
1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

17	

18	

19	

20	

21	

22	

23	

24	

25	

26	

27	

28	

29	

30	

31	

32	

33	

34	

35	

36	

37	

38	

39	

40	

41	

42	

43	

44	

45	

46	

47	

48	

49	

50	

51	

52	

53	

54	

55	

56	

57	

60	

61	

62	

63	

64	

65	

Real-Time Execution of Trigger-Action Connection
for Home Internet-of-Things

Kai Dongyz, Yakun Zhangx, Yuchen Zhaox, Daoming Liy, Zhen Lingy� , Wenjia Wuy, and Xiaorui Zhu{
ySchool of Computer Science and Engineering, Southeast University, P.R. China

xSchool of Cyber Science and Engineering, Southeast University, P.R. China
zState Key Laboratory for Novel Software Technology, Nanjing University, P.R. China

Email:fdk, zyk, zyc, lidaoming0219, zhenling, wjwug@seu.edu.cn
{ School of Information Engineering, Nanjing Xiaozhuang University, P.R. China

Email:xr zhu@outlook.com

Abstract—IFTTT is a programming framework for Applets
(i.e., user customized policies with a “trigger-action” syntax), and
is the most popular Home Internet-of-Things (H-IoT) platform.
The execution of an Applet prompted by a device operation suf-
fers from a long delay, since IFTTT has to periodically reads the
states of the device to determine whether the trigger is satis�ed,
with an interval of up to 5min for professionals and60min for
normal users. Although IFTTT sets up a �exible polling interval
based on the past several times an Applet has run, the delay is still
around 2min even for frequently executed Applets. This paper
proposes a novel trigger noti�cation mechanism “RTX-IFTTT”
to implement real-time execution of Applets. The mechanism
does not require any changes to the current IFTTT framework
or the H-IoT devices, but only requires an H-IoT edge node
(e.g., router) to identify the device events (e.g., turning on/off)
and notify IFTTT to perform the action of an Applet when an
identi�ed event is the trigger of that Applet. The experimental
results show that the averaged Applet execution delay forRTX-
IFTTT is only about 2sec.

Index Terms—H-IoT, IFTTT, Applet, real-time execution

I. I NTRODUCTION

IFTTT is a popular service integration platform which
provides a convenient way to connect the Home Internet-of-
Things (H-IoT) devices (e.g., Fitbit, Philips Hue) and web
services (e.g., Gmail, Dropbox) [1]. A user can establish and
customize Applets to create connections among devices and
services by describing the triggers and actions, with the “IF
this THEN that” syntax [2].

Each Applet suffers from a variable execution delay after the
trigger event happens. The reason is that IFTTT uses a polling
architecture to request a list of recent events. According to
IFTTT documentation [3], the polling interval is up to60min
for normal users, and5min for professionals. This delay also
attracts the attention of the academia, e.g., [4] shows that the
averaged delay is roughly2min and can be up to15min.
However, there is no practical way to address the problem. On
the one hand, an intuitive signaling architecture is impractical
since it requires changes to the H-IoT devices. On the other
hand, a polling architecture is born with a polling interval. It is
supposed that IFTTT can never get rid of this delay, but only

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

make some slight optimization to reduce it, e.g., by decreasing
the polling interval at the cost of heavier traf�c overhead.

We propose a novel trigger-noti�cation mechanism named
RTX-IFTTT which really gets rid of the polling interval to
minimize the Applet execution delay. This mechanism of�oads
the task of monitoring the trigger events from the IFTTT
server side to the edge node (e.g., a router). WithRTX-IFTTT,
the execution of an IFTTT Applet no longer relies on the
polling architecture. Instead, the edge node is responsible for
identifying the trigger events and notifying IFTTT of the
events in real-time. It follows a two-step approach.

In the �rst step, the edge node should identify the trigger
events with extremely high precision and recall rate. We pro-
pose a �ne-grained event identi�cation method based on traf�c
analysis. It has already been veri�ed by existing researches that
the traf�c generated by an IoT device can be used to infer
an IoT event [5][6][7][8][9][10][11]. However,RTX-IFTTT
requires a much higher recall level. Suppose a trigger event,
the identi�cation (or inference) recall rate of which is90%.
It is really dangerous in an attack scenario, but is inadequate
if an Applet can only be executed with this probability. In
RTX-IFTTT, we divide a trigger event into �ne-grained sub-
events, and �ngerprint sub-events to achieve nearly perfect
identi�cation precision and recall rate.

In the second step, the edge node must notify IFTTT of
the trigger events. We propose a real-time Applet execution
method based on two interfaces. The �rst one is a user
interface namedCheck Now. The alternative interface is the
Webhook, i.e., a callback interface. After the edge node identi-
�es a trigger event, it either sends a “check now” request to the
IFTTT, or makes an HTTP request to the URL con�gured for
the Webhook. In either situation, IFTTT can be signaled to do
something. Some additional tasks related to Applet processing
is also performed by the edge node, to ensure the behavior of
IFTTT conforms to the correct semantics of that Applet.

