
Autonomous trust construction in multi-agent

systems—a graph theory methodology

Y.C. Jianga,*, Z.Y. Xiab, Y.P. Zhonga, S.Y. Zhanga

aDepartment of Computing and Information Technology, Center of Networking and Information Engineering, Room 409, Yifu Building,

No 220 Handan Road, Fudan University, Shanghai 200433, China
bDepartment of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210043, China

Received 9 February 2004; revised 23 July 2004; accepted 27 August 2004

Available online 31 October 2004

Abstract

Trust mechanism always has two popular architectures: centralized fashion and distributed fashion. However, those two architectures are

not well suited for multi-agent system since they cannot achieve the trust management autonomy. To achieve the trust management

autonomy, the paper presents an autonomous trust construction model based on graph theory methodology. The presented model adopts the

graph to describe the trust information, and uses the graph combination and path searching to construct the trust relation. Every agent can

implement trust management autonomously; agent system can construct the global trust concept by the combination of trust information

among agents; an agent can achieve the trust relation with other agent by trust path searching or trust negotiation. The simulation experiment

results prove that the autonomous trust construction based on graph theory methodology is effective.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Multi-agent systems; Autonomous; Trust; Graph theory; Security
1. Introduction

Multi-agent technology is a research focus of artificial

intelligence, which can make agents cooperate to perform

the assigned task. Multi-agent technology can support agent

migration among hosts and make network application more

flexible and effective [1]. However, the trust management of

multi-agent remains as an unsolved question. If we do not

solve such question well, the multi-agent technology cannot

achieve effective application in practice [2].

Now there have been some relative research works about

the trust management of multi-agent, which are often based

on the traditional security mechanism, such as access

control list, role-based access control, PKI, etc. [3]. In those

works, there always was a central repository to provide the

access control and security trust information to individual

agent or agents group, or has a trusted third party to provide

the trust mechanism. We call those relative works as Central
0965-9978/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.advengsoft.2004.09.001

* Corresponding author. Tel.: C86 21 6564 3235; fax: C86 21 6564

7894.

E-mail address: jiangyichuan@yahoo.com.cn (Y.C. Jiang).
Trust Mechanism, which adopts the Trusted Authority (TA)

or trusted third party to manage trust. Central Trust

Mechanism is simple and effective, but it has many

drawbacks, such as single point failure, the requirement of

infrastructure, TA may become performance neck, etc.

Obviously, the Central Trust Mechanism cannot satisfy the

requirement for the mobility and dynamics of multi-agent

system.

To solve the deficiency of Central Trust Mechanism,

Distributed Trust Mechanism was proposed [4,5]. The well-

known PGP trust model is a typical distributed trust one,

which breaks the traditional hierarchical trust architecture

and need not a central authorization organization to ensure

the trust management, and the trust relation among entities

is constructed by the credential signature [6]. In [7], Yosi

Mass and Onn Shehory define and propose a distributed

trust infrastructure in multi-agents system based on

credential, which need not a central credential mechanism

or trusted third party; each agent can issue credential, an

agent can be trusted if it can provide enough required

credentials. However, in [7] only local trust can be realized

and not global one. Moreover, Kagal et al. [3] proposes
Advances in Engineering Software 36 (2005) 59–66
www.elsevier.com/locate/advengsoft

http://www.elsevier.com/locate/advengsoft


a secure agent system model based on distributed trust and

delegation mechanism, which integrates trust management

and the delegation of permission trust together so as to

provide effective security protection for agent.

In those relative works about distributed trust mechan-

ism, the trust relation is often constructed by the valid

credential signatures among agents, threshold cryptography

and trust delegation; an issuer is trusted when it can provide

sufficient certificates from other issuers to satisfy the

requester’s policy [4].

Obviously, in distributed trust management system, the

agents should interact to construct trust relations each time

they want to cooperate; the communication costs between

agents are very high. Therefore, though Distributed Trust

Mechanism prevents single point failure, it increases the

network load and delay service time. So the large

communication costs in trust construction prevents the

distributed trust mechanism from being applied effectively

in multi-agent systems.

