
B-Tree – Inserts

15   204

1   3 5   6 30   4013 16   17

7   12

9

8 10

Insert 2.
Insert 18.

Insert 14.



B-Tree – Delete (2-3 tree)

• Delete the pair with key = 8.

• Transform deletion from interior into deletion from a leaf.

• Replace by largest in left subtree.

15   20

8

1

2   4

5   6 30   409 16   173



Delete From A Leaf

• Delete the pair with key = 16.

• 3-node becomes 2-node.

15   20

8

1

2   4

5   6 30   409 16   173



Delete From A Leaf

• Delete the pair with key = 17.

• Deletion from a 



Delete From A Leaf

• Delete the pair with key = 20.

• Deletion from a 2-node.

• Check one sibling and determine if it is a 3-node.

• If not, combine with sibling and parent pair.

15   30

8

1

2   4

5   6 93 20 40



Delete From A Leaf

• Delete the pair with key = 30.

• Deletion from a 3-node.

• 3-node becomes 2-node.

30   40

8

1

2   4

5   6 93

15



Delete From A Leaf
8

1

2   4

5   6 93

15

40

• Delete the pair with key = 3.

• Deletion from a 2-node.

• Check one sibling and determine if it is a 3-node.

• If so borrow a pair and a subtree via parent node.



Delete From A Leaf
8

1

2   5

94

15

40

• Delete the pair with key = 6.

• Deletion from a 2-node.

• Check one sibling and determine if it is a 3-node.

• If not, combine with sibling and parent pair.

6



Delete From A Leaf
8

1 4   5 9

15

40

• Delete the pair with key = 40.

• Deletion from a 2-node.

• Check one sibling and determine if it is a 3-node.

• If not, combine with sibling and parent pair.

2



Delete From A Leaf
8

1 4   5

• Parent pair was from a 2-node.

• Check one sibling and determine if it is a 3-node.

• If not, combine with sibling and parent pair.

2

9  15



Delete From A Leaf

1 4   5

• Parent pair was from a 2-node.

• Check one sibling and determine if it is a 3-node.

• No sibling, so must be the root.

• Discard root. Left child becomes new root.

9  15

2   8



Delete From A Leaf

1 4   5

• Height reduces by 1.

9  15

2   8



Delete A Pair
• Deletion from interior node is transformed into 

a deletion from a leaf node.
• Deficient leaf triggers bottom-up borrowing and 

node combining pass.
• Deficient node is combined with an adjacent 

sibling who has exactly ceil(m/2) – 1 pairs.
• After combining, the node has [ceil(m/2) – 2]

(original pairs) + [ceil(m/2) – 1] (sibling pairs) 
+ 1 (from parent) <= m –1 pairs.



B-Tree – Delete 

Delete 3.
Delete 8.

Delete 7.

15   204

5   6 30   4013 16   17

7   12

9

8 103



Bool BT-Delete(x, k)

1. If leaf[x]
2. if In(x, k) then BT-Delete-leaf(x,k)
3. return #key > Ceil(m/2)-2? 
4. false:true



Bool BT-Delete(x, k)

1. If not leaf[x]
2. if In(x,k) 
3. then Select&Replace(x,k, k’)
4. return BT-Delete(x,k’) 



Bool BT-Delete(x, k)

1. if not leaf[x] && not In(x,k)
2. then flag ß BT-Delete(Ci[x],k)
3. If flag
4. then Borrow/Merge
5. return #key > Ceil(m/2)-2?
6. false:true



• Exercises:  P623-2, 4