The advantage ofRTX-IFTTT is three fold. Firstly and
most importantly, it greatly reduces the Applet execution delay
from roughly 2min to 2sec. Secondly, it enlarges IFTTT's
ecosystem, since it is able to identify trigger events which are
not supported by IFTTT. Lastly, it enables IoT connections
across platforms/ecosystems which supportWebhooks, e.g.,

INFOCOM 2022 1570736026

1

T5. Action

Fine-Graining
Trigger Events

Trigger Event
Identification

Extracting Device
Operations

Fingerprinting
Sub-Events

Trigger Event Identification Real-Time Applet Execution

Applet
Management

Notification by
Check Now

Webhooks Applets

Realtime API

EDGE
Check Now

Notification by
Webhooks T4. Trigger

T4. Trigger

Device Da Device DbIF this THEN that

Service Sa

T0. Command

T1. Command T2. Status

T3. Status

Service Sb
T4'. Trigger

IFTTT

T6. Command T9. Status

T7. Command T8. Status

RTX-IFTTT:
�x�� Enables Real-time trigger-action execution
�x�� Enlarges IFTTT ecosystem
�x�� Enables cross platform H-IoT connections

IFTTT

RTX-IFTTT

Polling Archetecture

RTX-IFTTT

Fig. 1. RTX-IFTTToverview

IFTTT, SmartThings [12], HomeKit [13], Zapier [14], Home
Assistant [15].

To summarize, this paper makes the following contributions:
� We propose an edge-based trigger noti�cation mechanism

namedRTX-IFTTT to implement real-time execution of
Applets. To the best of our knowledge, this is the �rst
mechanism which is able to reduce the Applet execution
delay to seconds of time.

� We propose a �ne-grained trigger event identi�cation
method. By �ngerprinting sub-events instead of the whole
trigger event, that event can be identi�ed with nearly
perfect precision and recall rate.

� We propose a real-time Applet execution method by
employing eitherCheck Nowor Webhooks. With these
interfaces,RTX-IFTTT does not require any changes to
the IFTTT service or the H-IoT devices.

� Based onRTX-IFTTT, we introduce a new way to not
only enlarge a single H-IoT ecosystem (IFTTT), but also
connect devices and services across various ecosystems.

The rest of this paper is organized as follows. Sec. II de-
scribes the Applet execution delay in current IFTTT platform.
Sec. III proposes a trigger event noti�cation mechanismRTX-
IFTTT and Sec. IV provides some detailed analysis. Sec. V
evaluatesRTX-IFTTT and Sec. VI gives a brief survey on
related techniques. Sec. VII concludes the paper.

II. PROBLEM

IFTTT enables “trigger-action” connections only between
services. When a user connects his H-IoT device to the
IFTTT ecosystem, what IFTTT actually communicates with
is the vendor's service rather than the device itself. The
mechanism behind the connection is the API endpoint, which
is a Uniform Resource Identi�er (URI) at the service's domain
where IFTTT will GET updates (for triggers) or POST data
(for actions).

By default, IFTTT uses a polling architecture to GET the
updates. The polling interval is60min for normal users and
5min for professionals [3], and the execution delay for each
H-IoT Applet is various and ranges from2min to 15min [4].

In recent years, IFTTT uses some really clever methods to
reduce the delay by tuning the polling interval. However, the
averaged delay is still roughly2min (as detailed in Sec. V).
Along with the polling architecture, IFTTT also provides the
Realtime API. This API has already been used by many web
services (for triggers). An Applet involving such a trigger can
be executed near-instantly.

Unfortunately, many services (especially H-IoT services)
do not implement the Realtime API. We useSelenium[16],
an automatic testing tool to crawl all the services and events
including triggers and actions. By January1st 2021, IFTTT's
ecosystem consists of681 services and over2;600 events.
Among them are 335 H-IoT services and1;447H-IoT trigger
events. Most Applets prompted by H-IoT trigger events rely
on the polling architecture instead of the Realtime API. One
possible reason is that, if all H-IoT trigger services utilize this
API, the incurred instantaneous workload may be too high [4],
since IoT workload is known to be highly bursty [17].

III. M ETHODOLOGY

In this section, we propose a trigger-noti�cation mechanism.
We name itRTX-IFTTT, since it enables real-time execution
of “IF-this-THEN-that” form of connection between H-IoT
services/events, not only for IFTTT platform, but also for other
popular platforms (as discussed later in Sec. IV-C).

A. Mechanism Overview

The idea behindRTX-IFTTTis to use a “signaling” archi-
tecture instead of the “polling” one, by of�oading the task
of monitoring triggers from IFTTT to the edge. The edge
follows a two-step approach to implement real-time execution
of Applets: it �rst identi�es a trigger event, then noti�es IFTTT
of that trigger to ensure real-time execution of the Applet.
The trigger event identi�cation is mainly based on traf�c
analysis and �ngerprinting device events (status changes, e.g.,
turning on/off). The edge maintains features (�ngerprints) of
all device events. It monitors the transmitted packets, and
identi�es the device events and the corresponding triggers, and
noti�es IFTTT of the triggers. The real-time execution of an

2

2

Trigger Service�v�v SmartLife�Ö {
 ...
 "trigger": {
 "trigger_title_0": "Device or group is turned on",
 �Y
 "trigger_title_1": "Device or group is turned off",
 �Y
 �Y } }

Fig. 2. An example trigger service of Smart Life

Applet is guaranteed by either requesting IFTTT to perform
an immediate check on the target Applet with theCheck Now
interface, or by notifying theWebhookof a speci�c connection
constructed in advance (i.e., another Applet) which has the
same action of the target Applet. In what follows, we detail
implementation of these two steps.

B. Trigger Event Identi�cation

RTX-IFTTT is able to automatically extract features of a
trigger event and identi�es that trigger. It has already been
veri�ed by existing researches that various features of traf�c
can be used by an adversary to infer an event of an H-IoT
device [5][6][7][8][9][10][11]. The inference recall rate ranges
from roughly 70% to 100% depending on various events,
devices, noise handling technologies, and machine learning
models generated in the training phase.