Moreover, autonomy is a characteristic and virtue of agent

[8], so we should construct an autonomous trust management

mechanism for multi-agent system. Though Distributed

Trust Mechanism can also be applied to multi-agent system

in some degree, but they cannot exert the autonomy of agent.

The autonomous trust mechanism should make each agent

have the autonomous trust management function, the trust

management autonomy make the whole system more

flexible. Otherwise, if some agents are damaged, other

agents can still maintain their own trust managements, so the

trust management autonomy can also make the whole system

more robust. Therefore, we launched the project of

Autonomous Trust Management for multi-agents [16].

Srdjan Capkun et al. presents a self-organized public-key

management model for mobile ad hoc networks that allows

users to generate their public–private key pairs, to issue certi-

ficates, and to perform authentication regardless of the

network partitions and without any centralized services [9,10].

We refer the self-organization idea in Ref. [9] in some

degree, and aiming at the characteristic of multi-agent

system, propose an autonomous trust construction model

based on graph theory methodology. In our model, we adopt

the graph to express the trust relation; every agent can make

trust organization and management autonomously; agents

can construct the global trust concept by the combination of

trust information among agents. The model can well be

suited for the multi-agent system.

In our autonomous trust construction mechanism, if

agent a



Fig. 1. Illustration of the concept of ATRG, ATSG and ATP.

Y.C. Jiang et al. / Advances in Engineering Software 36 (2005) 59–66 61
Fig. 1 illustrates the relation of above concepts.

Therefore, the question of this paper can be defined as:
†
 each agent stores and manages its respective trust

information (ATSG) autonomously;
†
 in the initial phrase of the multi-agent system, the ATSG

in each agent is very simple, each agent only holds the

trust relations that it trusts or is trusted directly;
†
 agents interact periodically and combine their ATSGs,

therefore, the global trust information can be achieved

gradually;
†
 if two agents want to construct trust relation, they should

find a trust path from their ATSGs after combination;
†
 if there are not any paths between the two agents, then the

two agents can construct trust relation by automated trust

negotiation.
†
 if one node fails after the global relation has set up, the

agents on this node fail too. However, the agents on other

nodes can keep operation, and can construct the new global

trust relations gradually by subsequent interactions.
3. Autonomous trust management model

3.1. Combination of agent trust sub-graph

As said above, in the initial phase of the multi-agent

system, the trust information in each agent is very simple,

which are only trust relations that it trusts or is trusted

directly. To achieve the global trust concept, agents need to

combine their ATSGs.
Fig. 2. Combinatio
The combination of ATSGs includes two kinds of

situations: one is that each agent broadcast its trust

information to the agents on neighboring nodes periodically,

the broadcasting trust information contains the ATSG. The

other is that agents exchange ATSG while they cooperates.

Each agent has a timer, the agent broadcasts trust

information periodically (we can call the interval time as

exchange period) to the agent on the neighboring hosts.

If two agents want to cooperate, they should construct

their trust relation at first. At the same time, we can utilize

the agent cooperation to exchange trust information for

combination of ATSGs.

In the combination of ATSGs, each agent only absorbs the

trust information that it has not and is relative to it. In this way,

the global agents trust information can be achieved gradually.

Fig. 2 is an example, in which we can see that the

combination of ATSGs of a1 and a2.

The ATSG can be memorized as adjacency list which

contains two kinds of nodes: headnode that denotes the

agent, edgenode that denotes the one trusted by the agent of

the corresponding headnode.

By using the C semantics structure [15], the formal

description of the data structure of ATSG is as follows.
n of
typedef struct node

{agenttype trusting_agent;

struct node *trust;

} edgenode;
AT
SG
typedef struct

{agenttype agent;

edgenode *trust;

} headnode;
headnode ATSG[n];

Therefore, the ATSG in a1 after combination in Fig. 2 is

shown as Fig. 3.

The combination algorithm can be seen in Algorithm 1.

Algorithm 1
Void Combination (headnode ATSGi[M],ATSGj[N])

/*Comine ATSGj into ATSGi*/
{

headnode ATSGi[m], ATSGj[n];
edgenode *temp, *point1;
edgenode *newedgenode;
s.



