

The Dictionary


```
()
* ( &)
( &)
( &)
```

Implementing a Dictionary with a Sequence

Implementing a Dictionary with a Sequence

$$() \rightarrow ()$$

R

n

- O(n) for linear searches
- O (logn) for binary search
- O(1) for hash table

Space Solution

```
A ( ) (n N
```


 ht

ht b

ht

S

 $(\)\in$

T

n

key density

n/T

synonyms

$$h(k1) = h(k2).$$

collision

overflow

 α

()

ht	Slot 1	Slot 2
0	Α	
1		
2		
2 3 4	D	
5		
6	GA	G
-		
	-	-
25		

From Keys to Indices

hash function

Hash function

equal keys to equal indices

probability of collisions

Easy to compute

compression map

 $() \mod N$ N r number

hash code map

()

hash code map

Folding

hash code map

```
( a a ... a a + a x + ...+ x a
```

A \boldsymbol{C}

$$h_i(K) = (hash(K) + i) \mod m$$

Hash (key) produces an index in the range 0 to 6. That index is the "home address"

Some insertions:

$$K1 --> 3$$

$$K2 --> 5$$

$$K3 --> 2$$

		!
0		
1		
2	K3	K3info
3	K1	K1info
4		
5	K2	K2info
6		
	1	1

key value

Some more insertions:

$$K4 --> 3$$

Linear probing collision resolution strategy

0	K6	K6info
1		
2	K3	K3info
3	K1	K1info
4	K4	K4info
5	K2	K2info
6	K5	K5info

K6 K6info K3 K3info K1info K1 K4 K4info 5 K2 K2info K5 K5info

Average number of probes needed to retrieve the value with key K?

K	hash(K)	#probes
K1	3	1
K2	5	1
K3	2	1
K4	3	2
K5	2	5
K6	4	4
K2 K3 K4 K5	2 3 2	1 2 5

14/6 = 2.33 (successful)

insert keys:

$$K1 --> 3$$

$$K2 --> 5$$

$$K4 --> 3$$

$$K5 --> 2$$

linked lists of synonyms

loadfactor	open addressing (linear probing)	open addressing (double hashing)	chaining
load factor			
0.5	1.50	1.39	1.25
0.7	2.17	1.72	1.35
0.9	5.50	2.56	1.45
1.0			1.50
2.0			2.00