The main challenge forRTX-IFTTTdeals with identi�cation
recall rate. Although the recall rate achieved by existing tech-
niques is really dangerous for performing an inference attack,
it is far from adequate for identifying a trigger event, since this
rate determines the probability of successfully prompting the
action of an Applet. Furthermore, the trigger event identi�ca-
tion in RTX-IFTTT is deployed in large-scale and performed
automatically, inevitably at the cost of precision and recall
rate. To address this challenge,RTX-IFTTTdivides a trigger
event to sub-events, and identi�es every sub-event to precisely
identify the original trigger event. In what follows, we detail
the work�ow related to trigger event identi�cation inRTX-
IFTTT. Some analysis on our improvement on identi�cation
recall rate is provided in Sec. IV-A

1) Fine-Graining Trigger Events:In real H-IoT environ-
ments, the traf�c generated with a same trigger event is
heterogeneous. An H-IoT trigger event describes one speci�c
device status, however this status can be resulted from any
one of many different operations (e.g., manual/APP/IFTTT
operation). A device can be either remotely controlled by
a service (e.g., user controls the device from an APP like
SmartThings, or from an IoT platform like IFTTT), or locally
controlled by a nearby user (e.g., user presses a button on the
device or on the infra-red controller), to respond to different
operations but result in a same status (i.e., a same event). Due
to this reason, one trigger event corresponds to many different
features in traf�c generated with distinct operations.

For each operation of a same trigger event, usually two sub-
events can be distinguished. Each sub-event corresponds to a
hybrid of up-streaming and down-streaming traf�c. The �rst
sub-event is thecontrolling commandsent from the vendor's
service to the H-IoT device. If an operation is remotely

<node
���������������Y
 text=p!turn on/off socket 1p"
���������������Y
/>

Fig. 3. A layout and corresponding XML �le in Smart Life

controlled, the service will send a message about the operation
to the device, and then the device will probably send some
feedback. If an operation is locally controlled, there is no
such traf�c. The second sub-event is thestatus changesent
from the device to the service. Whether remotely controlled
or locally controlled, the device should de�nitely respond to
the operation and change its status, and report this change to
the service. Then the service will con�rm the status change.
We rely on the router to identify the sub-events of a trigger,
since all the traf�c is forwarded by the router.

For most cases, we can obtain the features of astatus change
sub-event by performing a manual operation. After that, the
features of thecontrolling commandsub-events can also be
obtained by performing other operations. When no manual
operation is available, the features of thestatus changesub-
event can also be obtained by performing different operations
(i.e., different controlling command) which lead to a same
device state (i.e., possibly samestatus change).

The identi�cation recall rate is greatly improved by dividing
a trigger event to sub-events. Some analysis is provided in
Sec. IV-A, which is con�rmed by our experiments in Sec. V-B.

2) Extracting Device Events:The events of an H-IoT
device can be extracted from IFTTT Applets [7][18][19] and
the UI of an APP for that device [20][21][22], by using Natural
Language Processing (NLP) techniques.

For IFTTT Applet, every event (trigger or action) has a
title �eld to specify its functionality. Take a trigger service in
Smart Life as an example (as shown in Fig. 2), the contents in
the title �eld of the �rst trigger event is “Device or group is
turned on”, where “Device” and “group” speci�es the subject,
and “is turned on” speci�es the triggering condition.RTX-
IFTTT uses Selenium[16] for crawling the description in
title for IFTTT Applets, and usesNLTK [23] for parts-of-
speech tagging and dependency relation parsing [24], and uses
WordNet[25] for interlinking different expressions of a same
operation, to �nally extract device events supported by IFTTT.

For the UI of an APP, each device event correlates with a
control in some layout. We useUiAutomator[26] andAndroid
Debug Bridge(ADB) [27] to obtain the UI hierarchy XML
�le, which contains the information of all the controls within
a layout. An example layout and the corresponding XML �le
is as shown in Fig. 3. The device event can be identi�ed by
the String value in thetext �eld in the XML �le.

3) Fingerprinting Sub-Events:There are three steps in
�ngerprinting sub-events, i.e., traf�c collection, noise �lter-
ing and �ngerprint generation. For traf�c collection,RTX-
IFTTT collects all routed traf�c by using Tcpdump [28] and
Wireshark [29]. For noise �ltering,RTX-IFTTT �lters the
beacon packets, re-transmission packets, unrelated packets,
and other noise packets. For �ngerprint generation,RTX-

3

3

(a) Check Now (b) Webhook

Fig. 4. Interfaces used for noti�cation.

IFTTT uses the MAC addresses to distinguish devices, and
uses the packet lengths and the transmission directions to
compute the �ngerprintF � of event� as follows.

F � = arg min
s�

i 2S �

1
kS� k

X

8s �
j 2S �

dist(s �
i ; s�

j): (1)

Wheres�
i represents thei th sequence of packets for event

�, S� represents all the sequences collected for�, dist(s �
i ; s�

j)
represents theLevenshtein Distance[30] betweens�

i and s�
j .

With RTX-IFTTT, we have already constructed �ngerprints for
27 kinds of H-IoT devices from 16 vendors. Part of �ngerprints
are listed in Table II, and all the devices are listed in Table III.

4) Identifying Trigger Events: RTX-IFTTT�rst identi�es
sub-events, then determines whether the trigger event has
happened. To identify a sub-event in real-time,RTX-IFTTT
keeps monitoring the traf�c by using theScapy.Snifflibrary,
and compares the traf�c to all the �ngerprints. If there exists
one �ngerprint that matches the traf�c, then the corresponding
sub-event with that �ngerprint is identi�ed. Based on identi-
�cation of sub-events,RTX-IFTTTestablishes an incremental
and autonomous event identi�cation method, which achieves
near perfect precision and recall rate, as detailed in Sec. IV-A
and Sec. IV-B. After the edge successfully identi�es a trigger
event, it then asks IFTTT to perform the action of the Applet.