Fig. 3. Memory structure of ATSG in a1.

Y.C. Jiang et al. / Advances in Engineering Software 36 (2005) 59–6662
headnode *newheadnode;
int k,b;
for (int iZ0;i!n;iCC)

{

/*Combine the agents trusted by ATSGi into ATSGi*/

for (int jZ0;j!m;jCC)

{if ATSGi[j].agentZZATSGj[i].agent

{tempZATSGj[i].trust;

point1ZATSGi[j].trust;

while temp !Znill

{bZ0;

while (point1.trust !Z nill) && (bZZ0)

{if point1.trusting_agentZtemp.trusting_agent

bZZ1;

point1Zpoint1.trust;

}

if bZZ0

{new newedgenode;/*create a new edgenode*/

newedgenode.trusting_agentZ
temp.trusting_agent;

newedgenode.trustZATSGi[i].trust;

ATSGi[i].trustZnewedgenode;

}

point1ZATSGi[j].trust;

tempZtemp.trust;

}

}

Fig. 4. An example of sear
chin
}

/*Combine the agents that trust ATSGi into ATSGi*/
tempZATSGj[i].trust;
while temp!Z nill
{for (jZ0;j!m;jCC)

{if temp.trusting_agentZZATSGi[j].agent

{mCC;new newheadnode;/*create a new

headnode*/

newheadnode.agentZtemp.trusting_agent;

newheadnode.trustZATSGj[i].trust;

ATSGi[m]Znewheadnode;

tempZnill;

jZm;

}

};

tempZtemp.trust;
g f
or t
}}}

From Algorithm 1, we can see that the time complexity

degree is O(n2m2), so the algorithm can only perform well

when the number of agents is few.
3.2. Construction of trust relation

If agent i wants to cooperate with j, firstly it should

construct a trust relation to j. The construction of trust

relation has two kinds: one is that constructing relation by

trust delegation among agents, i.e. looking for a trust path

from i to j; other is that if there are not any paths between the

two agents, then the two agents can construct trust relation

by automated trust negotiation.
3.2.1. Searching for trust path

Trust path is a structure based on trust delegation

networks [11], which describes the trust relation delegated

by a series of agents.

If agent i want to cooperate with j, i should firstly

combine its ATSG with j’s. Then i should search for a trust

path to j in the new ATSG. Fig. 4 shows a trust path

searching process from a1 to a9.

The algorithm that search for trust path can be seen in

Algorithm 2.
rust path.



Y.C. Jiang et al. / Advances in Engineering Software 36 (2005) 59–66 63
Algorithm 2
int TrustPath_Searching (agenttype ai,aj; headnode

ATSGi[m],ATSGj[n])
/*for simplicity, next we denote the headnode or

edgenode that contrains agent a as
node(a), and describe the data struct both of headnode

and edgenode as node*/
Fig. 5. Automated trust negotiation process.
{node *temp;

int bZ0;

stack s; /*define a variable of stack data structure*/

combination (ATSGi, ATSGj);

push (s,node(a));

while (!empty(s) and (bZZ0))

{tempZpop(s);

if tempZZnode(aj)

BZ1;

while temp!Znill

{tempZtemp.trust;

push(s,temp);}
}

return (b);}

If agent i cannot find a trust path to agent j, then it

concludes that it cannot get the trust relation to j by trust

delegation mechanism, so it may construct trust relation by

automated trust negotiation, shown as Section 3.2.2.
3.2.2. Automated negotiation of trust

If agent i cannot find a trust path to j, then it can make

automated negotiation with j about the trust relation. In fact,

the automated negotiation of trust is one kind of distributed

trust mechanism. However, in distributed trust mechanism,

each time two agents want to cooperate, they should make

negotiation to provide enough required credentials to provide

enough required credentials to satisfy the security policy.

Automated trust negotiation mainly manages the

exchange of credentials between strangers for the purpose

of property-based authentication and authorization when

credentials are sensitive [13], which constructs trust relation

if the credentials exchanged can satisfy the requirement of

security policy. Credentials flow between i and j through a

sequence of alternating credential request and disclosures,

which we call a trust negotiation.

