Medians and Order Statistics



ol
t

o
o
o

ne I1th order statistic Iin a set of n elements IS
ne 1th smallest element

ne minimum IS thus the 1st order statistic
ne maximum 1S the nth order statistic
ne median IS the n/2 order statistic

m If n IS even, there are 2 medians
® How can we calculate order statistics?
® What Is the running time?



® How many comparisons are needed to find the
minimum element in a set? The maximum?

® Can we find the minimum and maximum with
less than twice the cost?

® Yes:

m Walk through elements by pairs
+ Compare each element in pair to the other
+ Compare the largest to maximum, smallest to minimum

m Total cost: 3 comparisons per 2 elements = O(3n
[2)



® A more Iinteresting problem Is selection:
finding the ith smallest element of a set

® We will show:

m A practical randomized algorithm with O(n)
expected running time

m A cool algorithm of theoretical interest only with
O(n) worst-case running time



® Key idea: use partition() from quicksort
m But, only need to examine one subarray
m This savings shows up In running time: O(n)

g = RandomizedPartition(A, p, r)

| Ald) ] Ald)




RandomizedSelect (A, p, r, 1)
if (p == r) then return A[p];
q = RandomizedPartition (A, p, r)
k=qg-p+ 1;
if (i == k) then return A[q];
if (1 < k) then
return RandomizedSelect(A, p, g-1, 1i);
else
return RandomizedSelect(A, g+l1l, r, i-k);

< k >

Ald] |

Alq]




® Analyzing RandomizedSelect ()

m Worst case: partition always 0:n-1
T(n) =T(n-1) +O(n) =777
= O(n?) (arithmetic series)
+ No better than sorting!
m “Best” case: suppose a 9:1 partition
T(n) =T(On/10) + O(n) =277
= 0O(n) (Master Theorem, case 3)
+ Better than sorting!
o What if this had been a 99:1 split?



® Average case
m For upper bound, assume |



® Assume T(n) cn for sufficiently large c:

T(n)

=<

IA

2 S1 (k) +6(n)

ey P
2n1

nk n/2

n/2-1
(Zk 2 ) ) “Split ” the recurrence

E( (n 1)n _ 1(_ _ 1) ) + @(n) What happened here?
ni{z2 2\ 2 2

ck +O(n) What happened here?

c(n - 1) — %(g - 1) + @(n) What happened here?



® Assume T(n)

T(n)

=

IA

c(n—l)—%(g—l)+®(n)

cn (if cisbigenough)

cn for sufficiently large c:

The recurrence so far

Multiply it out

Subtract ¢/2

Rearrange the arithmetic

What we set out to prove



® Randomized algorithm works well in practice

® \What follows Is a worst-case linear time
algorithm, really of theoretical interest only
® Basic idea:
m Generate a good partitioning element
m Call this element x



® The algorithm in words:

1.
2.

3.

Divide n elements into groups of 5

Find median of each group (How? How long?)

Use Select() recursively to find median x of the [n/5]|

medians

Partition the n elements around x. Let k = rank(x)

if (I == K) then return x

if (1 < k) then use Select() recursively to find ith smallest
element in first partition

else (1 > k) use Select() recursively to find (i-k)th smallest
element in last partition



® How many of the 5-element medians are f x?
m At least 1/2 of the medians = ||[n/5] /2| = |n/10]|

® How many elements are f x?
m At least 3 [n/10 | elements

e Forlargen, 3[n/10| n/4 (How large?)
® S0 at least n/4 elements X
e Similarly: at least n/4 elements  x



® Thus after partitioning around X, step 5 will
call Select() on at most 3n/4 elements

® The recurrence Is therefore:
T(n) T(\_n/SJ) 7(3n/4)  (n)
T(n/5) T(3n/4) (n)
cn/5 3cn/4  O(n)
=19¢n/20 + O(n)
= cn —(cn/20 - Q(n))

< cn 1f cisbig enough



@ Intuitively:

m Work at each level Is a constant fraction (19/20)
smaller

+ Geometric progression!
m Thus the O(n) work at the root dominates



® Givena “black box” O(n) median
algorithm, what can we do?

m ith order statistic:
¢ Find median x
+ Partition input around x
oIf (I (n+1)/2) recursively find ith element of first half
¢ else find (i - (n+1)/2)th element in second half
¢ T(n) =T(n/2) + O(n) = O(n)



® Worst-case O(n Ig n) quicksort
m Find median x and partition around it
m Recursively guicksort two halves
mT(n)=2T(n/2) + O(n) = O(n Ig n)



e We ve seen algorithms for finding the ith
element of an unordered set in O(n) time

e Next, a structure to support finding the ith
element of a dynamic set in O(lg n) time

= What operations do dynamic sets usually support?
s What structure works well for these?

= How could we use this str -2 (t) 2 (r)-2 (uc) @55349cn



e OS Trees augment red-black trees:
m Assoclate a size field with each node In the tree

m Xx->size records the size of subtree rooted at x,
Including x itself:




How can we use this property
to select the 1th element of the set?



OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (1 < r)
return 0OS-Select (x->left, 1i);
else
return OS-Select (x->right, i-r);



e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);




e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);




e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);




e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);




e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);




OS-Select(x, 1)

{ Qops...
r = x->left->size + 1, (=== ==== === =

if (i == r)

return x;
else if (i < r)

return OS-Select (x->left, 1i);
else

return 0OS-Select (x->right, i-r);

}

e \What happens at the leaves? == -==---

e How can we deal elegantly with this?



OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->left, 1i);
else
return 0OS-Select (x->right, i-r);

)
e What will be the running time?



What is the rank of this element?



Of this one? Why?






What about the rank of this element?



-------------------------

This one? What~ s the pattern here?



OS-Rank (T, x)
{
r = x->left->size + 1;
y = Xy
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Yy = Y-2P;
return r;
}
e What will be the running time?



Example 1:
find rank of element with key H

OS-Rank (T, x)

{ .......
r = x->left->size + 1;

y=xx; L=dg |
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y->P/
return r;



Example 1:
find rank of element with key H

OS-Rank (T, x)

{ .......
r = x->left->size + 1;

y=xx; L=dg |
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y->P/
return r;



Example 1:
find rank of element with key H

OS-Rank (T, x)

{ .......
r = x->left->size + 1;

y=xx; L=dg |
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y->P/
return r;



Example 1:
find rank of element with key H

OS-Rank (T, x)

{ .......
r = x->left->size + 1;

y=xx; L=dg |
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y->P/
return r;






Example 2:
find rank of element with key P

OS-Rank (T, x)

{ .......
r = x->left->size + 1;

y=xx; L=dg |
while (y != T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y->P/
return r;



e S0 by keeping subtree sizes, order statistic
operations can be done in O(lg n) time

e Maintain sizes during Insert() and Delete()
operations

m Insert(): Increment size fields of nodes traversed
during search down the tree

m Delete(): Decrement sizes along a path from the
deleted node to the root

m Both: Update sizes correctly during rotations



rightRotate (y)

‘leftRotate(x)

e Salient point: rotation invalidates only x and y

e Can recalculate their sizes in constant time
s Why?



Choose underlying data structure
m E.g., red-black trees

Determine additional information to maintain
m E.g., subtree sizes

Verify that information can be maintained for
operations that modify the structure

s E.g, Insert(), Delete() (dont forget rotations!)
Develop new operations
s E.g., OS-Rank(), OS-Select()



Augmenting Data Structures:
Interval Trees



Choose underlying data structure
Determine additional information to maintain

Verify that information can be maintained for
operations that modify the structure

Develop new operations



e The problem: maintain a set of intervals

= E.g., time Intervals for a scheduling program:
7 10




AN

et of Intervals

heduling progra
1

i low=74"high=10

9

°*18 21e—=23

0

e-set that overlaps a

=

-
//




e Following the methodology:

Pick underlying data structure
Decide what additional information to store
~igure out how to maintain the information

Develop the desired new operations



e Following the methodology:

m Pick underlying data structure
o Red-black trees will store intervals, keyed oni low

= Decide what additional information to store
= Figure out how to maintain the information
= Develop the desired new operations




e Following the methodology:

= Pick underlying data structure
o Red-black trees will store intervals, keyed oni low

m Decide what additional information to store

o We will store max, the maximum endpoint in the
subtree rooted at I

= Figure out how to maintain the information
= Develop the desired new operations



What are the max fields?



Note that: x — high

X — max = max] x — left — max

X — right — max



e Following the methodology:

= Pick underlying data structure
o Red-black trees will store intervals, keyed oni low

m Decide what additional information to store
o Store the maximum endpoint in the subtree rooted at |

m Figure out how to maintain the information
o How would we maintain max field for a BST?
o What’s different?

= Develop the desired new operations



[11,35]
35 rightRotate(y)

[11,35]
272

leftRotate (x)

e \WWhat are the new max values for the subtrees?



[11,35]
35 rightRotate(y)

leftRotate (x)

e What are the new max values for the subtrees?
e A: Unchanged
e What are the new max values for x and y?



[11,35]
35 rightRotate(y)

leftRotate (x)

e What are the new max values for the subtrees?
e A: Unchanged

e What are the new max values for x and y?

e A: root value unchanged, recompute other



e Following the methodology:

= Pick underlying data structure
o Red-black trees will store intervals, keyed oni low

m Decide what additional information to store
o Store the maximum endpoint in the subtree rooted at |

= Figure out how to maintain the information
o Insert: update max on way down, during rotations
o Delete: similar

m Develop the desired new operations



IntervalSearch (T, 1)

{
x = T->root;
while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max i->low)
x = x->left;
else
x = x->right;
return x

}
e What will be the running time?



e Example: search for interval
overlapping [14,16]

IntervalSearch (T, 1)

{

T->root;
while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max i->low)

X

x = x->left;
else
X = x->right;

return x



e Example: search for interval
overlapping [12,14]

IntervalSearch (T, 1)

{

T->root;
while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max i->low)

X

x = x->left;
else
X = x->right;

return x



e Key Idea: need to check only 1 of node s 2
children
m Case 1: search goes right
o Show that 3 overlap in right subtree, or no overlap at all

m Case 2: search goes left
o Show that J overlap in left subtree, or no overlap at all



e Case 1: if search goes right, 3 overlap in the right
subtree or no overlap In either subtree
= If 3 overlap in right subtree, we re done

s Otherwise:
oX left=NULL,or x left max <1 low (Why?)
o Thus, no overlap in left subtree!

while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max i->low)
x = x->left;
else

X = x->right;

return x;




e Case 2: If search goes left, 4 overlap in the left
subtree or no overlap In either subtree

m If d overlap in left subtree, we