C. Real-Time Applet Execution

It is non-trivial for RTX-IFTTT to ensure real-time and
correct execution of an Applet. The router is unable to perform
the action of that Applet by itself, unless it makes some change
to IFTTT, or the H-IoT devices, or the vendors' services. To
address this challenge,RTX-IFTTTintroduces a novel method
in which RTX-IFTTTnoti�es IFTTT of a trigger, and ensures
IFTTT will respond to that trigger immediately.RTX-IFTTT
relies on either of the two common interfaces,Check Nowand
Webhooks. Both interfaces are supported not only by IFTTT
but also the majority of other H-IoT platforms.

1) Noti�cation by Check Now:The �rst method is to call
theCheck Nowinterface (as shown in Fig. 4(a)), so that IFTTT
will check for the trigger by itself immediately. On calling
the interface,RTX-IFTTT should address the concurrency
problems originated from IFTTT. There is a race condition
when IFTTT executes related Applets, especially when the
Applets are prompted within a short period of time. IFTTT
maintains the latest event it has seen for each trigger service.
Each time it GETs updates from the service, the service returns
a list of (up to 50) recent events. The action prompted by

Sequence of Trigger Events (WeMo Plug #1)
on!off!on!off!on!off

+
IFTTT Applets

IF WeMo Plug #1 on THEN WeMo Plug #2 on
IF WeMo Plug #1 off THEN WeMo Plug #2 off

#
Sequence of Actions

(WeMo Plug #2) Final State Frequency

on!off!on!off!on!off

Correct

2/25

12/25on!on!on!off!off!off 8/25
off!on!off!on!on!off 1/25
on!on!off!on!off!off 1/25
off!off!off!on!on!on

Incorrect
10/25

13/25off!on!off!on!off!on 2/25
on!on!off!off!off!on 1/25

Fig. 5. Multiple actions in a race condition

the �rst trigger event is executed together with a cluster of
subsequent actions. These actions are performed concurrently,
therefore are in a race condition.

Suppose two related Applets, “If WeMo Plug #1 is activated
(or deactivate), turn on (or off) WeMo Plug #2”. If WeMo Plug
#1 is activated and then deactivated within a short period of
time, the actions of WeMo Plug #2 are in a mess. We further
suppose a trigger sequence “on!off!on!off!on!off” and
perform it 25 times, to obtain the possible sequences of actions
as illustrated in Fig. 5. Within all the 25 action sequences,
only 2 sequences satis�es the “on-off” consistency (i.e., each
on/off action corresponds to one on/off trigger sequentially).
Moreover, it is possible that WeMo Plug #1 is �nally off and
WeMo Plug #2 is �nally on. We believe this deviates from the
user's real intention behind the Applets. To make the situation
even worse, IFTTT will never turn off WeMo Plug #2 (e.g.,
after checking the consistency of the �nal states of WeMo
Plug #1 and #2), unless the WeMo Plug #1 is turned on/off
again. This is determined by the underlying implementation of
the polling architecture of IFTTT. Within each polling, IFTTT
is only noti�ed of changes of data GET from the URI at the
trigger service. If the data of the trigger service (of WeMo
Plug #1) is not changed, IFTTT will not POST anything to
the action service (of WeMo Plug #2).

In RTX-IFTTT, the edge is conscious of the trigger se-
quence, therefore it guarantees that the last action corresponds
to the last trigger to ensure the correctness of the �nal states
of all H-IoT devices. If necessary, the edge is also able to
guarantee that every action is prompted the correct number
of times in correct order, by blocking a noti�cation to IFTTT
until the previous actions are performed.

2) Noti�cation by Webhooks:A more general method is
to rely on theWebhookswhich are user customized HTTP
callbacks (as shown in Fig. 4(b)). Most platforms including
IFTTT provide this interface for users and developers.RTX-
IFTTT speci�es aWebhookin advance by con�guring a URL
for each possible action, and constructs a newWebhook-action
connection. Multiple Applets with a same action share a same
Webhook. When a trigger of an Applet is identi�ed,RTX-
IFTTT determines which action to be performed, and makes
an HTTP request to the URL con�gured for the corresponding
Webhook. Then IFTTT performs that action immediately.

For IFTTT, aWebhook-action connection is constructed as

4

4

TABLE I
THE FINGERPRINTS OF A TRIGGER EVENT IS COMPOSED OF FINGERPRINTS OF SUB-EVENTS. CC INDICATES THE controlling commandSUB-EVENT, AND

SC INDICATES THE status changeSUB-EVENT. THE RECALL RATE IS SHOWN IN THE TABLE, AND THE PRECISION RATE IS ALWAYS100%.

Trigger Event Operations Fingerprints Recall #1 CC Fingerprints Recall #2 SC Fingerprints Recall #3

WeMo Smart Plug
switch on/off

Manual 322"33# 92.00% / / 322"33# 92.00%
APP 351#33"774"33# 86.00% 351#33" 100.00% 774"33# 86.00%

Timer/Count down 330#33"322"33# 100.00% 330#33" 100.00% 322"33# 100.00%
IFTTT Applet 363#33"774"33# 90.00% 363#33" 100.00% 774"33# 90.00%

follows. A Webhook-action connection is in essence an Applet
with a special trigger service, i.e., aWebhook. The trigger event
is IFTTT “receives a web request”, and anameto the event
needs to be speci�ed. Then the Maker server of IFTTT will
automatically con�gure a web URL which is a regular expres-
sion: “https://maker.ifttt.com/trigger/fnameg/with/key/fkeyg”,
wherenameis the name of the trigger event speci�ed byRTX-
IFTTT, andkeyis the secret key assigned to a user by IFTTT
which can be obtained from the Maker server.