A credential is a digitally signed assertion by the

credential issuer about the credential owner credentials

can be made unforgeable and verifiable by using modern

encryption technology: a credential is signed using the

issuer’s private key and verified using the issuer’s public

key [14]. If the exchanged credentials can satisfy the

security polices of the two agents respectively, then a trust

relation can be achieved.

Fig. 5 is a simplified automated trust negotiation process.

If agent i can get trust relation with j by negotiation, then

this new trust relation should be added into the ATSGs both

of i and j.
3.3. Revocation of trust

Each agent can revoke a trust relation related to itself if it

confronts the following two situations: one is that the total

ATSG content exceeds the memory scope of the agent.

Other is that the trust relation is damaged.

About the first situation, we should adopt some principles

to realize the deletion of trust relations, such as FIFO (first in

first out), NUR (Not used recently), LRU (Least recently

Used), etc.

About the second situation, if the trust relation between i

and j is damaged, we not only revoke it in the ATSG of i and

j if the relation is damaged, but also revoke it in the ATSGs

of all other agents.
4. Simulation experiments

For the purpose of our experiment, we have developed a

minimal platform that provides the basic functions required

to program agents. We have implemented a prototype which

is developed with Tcl/Tk, Tclx, Tix and Binprolog [17,18].

And the prototype was also partly based on the work of

Aglets Software Development Kit v2 (Open Source release)

[19]. In our experiments, by software modulation, we can

make the network transmission rate, network load and host

CPU load change.

To test the performance of our autonomous trust

management mechanism, we make three kinds of tests,

shown in Sections 4.1–4.3.
4.1. Trust path searching vs. trust negotiation

Firstly, we compare the performance between trust path

searching and trust negotiation. We define the performance

as the ratio between the successful trust construction

numbers by path search or trust negotiation, and the

total number of trust construction tests. In our simu-

lation experiment, the memory size of agent is limitless.

In the simulation experiment, when trust relation should be

constructed between agents, the trust negotiation method



Fig. 8. Number of agentsZ15.

Fig. 6. Number of agentsZ5.

Y.C. Jiang et al. / Advances in Engineering Software 36 (2005) 59–6664
can be used only after the trust path searching fails to find

one path. The results are shown as Figs. 6–9.

From the simulation result, we can conclude that:
†
 at the initial phrase of system, since there is little

information of ATSG in agent, so it is very difficult to

find a trust path in ATSG. Therefore, the trust

construction mainly adopts trust negotiation, so the

performance of trust negotiation is more than the one of

trust path searching;
†
 with the time going, agents exchange their ATSGs

periodically. Therefore, the information of ATSG

becomes more abundant and the performance of trust

path searching becomes higher with the time goes;
†

Fig. 9. Number of agentsZ20.
when agents’ number is higher, the time cost of ATSGs

combination also becomes higher. Therefore, the per-

formance of trust path searching will become lower

while the agents number becomes higher.
4.2. Trust construction among the agents on the same host

vs. trust construction among the agents on different hosts

In multi-agent systems, it is important to take into

consideration the cooperating agents could be located on
Fig. 7. Number of agentsZ10.
different hosts. Obviously, the construction of more

complex trust sub-graphs or trust paths, which contain

agents located on different hosts, will be probably costly

operations. Now we can illustrate such situation with the

experiments.

In our experiments, there are five agents. The initial trust

relations are shown as Fig. 10(a), where a1 trusts a2, a2

trusts a3, a3 trusts a4, a4 trusts a5, and a5 trusts a1; the final

trust relations are shown as Fig. 10(b), where all agents trust

mutually. In our experiments, we will construct the final

trust relations from the initial ones.

For testing how the agent locations influence the trust

construction, we can set the agents to locate on the same
Fig. 10. Trust relations in the experiments.



hosts or some different hosts, shown as the five

situations in Table 1. Now we make five tests separately

according to Table 1 for constructing trust relations of

Fig. 10.

In our experiments, the five hosts are fully connected,

and agent ai only interacts with a(iC1)mod5 and a(iC4)mod5.

