

The Dictionary
()

$$
{ }_{(}^{*} \begin{array}{lll}
() & & \\
(& & \&) \\
(& \&) & \&)
\end{array}
$$

Implementing a Dictionary with a Sequence

Implementing a Dictionary with a Sequence

()$\rightarrow()$
()

A
()

- O(n) for linear searches
- O (logn) for binary search
$-O(1)$ for hash table

Space Solution

A
()

ht

ht
b
ht
S

$$
\underset{() \in}{()}
$$

T
n
key density n/T
synonyms

$h(k 1)=h(k 2)$.

collision

overflow

α
()

From Keys to Indices

hash function

hash code map $\quad \checkmark$ integer compression map integer \rangle

Hash function

equal keys to equal indices

probability of collisions

Easy to compute

compression map

prime
number

hash code map

()

hash code map

- Folding

hash code map

A

C

$\mathbf{h}_{\mathbf{i}}(K)=(\operatorname{hash}(K)+i) \bmod \mathbf{m}$

()
(())

$\mathbf{h}_{\mathbf{i}}(\mathbf{K})=\left(\operatorname{hash}(K)+i^{2}\right) \bmod m$

()
(())
()
()
()

Hash (key) produces an index in the range 0 to 6 . That index is the "home address"

Some insertions:

K1 --> 3
K2 --> 5
K3 --> 2

Some more insertions:
K4 --> 3
K5 --> 2
K6 --> 4

Linear probing collision resolution strategy

	0	K6
		K6info
2	K3	K3info
	K1	K1info
4	K4	K4info
	K2	K2info
	K5	K5info

0	K6	K6info
1		
2	K3	K3info
3	K1	K1info
4	K4	K4info
5	K2	K2info
6	K5	K5info

Average number of probes needed to retrieve the value with key K?

K	hash(K)	\#probes
K1	3	1
K2	5	1
K3	2	1
K4	3	2
K5	2	5
K6	4	4

insert keys:
K1 --> 3
K2 --> 5
K3 --> 2
K4 --> 3
K5 --> 2
K6 --> 4

linked lists of synonyms

Average number of probes needed to retrieve the value with key K?

K	hash(K)	\#probes
K1	3	1
K2	5	1
K3	2	1
K4	3	2
K5	2	2
K6	4	1

$$
8 / 6=1.33 \text { (successful) }
$$

load factor	open addressing (linear probing)	open addressing (double hashing)	chaining
0.5	1.50	1.39	1.25
0.7	2.17	1.72	1.35
0.9	5.50	2.56	1.45
1.0	--------	1.50	
2.0	----		2.00