3) Applet Management: RTX-IFTTTmust ensure the be-
havior of IFTTT conforms to the correct semantics of that
Applet. For noti�cation by Check Now, the router simply
sends a request to IFTTT. For noti�cation byWebhooks,
the router establishes a newWebhook-action connection in
advance, where the action in the connection is the same action
in the target Applet. WhenRTX-IFTTTnoti�es the Webhook,
it also disables the original Applet in IFTTT to ensure that
action is prompted only once.

D. Work�ow of RTX-IFTTT

The router maintains �ngerprints of all possible trigger
events and sub-events, and monitors routed traf�c as illustrated
in Fig. 1.hT0, T1i andhT6, T7i indicate thecontrolling com-
mandsent from the vendor's service to the H-IoT device, along
with some optional feedback from the device to the service.
hT2, T3iandhT8, T9i indicate thestatus changesent from the
device to the service, along with the acknowledgement from
the service to the device. T4 indicates the traf�c generated
by the edge inRTX-IFTTT, which is in comparison with that
generated in IFTTT (indicated by T4').

The work�ow of RTX-IFTTT1 is as follows. When a trigger
event happens, the router identi�es that trigger from traf�c
(T0�T3). Then the router noti�es IFTTT of that trigger in
real-time (T4). Therefore, IFTTT does not need to poll for
that trigger (T4'). After being noti�ed, IFTTT POSTs data
to the action service (T5), to perform the action (T6�T9).
The work�ow of RTX-IFTTT is quite different from that of
the vanilla IFTTT. The traf�c marked as T4' (dotted arrows)
is generated by IFTTT for polling the trigger service and by
the service to notify IFTTT of that trigger. In contrast,RTX-
IFTTT uses a signaling architecture implemented on the edge
to replace the polling one.

IV. A NALYSIS

In this section, we provide some analysis onRTX-IFTTT.
We provide the reason that �ne-grained identi�cation achieves

1A demo is available at https://github.com/nis-seu/RTX-IFTTT-demo

higher recall rate in comparison with the traditional coarse-
grained identi�cation. In the meanwhile, we investigate the
reason that real traf�c generated with a trigger-event is dif-
ferent with its �ngerprints. We also make some comparison
between noti�cation byCheck Nowand that byWebhooks.
The prior is faster and tolerates identi�cation errors, while the
latter can be used to enable connections across platforms.

A. Identifying Fine-Grained Sub-Events

Existing inference techniques suffers from an inadequate
recall rate, when applying to trigger identi�cation in real H-
IoT environments. This is because a same trigger event can
be the result of different operations, while each operation
can be divided into sub-events (controlling commandand
status change), and each sub-event can generate different
traf�c patterns. Even if the traf�c of a same trigger event is
collected thousands of times, no one can guarantee a perfect
recall rate. Table I illustrates the recall rate in identifying an
example trigger event “ WeMo Smart Plug switch on/off”. The
recall rate (Recall #1) is inadequate since there are too many
(potential) �ngerprints for this trigger event.

By dividing a trigger event to sub-events, we obtain the
following �ndings. The recall rate (Recall #2) for identifying
the controlling commandsub-event is always 100%, however
the recall rate (Recall #3) for identifying thestatus changesub-
event is often inadequate. If acontrolling commandsub-event
is identi�ed, while the correspondingstatus changesub-event
is not, then the trigger probably happens.RTX-IFTTTdecides
whether the trigger event has happened as follows. It supposes
this trigger happens, and noti�es IFTTT of this trigger by using
the Check Nowinterface. If the action is prompted by IFTTT,
then this trigger has really happened.

The �ne-grained sub-event identi�cation performance is
provided in Table II. Take WeMo Smart Plug (the1st device)
as an example. If it is operated by an IFTTT Applet (the
4th operation of the device), the recall rate for identifying
the controlling commandsub-event is100% and that for
identifying status changeis 90%. This implies that, with the
i.i.d. assumption, the traditional coarse-grained identi�cation
achieves a recall rate of100%� 90% = 90%, while RTX-
IFTTT can in theory achieve a recall rate of1� (1 � 100%)�
(1 � 90%) = 100%. This is con�rmed by our experiments
where the recall rate for identifying this trigger event is perfect.

B. Identifying Trigger Events in Real H-IoT Environments

Although one can identify a trigger event based on traf�c
analysis in a laboratory environment, it is still challenging to
achieve adequate precision rate and recall rate in the real H-
IoT environments. This is because the real traf�c generated

5

5

TABLE II
FINGERPRINTS AND IDENTIFICATION FOR TRIGGER EVENTS OF5 SELECTED DEVICES.

(Vendor) Device
Trigger Events Operations Sub-Events Fingerprints Sub-Event Identi�cation Trigger Event Identi�cation

Precision Recall F1 Score Precision Recall F1 Score

WeMo Smart Plug
Switch on/off

Manual SC 322",33# 100.00% 92.00% 95.83% 100.00% 92.00% 95.83%

APP CC 351#,33" 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 774" 33# 100.00% 86.00% 92.47%
Timer/

Countdown
CC 330#,33" 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 322",33# 100.00% 100.00% 100.00%

IFTTT Applet CC 363#,33" 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 774" 33# 100.00% 90.00% 94.74%

MiJia Smart Switch 2
Switch on/off

Manual SC 169"185"89#89# 100.00% 81.00% 89.50% 100.00% 81.00% 89.50%

APP CC 169#169" 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 185"137"89#89# 100.00% 87.00% 93.05%
Timer/

Countdown
CC 217#105" 98.52% 100.00% 99.25% 98.52% 99.50% 99.01%SC 169"185"89#89# 100.00% 68.50% 81.31%

Smart Life Smart Strips
Switch on/off

Manual SC 255"4# 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

APP CC 188# 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 255"4# 100.00% 100.00% 100.00%
Timer/