The time costs for constructing the final trust relations from

the initial ones are shown in Fig. 11.

From Fig. 11, we can see that the communication costs

among agents located on different hosts can influence the

trust relation construction effectively. The trust construction

of agents located on different hosts is a costly operation.

When the agents those want to construct trust relations

locate on the same host, the efficiency will be high, or the

efficiency will be low.
coope-38tn0.1(r)936.5(d2(N81.8(0ind)88.5(03r2)-353(is01-2.799.5(trust)otal.1(trust)it)-6mJ
1.2007 -1.2235 TD
[(In)-2510.32mec8t)-s2(de(lts.62mec)-6r0.32m-60h81.8ec)-6.720osts6.60s0 0 0.4 scn
16.41ech902
[(Fig.)-238(120egot130 0 0 scn
2.82210D
[1on)-1.2232210hey)Fr.7(o206e)-348.32din7thanis68.6(0xperwe(o206e4-755.1.20073.8849235 TD
[(In)-2se4(bas9e)-34at.2(tes5-354(base))-340.2(63erat)-10.5(ion)-329.4(52ey)-4at.2(tes5-)-270.1ec43s.2(4nd1(6.5(n)-3uted)-642.9as9e4t)]TJ
T*
[(negot9.4(hanism)-423.625nforms.625oopemor0.3255)-395-c95.5r)iesu7(ou(239.1(4he)-44(t)-25nf)-240.2(51ly)-30.2(54s5-35at.224nd)-6-270. -1.2178 TD
[(coope-7.6(n-)]TJ)-756.95feren)-592.9(53chani)-11.3(sm.)-382.254xper510r0.3ons)tioJ
295fer2.799.554xp4ributed
4.3. Autonomous trust mechanism vs. distributed

trust mechanism

In fact, the automated trust negotiation is a kind of

distributed trust mechanism. So now we can compare the

efficiency of autonomous trust mechanism (includes trust

path searching and automated trust negotiation, and trust

negotiation takes place only after the trust path searching

fails) and distributed trust mechanism (only includes

automated trust negotiation).

We make six tests for agent cooperation in series; each

test is on the base of the trust relations of the former test.

In each test, we can adopt the autonomous trust

mechanism and distributed trust mechanism. In auton-

omous trust mechanism, agents firstly find the trust path

within its trust information if they want to cooperate,
and the agents adopt the trust negotiation only while the

trust path cannot be found. In distributed trust mechanism,

agents adopt the trust negotiation each time they want to

cooperate.

In this simulation experiment, we adopt nine agents, and

let they locate on different hosts. The agents cooperate

according to the cooperation relations in Fig. 12



Y.C. Jiang et al. / Advances in Engineering Software 36 (2005) 59–6666
5. Conclusion

In this paper, aiming at the characteristic of multi-agent

autonomy, we presented a autonomous trust construction

model for multi-agents based on graph theory methodology.

The presented model can make multi-agent manage the trust

information autonomously and exchange individual trust

information to achieve the global trust information. Our

model can exert the autonomy of multi-agent, which is more

flexible and need not any trusted authority. With the

simulation experiments, we can see that our autonomous

trust mechanism outperforms the distributed trust mechan-

ism in multi-agent systems.

Our future work includes further exploration and

improvement of the autonomous trust mechanism in

dynamic multi-agent system and mobile agent system.
References

[1] Zhong-Zhi SHI. Intelligent agent and application. Beijing: Science

Press; 2000 p. 9–11 [in Chinese].

[2] Hu Y-J. Some thoughts on agent trust and delegartion. Proceeding of

fifth international conference on autonomous agents (AGENTS’01),

Montreal, Quebec, Canada 2001.

[3] Kagal L, Finin T, Joshi A. Developing secure agent systems using

delegation based trust management. In Security of Mobile MultiAgent

Systems (SEMAS 02) held at Autonomous Agents and MultiAgent

Systems (AAMAS 02); 2002.

[4] Blaze M, Feigenbaum J, Lacy J. Decentralized trust management.

