = X3

Consider inserting a new node at the front

We need to change the link field of the node
containing x,.

It is more convenient if the access pointer points to the

last rather than the first.

data link
first
Xl > X2 > X3
data link

last

X, X, | Xg

NV we can insert at the fr O(1):

tegmplate <class T>
vdid C al <T>:ul F (cops§T&)
{ a a *this,
// a a :

Ca N <I>* N =newC a N <I>();

if(a){//

N —> = g — ;
a — = N

‘-

To insert at the back,
we only need to add the statement
last = newNode;

to the if clause of InsertFront, the complexity is still
o).

last

To avoid handling empty list as a special case
introduce a dummy head node:.

data link

head

_— > Xl > X2 o X3

head

empty circular list

e the time of destructors for chains and circular lists
is linear in the length of the chain or list.

it may be reduced to O(1) if we maintain our own
chain of free nodes.

the available space list is pointed by av.

e aVv be a static class member of CircularList<T> of
type ChainNode<T> *, initially, av = 0.

only when the av list is empty do we need use new.

We shall no
using new:

e CircularList<T>::GetNode instead of

template <claps T>
Ca N <Tp*C alL <I>:G N ()

{// a
Ca N <I>%* ;
if(a){ =a;a =a — ;!
else =newC a N <T>;

return ;

‘-

irc ist may be destructed in O(1):

class T>
alL <TH: C alL ()
a
<T> * = aq — ;
=a ; //(1)
a = ; /1 (2)
a =0;

‘-
-, o

As shown in the next slide:

irc ist ma¥ be deleted in O(1):

}
av : (2) \ av
. \ |
first

A chain may be deleted in O(1) if we know its first and
last nodes:

template <class T>
Chain<T>:: Chain()
{ // delete the chain
if (first) {
last—link = av;
av = first;
first = 0;

e, o
S

4.6 Linked Stacks and Queues

data link

top

e ———

linked stack

Assume the LinkedStack class has been declared
as friend of ChainNode<T>.

template <class T>

class LinkedStack {

public:
LinkedStack() { top=0;}; // constructor initializing top to 0
// LinkedStack manipulation operations

private:
ChainNode<T> *top;

1.
) I

ss T>
9 <[>
Ca N

templat
void L

onst T&) {
);

1
)

templatdq <class T>
void L Sa <I>Pl ()

{// a .
if(1 E () thro a . Ca -
Ca N <I>* = 3
delete N

!

The functions IsEmpty and Top are easy to
implement, and are omitted.

front _ rear
l data link r

linked queue

The functions of LinkedQueue are similar to those of
LinkedStack, and are left as exercises.

Exercises: P201-2

Since a polynomial is to be represented by a list, we say
Polynomial is IS-IMPLEMENTED-IN-TERMS-OF

List.

Definition: a data object of Type A IS
-IMPLEMENTED-IN-TERMS-OF a data object of
Type B if the Type B object is central to the
implementation of Type A object. ---Usually by
declaring the Type B object as a data member of the
Type A object.

el
a,xX

,e, =0

ember of Polynomial.

sent a term. The template

clafs P
public:

priyate
a KT

a q

olynomials 4 and b, use the chain iterators

0 move along the terms of a and b.

a ::operaor+ (const P a & b) const
ba a a

a= b 0,
b=b b O

0) L/

Analysis:
Assume a has m terms, b has n terms. The
computing time is O(m+n).

4.7.3 Circular List Representation of Polynomials

Polynomials represented by circular lists with head
node are as in the next slide:

head

(a) Zero polynomial

head

- - {314 {2

(b) 3x14 + 2x3 + 1

Adding circularly represented polynomials

The exp of the head node is set to 1 to push the rest of
a or b to the result.

Assume the begin() function for class
CircularListWithHead return an iterator with its
current points to the node head—link.

14 if (a —
15 0 ,b—=)
16 b ++; //

17 I}

18 | else {

19 . Il Ba (Sjfa@a— ,a—=));
20 a++; // a

21 11

22 1}

23}

Experiment: P209-5

Ditficulties with singly linked list:

can easily move only in one direction
not easy to delete an arbitrary node
requires knowing the preceding node

A node in doubly linked list has at least 3 field: data, left
and right, this makes moving in both directions easy.

left | data | right

A doubly linked list may be circular. The following is a
doubly linked circular list with head node:

_ Head node
left data right

~.

Suppose p points to any node, then
p == p—left—right == p—right—left

class Db L ;

classDbL N {
friend class Db L
private:

int aa;

DbL N * %
1#
class Db L {
public:

/'L a a

private:
DbL N * 3/

Delete

void DbL ::D (Db L
d
if(==) throw D
else {
—> — = —
— — = —
delete ;

o o
-’

Insert

voidDbL =I (DbL N * DbL N *)
£/

l
||

; /1 (1)

Exercises: P225-2

1. Write an algorithm to construct a Chain from an
Array.

2.Given a sorted single linked list L = <a,,, a,>,
where a;.data<= a;.data (i <).

Try to write an algorithm of inserting a new data
element X to L, and analysis its complexities.

3.Given a linear list L =<a,,, a,>, implemented
by a single linked list.

Delete data a, with Time Complexity O(1). We
have a pointer to node(a,).

Node * first = 0, *last =0;
Int [n];
For(int = 0; | < n; I++)

{

" Int data = alil;
- Node * p = new Node(data);
 If(first == 0)

First = last = p;

* Else

Last->next = p;
Last = p;

80

.+ Node * current = first, *pre = 0;

While (current '= 0 && current-> data < X)

{

Pre = current;
current = current->next;

}

81