IFTTT Applet
CC 296# 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 255"4# 100.00% 100.00% 100.00%

SmartThings Switch
Switch on/off

Manual SC
433"47#

100.00% 96.00% 97.96% 100.00% 96.00% 97.96%434"47#
435"47#

APP/
Timer/

Countdown/
IFTTT Applet

CC

127#47"

98.46% 96.00% 97.21%

98.52% 99.75% 99.13%

128#47"
255#47"
256#47"
257#47"

SC
433"47#

100.00% 93.50% 96.64%434"47#
435"47#

Yeelight LED Bulb 1
Switch on/off

APP CC 121#89" 99.01% 100.00% 99.50% 99.01% 100.00% 99.50%SC 121"89# 100.00% 99.00% 99.50%

Timer CC 153#89" 100.00% 100.00% 100.00% 98.04% 100.00% 99.01%SC 121"89# 100.00% 97.00% 98.48%

IFTTT Applet CC 105#89" 100.00% 96.00% 97.96% 99.01% 100.00% 99.50%SC 121"89# 100.00% 100.00% 100.00%

between a device and the vendor service can be changeable
and is not always ideal.

We conduct a small experiment (as illustrated in Fig. 6)
and dive into the details of the traf�c a little bit, to obtain
some insight into the reason why �ngerprinting events perform
poorly in real H-IoT environments. We only focus on two
operations of a same device, i.e., switch on/off WeMo Smart
Plug manually or via APP, and we suppose we have obtained
the �ngerprints of this trigger event (and the corresponding
three sub-events includingstatus changefor manual operation
and controlling commandand status changefor APP oper-
ation). In the experiment, we turn on/off the plug via APP
and then within 1 second turn off/on the plug manually. We
record the traf�c, reduce the noise, and try to identify the
events/sub-events. The process is repeated 100 times. It is quite
interesting that the ideal traf�c for identifying the trigger event
is observed only 8 times. This implies that traf�c generated
with concurrent events of a same device is mixed up.

We observe some possible patterns of the mixed up
traf�c. 1) Multiple feedbacks: Multiple feedbacks can be gen-
erated with concurrent events of a device.2) Random order:
Concurrent events and corresponding packets can be in inde-
terminate orders.3) Repetitive events: Some of the concurrent
events can be performed more times than expected.4) Missed
events: Some events can be missed.5) Coalesced packets:
packets generated with distinct events can be coalesced to form
a new packet.6) Changed packets: Feedback packets generated
with concurrent events can be indeterminate. Figure 6 illus-

trates how likely each possible pattern happens. There can be
more complicated patterns when we consider more events/sub-
events. Fortunately, we can still identify �ne-grained sub-
events with most of these patterns (except coalesced packets)
with adequate precision and recall rate.

It should be noted that, increasing the recall rate by identify-
ing �ne-grained sub-events instead of the whole trigger event,
is in theory at the expense of precision rate. This is because
the information entropy of the �ngerprints for a sub-event is
smaller than that for a trigger event. Moreover, the precision
rate of identifying a trigger event can be lower than each
of its sub-event. For traf�c with multiple feedbacks, multiple
status changesub-events might be mistakenly identi�ed. This
is con�rmed by our experiment as illustrated in Table II. For
Yeelight LED Bulb 1 (the5th device), if it is operated by
IFTTT Applet (the3rd operation of the device), the precision
rate of identifying sub-events is 100% while that of identifying
the whole trigger event drops to 99.01%.

RTX-IFTTTis designed to increase recall rate at the expense
of precision rate due to two reasons. Firstly, the increment
in recall rate is signi�cant while the decrement in precision
rate is always negligible. Secondly, noti�cation byCheck Now
tolerates identi�cation errors but not misses. The �nal trigger
event identi�cation performance is provided in Table II.

C. Check Now Vs. Webhooks

On identifying a trigger event,RTX-IFTTT immediately
noti�es IFTTT by using either theCheck Nowinterface or

6

6

Event Operations Fingerprints
WeMo Smart Plug

switch on/off
Manual 322"33

APP 351#33"774"33
+

Switch WeMo Smart Plug on/off via APP,
then switch it on/off manually within seconds.

#

�A
� �

-�1
�I�

 �-
�1

�C
� �

-�1
�A

� �
-�2

�I�
 �-

�2
�C

� �
-�2

�A
� �

-�3
�I�

 �-
�3

�C
� �

-�3
�A

� �
-�4

�I�
 �-

�4
�C

� �
-�4

�A
� �

-�5
�I�

 �-
�5

�C
� �

-�5
�A

� �
-�6

�I�
 �-

�6
�C

� �
-�6

�A�p�p�l�e�t�s

�2�0

�2�2

�2�4

�2�6

�2�8
�T

�i�
m

�e
� �

(�
s�

e�
c�

)

(a) Applets with IFTTT Triggers and Actions

�I�
 �-

�7

�I�
 �-

�8

�I�
 �-

�9

�I�
 �-

�1
�0

�I�
 �-

�1
�1

�I�
 �-

�1
�2

�A�p�p�l�e�t�s

�2

�4

�6

�8

�1�0

�1�2

�1�4

�1�6

�T
�i�

m
�e

� �
(�

s�
e�

c�
)

(b) Applets with Non-IFTTT Triggers

�Z
� �

-�1
�3

�I�
 �-

�1
�3

�C
� �

-�1
�3

�Z
� �

-�1
�4

�I�
 �-

�1
�4

�C
� �

-�1
�4

�Z
� �

-�1
�5

�I�
 �-

�1
�5

�C
� �

-�1
�5

�Z
� �

-�1
�6

�I�
 �-

�1
�6

�C
� �

-�1
�6

�Z
� �

-�1
�7

�I�
 �-

�1
�7

�Z
� �

-�1
�8

�I�
 �-

�1
�8

�A�p�p�l�e�t�s

�0

�2

�4

�6

�8

�1�0

�1�2

�T
�i�

m
�e

� �
(�

s�
e�

c�
)