Proceedings of the 1996 IEEE symposium on security and privacy 1996.

[5] Abdul-Rahman A, Hailes S. A distributed trust model. ACM new

security paradigms workshop 1997.

[6] Abdul-Rahman A. The PGP trust model. EDI-Forum; 1997. http://

www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/

[7] Mass Y, Shehory O. Distributed trust in open multi-agent systems.

Workshop on deception, fraud and trust in agent societies,

autonomous agents 2000.

[8] Huhns MN. Trusted autonomy. IEEE Internet Comput 2002;6(3):

92–5.

[9] Capkun S, Buttyan L, Hubaux J-P. Self-organized public-key

management for mobile ad hoc networks. IEEE Trans Mobile Comput

2003;2(1).

[10] Cpakun S, Hubaux J-P, Buttyan L. Mobileity helps security in ad hoc

networks. Proceedings of the ACM symposium on mobile ad hoc

networking and computing (MobiHOC) 2003.

[11] Aura T. On the structure of delegation networks. Licentiate’s Thesis.

Technical Report A48, Helsinki University of Technology, Digital

Systems laboratory; December 1997.

[12] Jsang A. An algebra for assessing trust in certification chains. In:

Kochmar J, editor. Proceedings of the network and distributed
systems security (NDSS’99) symposium. The Internet Society;

1999.

[13] Winsborough W, Seamons K, Jones V. Automated trust negotiation,

DARPA information survivability conference and exposition (DIS-

CEX ’2000) 2000.

[14] Schneier B. Applied cryptography, 2nd ed. London: Wiley; 1996.

[15] Ford W, Topp W. Data structures with CCC. Englewood Cliffs, NJ:

Prentice-Hall; 1996.

[16] Jiang YC, Xia ZY, Zhong YP, Zhang SY. A novel autonomous trust

management model for mobile agents. Lecutre notes in Computer

Science 3073:56–65, 2004.

[17] Tcl Developer Xchange: The Tcl and Tk Toolkit, Tcl /Tk Version

8.4.4. URL: http://www.tcl.tk/software/tcltk/8.4.html.

[18] Tcl Contributed Archive: Extended Tcl (TclX), Version 7.0a. URL:

http://www.neosoft.com/tcl/. Neosoft Company; 2003.

[19] Aglets Software Development Kit: Aglets Software Development

Kit v2 (Open Source). URL: http://www.trl.ibm.com/aglets/; 2002.
Yichuan Jiang was born in 1975. He received his MS degree in

computer science from Northern Jiaotong University, China in 2002.

He is currently a PhD candidate in computer science of the Department

of Computing and Information Technology, Fudan University, China.

His research interests include multi-agent system, artificial intelligence

and information security.
Zhengyou Xia was born in 1974. He received his MS degree in fuse

technology from Nanjing University of Science and Technology in

1999, and received his PhD degree in computer science from Fudan

University in 2004. He is currently a lecturer in the Department of

Computer, Nanjing University of Aeronautics and Astronautics, China.

His research interests include information security, multi-agent and

active network.
Yiping Zhong was born in 1953. She is now an associate professor, and

also the associate director of the Department of Computing and

Information Technology of Fudan University, China. Her research

interests include network system and distributed system.
Shiyong Zhang was born in 1950. He is now a professor and PhD

supervisor, and also the director of the Center of Networking and

Information Engineering of Fudan University, China. His research

interests include network system, multi-agent system and network

security.

http://www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/
http://www.cs.ucl.ac.uk/staff/F.AbdulRahman/docs/
http://www.tcl.tk/software/tcltk/8.4.html
http://www.neosoft.com/tcl/
http://www.trl.ibm.com/aglets/

	Autonomous trust construction in multi-agent systems-a graph theory methodology
	Introduction
	Relative definitions and question description
	Autonomous trust management model
	Combination of agent trust sub-graph
	Construction of trust relation
	Revocation of trust

	Simulation experiments
	Trust path searching vs. trust negotiation
	Trust construction among the agents on the same host vs. trust construction among the agents on different hosts
	Autonomous trust mechanism vs. distributed trust mechanism

	Conclusion
	References