(c) Cross-Platform (IFTTT and Zapier) Connections

Fig. 8. Runtime performance of single-platform Applets and cross-platform Applets in IFTTT andRTX-IFTTT. Pre�xA- indicates that Applet is executed
directly by IFTTT, C- indicates thatRTX-IFTTTnoti�es IFTTT by Check Now,I- indicates thatRTX-IFTTTnoti�es IFTTT by Webhooks,Z- indicates that
RTX-IFTTTnoti�es Zapier byWebhooks. The number indicates the serial number of an applet in Table IV.RTX-IFTTTgreatly reduces the execution delay
from roughly2min to 2sec by Check Nowor 5sec by Webhooks, and it enables connections across platforms.

TABLE IV
APPLETS(CONNECTIONS) USED IN EXPERIMENTS IN FIG. 8

Triggers Actions
1 Smart Life Smart Strip is on Turn on WeMo Smart Plug
2 Smart Life Smart Strip is off Turn off WeMo Smart Plug
3 WeMo Smart Plug is on Turn on Smart Life Smart Strip
4 WeMo Smart Plug is off Turn off Smart Life Smart Strip
5 Smart Life Smart Strip is on Turn on Yeelight Bulb 1
6 Smart Life Smart Strip is off Turn off Yeelight Bulb 1
7 MiJia Smart Plug is on Turn on Smart Life Smart Strip
8 MiJia Smart Plug is off Turn off Smart Life Smart Strip
9 MiJia Smart Plug is on Turn on WeMo Smart Plug
10 MiJia Smart Plug is off Turn off WeMo Smart Plug
11 MiJia Smart Plug is on Turn on Yeelight Bulb 1
12 MiJia Smart Plug is off Turn off Yeelight Bulb 1
13 Smart Life Smart Strip is on Add row to Google Sheets
14 Smart Life Smart Strip is off Add row to Google Sheets
15 WeMo Smart Plug is on Add row to Google Sheets
16 WeMo Smart Plug is off Add row to Google Sheets
17 MiJia Smart Plug is on Add row to Google Sheets
18 MiJia Smart Plug is off Add row to Google Sheets

and then match it with the �ngerprints of this device. For
most devices, we consider the trigger event be “switch on/off”.
The �ngerprints for switching on and that for switching off a
device are always the same. Due to this reason,RTX-IFTTT
maintains a local variable for each device to save the current
state of that device. In the meanwhile,RTX-IFTTTdiscovers
for each device whether it is online/of�ine according to the
cyclic packets (e.g., ping/pong and heartbeat). If the device is
supposed to be of�ine for some time, the state of the device
is updated with the noti�cation byCheck Now.

Each operation is at �rst performed 20 times, and the
generated packet sequences are collected to generate the
�ngerprint(s) (calculated by Equation 1). The operation is
then performed additional 100 times for identifying the sub-
events. All packets generated in the latter 100 experiments
are collected sequentially for identi�cation, so the identi�ed
number of a certain sub-event can be greater/smaller than 100
in case of errors/misses. Then the trigger events are identi�ed
according to method described in Sec.III-B and IV-A. The �n-
gerprints and identi�cation performance of trigger events/sub-
events for 5 selected devices are provided in Table II.

In an H-IoT environment, devices are often supposed to be
operated remotely via APPs or even automatically via Applets.

For sub-event identi�cation, the precision rate is near perfect
(is always greater than 98.5%). However the recall rate is not
at all adequate (sometimes drops to 68.5%). For identi�cation
of the whole trigger events, the precision rate drops a little
bit in comparison with that of sub-events, but is still near
perfect (is always greater than than 98%). The recall rate is
signi�cantly increased and near perfect (is always greater than
99.5%). These results validate the identi�cation performance
of RTX-IFTTTwhen devices are not operated manually.

Results for other devices. The identi�cation performance
for other devices is also near perfect. We make the following
conclusions.1) For normal H-IoT devices, if they are not
operated manually, the precision and recall rate are both near
perfect. For example, event identi�cation for Qing Mi Smart
Strip (turning on/off 327 times) and Yeelight Bulb 1S (turning
on/off 327 times) both achieve 99.08% precision rate, 100.00%
recall rate, and 99.54% F1-score.2) For WiFi enabled sensors,
the precision and recall rate are both near perfect. For example,
event identi�cation for Smart Life PIR Motion (updating data
50 times) achieves 100.00% precision rate, recall rate, and
F1-score.3) Even for hub/gateway which connects multiple
wireless sensors (ZigBee or Z-Wave enabled), the precision
and recall rates based on the integrated traf�c are still near
perfect. For example, event identi�cation for MiJia multi-
purpose gateway (updating data from motion sensor, door
sensor or temperature/humidity sensor 689 times) achieves
98.99% precision rate, 99.27% recall rate, and 99.13% F1-
score. For sensors, the edge can only identify events of
updating data, but cannot identify trigger events which are
mainly based on speci�c values of sensor data.RTX-IFTTT
must use theCheck Nowinterface and rely on IFTTT platform
to determine whether the trigger event is satis�ed.

C. Runtime Performance of Single-Platform Applets

In this experiment, we compared the runtime performance
of IFTTT Applets executed by IFTTT and that byRTX-IFTTT.
The Applets are listed in Row 1 to 6, Table IV. Each Applet
is executed directly by IFTTT 40 times, and then byRTX-
IFTTT with noti�cation by Check Now40 times and then by

8

8

Webhooks40 times. The results are as illustrated in Fig. 8(a),
the Applet execution delay by IFTTT ranges from5 � 260sec.
RTX-IFTTTgreatly reduces the average execution delay from
roughly 2min to 2secby Check Nowor 5secby Webhooks.

Results for other Applets. The runtime performance for
other devices/Applets is quite similar to that illustrated in
Fig. 8(a). The average delay for IFTTT is always around
2min, and that for RTX-IFTTT ranges from2sec to 6sec.
The only exception deals with Ring video doorbell, when the
trigger event is “new ring detected”. Applets with this trigger
event are executed by IFTTT extremely fast (the average delay
is 2sec), faster than that byRTX-IFTTT. One possible reason
for this exception is that the vendor of this device implements
the Realtime API for its trigger service.

D. Runtime Performance of Cross-Platform Connections

We conduct experiments to validate thatRTX-IFTTT en-
larges IFTTT's ecosystem by considering connections of non-
IFTTT triggers to IFTTT actions. We choose MiJia Smart
Plug which is not supported by IFTTT to generate trigger
events. We consider 6 trigger-Webhookconnections as listed
in Row 7 to 12, Table IV, and run each Applet 40 times. The
runtime performance is as illustrated in Fig. 8(b). The average
execution delay is only about5sec.

We also conduct experiments to validate thatRTX-IFTTT
enables cross-platform connections. In this experiments, we
choose two platforms IFTTT and Zapier. We consider “Add
row to Google Sheets” as the action of each connection, and
establishWebhooksfor this action in both IFTTT and Zapier.
We construct Applets (or connections) as listed in Row 13 to
18, Table IV. Each Applet is executed byRTX-IFTTT with
noti�cation by IFTTT Webhooks40 times, then by Zapier
Webhooks40 times, and by IFTTTCheck Now40 times if
this Applet can be established in IFTTT platform. The runtime
performance is illustrated in Fig. 8(c). The average execution
delay of cross-platform connections inRTX-IFTTT is about
5sec for both IFTTT Webhooksand ZapierWebhooks, and
that for IFTTT Check Nowis about2sec.

VI. RELATED WORK

This section brie�y surveys related techniques.

A. Device Action Inference

There are already many researches on device action infer-
ence based on traf�c analysis in H-IoT environment. Mollers

REFERENCES

[1] IFTTT, “IFTTT Website,” [online], https://ifttt.com, Accessed JAN.
2022.

[2] B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S. Mennicken, N. Picard,
D. Schulze, and M. L. Littman, “Trigger-Action Programming in the
Wild: An Analysis of 200, 000 IFTTT Recipes,” inProceedings of the
CHI Conference on Human Factors in Computing Systems, CHI 2016,
pp. 3227–3231.

[3] IFTTT, “IFTTT Documentation,” [online], https://platform.ifttt.com/
docs/, Accessed JAN. 2022.

[4] X. Mi, F. Qian, Y. Zhang, and X. Wang, “An Empirical Characterization
of IFTTT: Ecosystem, Usage, and Performance,” inProceedings of the
Internet Measurement Conference, IMC 2017, pp. 398–404.

[5] F. Möllers, S. Seitz, A. Hellmann, and C. Sorge, “Short Paper: Extrapola-
tion and Prediction of User Behaviour from Wireless Home Automation
Communication,” in7th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec 2014, pp. 195–200.

[6] B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is Anybody Home?
Inferring Activity From Smart Home Network Traf�c,” inIEEE Security
and Privacy Workshops, SP Workshops 2016, pp. 245–251.

[7] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “HoMonit:
Monitoring Smart Home Apps from Encrypted Traf�c,” inProceedings
of the ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pp. 1074–1088.

[8] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-R.
Sadeghi, “HomeSnitch: Behavior Transparency and Control for Smart
Home IoT Devices,” in12th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec 2019, pp. 128–138.

[9] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-Level Signatures for Smart Home Devices,” in27th Annual
Network and Distributed System Security Symposium, NDSS 2020.

[10] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-A-Boo: I See Your
Smart Home Activities, Even Encrypted!” in13th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, WeSec 2020, pp.
207–218.

[11] B. Charyyev and M. H. Gunes, “IoT Event Classi�cation Based on Net-
work Traf�c,” in 39th IEEE Conference on Computer Communications
Workshops, INFOCOM WKSHPS 2020, pp. 854–859.

[12] Samsung, “SmartThings,” [online], https://www.smartthings.com, Ac-
cessed JAN. 2022.

[13] Apple, “HomeKit,” [online], https://www.apple.com/ios/home/, Ac-
cessed JAN. 2022.

[14] Zapier, “Zapier website,” [online], https://zapier.com/, Accessed JAN.
2022.

[15] HomeAssistant, “Home assistant website,” [online], https://www.
home-assistant.io/, Accessed JAN. 2022.

[16] Selenium, “SeleniumHQ Website,” [online], http://www.seleniumhq.
org/, Accessed JAN. 2022.

[17] M. Z. Sha�q, L. Ji, A. X. Liu, J. Pang, and J. Wang, “A First
Look at Cellular Machine-to-Machine Traf�c: Large Scale Measurement
and Characterization,” inACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS 2012, pp. 65–76.

[18] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“SmartAuth: User-Centered Authorization for the Internet of Things,” in
Proceedings of the 26th USENIX Security Symposium, USENIX Security
2017, pp. 361–378.

[19] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER: Towards
Automating Risk Assessment of Mobile Applications,” inProceedings
of the 22th USENIX Security Symposium, USENIX Security 2013, pp.
527–542.

[20] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“SUPOR: Precise and Scalable Sensitive User Input Detection for
Android Apps,” in

