
Defend mobile agent against malicious hosts in migration itineraries

Y.C. Jianga,*, Z.Y. Xiab, Y.P. Zhonga, S.Y. Zhanga

aCenter for Networking and Information Engineering, Department of Computing and Information Technology, Fudan University,

Room 409, Yifu Building, No 220 Handan Road, Shanghai 200433, China
bDepartment of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautic, Nanjing 210043, China

Available online 11 September 2004

Abstract

Agent integrity verification and fault-tolerance are the two prevalent methods among the solutions to the Problem of Malicious Hosts in

Mobile agent system. Agent integrity verification enables the owner of the agent to detect upon its return whether a visited host has

maliciously altered the state of the agent based on agent integrity verification [6]. A known drawback of such method is that it cannot detect

the tampering of agent immediately, and the tampering can be detected only when the agent returned. Agent fault-tolerance is one method

that achieves agent fault-tolerance in migration itineraries by agent replication and majority voting [11]. The drawback of such method is that

the agent replication and majority voting can produce many agent replicas in every agent migration step, which may cost significant resource

and time. Aiming at those drawbacks, the paper incorporates the two methods, and presents a novel agent migration fault-tolerance model

based on integrity verification, which can defend mobile agent against malicious hosts in migration itineraries effectively. The novel agent

fault-tolerance model cannot only realize the fault-tolerant execution, but also reduce the complexity and resource cost of agent migration

communication.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Problem of malicious hosts; Agent fault-tolerance; Agent integrity verification; p-calculus; Spi-calculus
1. Introduction

Mobile agents are software programs that may move from

host to host as necessary to carry out their functions. Such

systems violate some of the assumptions that underlie most

existing computer security implementations [1]. Problem of

Malicious Host (POMH) (i.e. how to protect agents against

the malicious hosts) is a serious security problem in mobile

agent system. To solve the POHM, various methods have

been developed, such as Time Limited Blackbox [2],

Reference States [3], Cryptographic Traces [4], Authentica-

tion and State Appraisal [5], etc. Among these, the two most

prevalent solutions of POMH are agent integrity verification

[6] and agent fault-tolerance [11].

The set of hosts visited by the mobile agent is termed as

itinerary. At any host, the execution environment of the

agent is controlled by the host. Hence, mobile agents are

vulnerable to attacks by malicious host in migration
0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.08.008

* Corresponding author. Tel.: C86-21-6564-3235; fax: C86-21-6564-

7894.

E-mail address: jiangyichuan@yahoo.com.cn (Y.C. Jiang).
itinerary; one of the attacks to the mobile agent is the

tampering of the data carried by the agent. To detect such

attack, the method of agent integrity verification was

proposed. In Ref. [6], Karjoth et al. proposed the notion of

AppendonlyContainer for detecting the tampering of an

agent’s data by individual malicious hosts. However, the

mechanism in Ref. [6] does not address the problem that two

or more malicious hosts collude with each other to delete the

data of other hosts. To solve such problem, Vijil and Sridhar

Iyer [7] incorporated and extended the notion of the

AppendOnlyContainer to include not only the detection of

tampering but also the identification of the malicious host,

so as to detect the colluding malicious hosts in mobile agent

itineraries. Otherwise, Jeff et al. [8] proposed several

defense against the truncation attack and the related

growing-a-fake-stem attack for the protection of the partial

computation results of free-roaming agents.

However, all of the above works about agent integrity

verification only detect the attacks when the agent returns to

its owner. Therefore, the attacks cannot be detected

immediately as it takes place, which may influence the

execution of agent.
Microprocessors and Microsystems 28 (2004) 531–546
www.elsevier.com/locate/micpro

http://www.elsevier.com/locate/micpro


Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546532
Moreover, though the above approaches are effective for

solving the POMH in some degree, they do not cope with

how to keep the mobile agent system uninterrupted during

operating when the POMH takes place. Aiming at such

problem, the concept of agent fault-tolerance was

suggested; among the related researches the measure of

agent replication and voting was often adopted. Schneider

[11] integrated the concept of fault-tolerance and the

principle of cryptography to make the mobile agent system

have fault-tolerant ability. The solution in Ref. [11] makes

agent produce many replicas at every migration step so that

the crash of one agent cannot influence the operation of the

whole system. Unfortunately, such solution is not feasible in

practice, since it assumes that replicated servers fail

independently [16] and requests that all agent replicas be

kept alive until the end of agent migration, and the large

numbers of agent replicas cost a lot of network and host

resource. In the meantime, the result voting among the

replicas of agent also cost significant resource and time.

On the base of our original work in Ref. [25], we

incorporate the above two methods and extend them, and

present a novel agent migration fault-tolerance model based

on integrity verification (AMFIV) and its improved version

(P-AMFIV). This model can detect the tampering of agent

immediately as it takes place and carry out the fault-tolerant

execution. It also reduces the complexity and resource cost

of agent migration communication. Lastly, this paper makes

p/spi-calculus analysis and experiment for P-AMFIV,

which prove our solution is feasible and efficient.

The rest of the paper is organized as follows. Section 2

introduces the related research work on agent integrity

verification and fault-tolerance. Section 3 presents the

novel agent migration fault-tolerance model AMFIV and

P-AMFIV. Section 4 models P-AMFIV based on p-calculus

and spi-calculus. Section 5 describes simulation experiment.

Then the paper concludes in Section 6.
2. Overview of agent integrity verification

and fault-tolerance

2.1. Agent integrity verification

The agents need to be protected such that they can

acquire new data on each host they visit, but any tampering

with pre-existing data must be detected by the agent’s owner

(and possibly by other hosts on the agent’s itinerary) to keep

the agent integrity [9]. The issue of agent integrity has

heretofore always been ignored in the realm of agent

literature. With the existence of malicious hosts and

inaccurate information, along with many unsolved problems

arising from agent interaction, the agent’s integrity is in

jeopardy. Given enough time, a malicious host can examine

the agent’s code or carried data in order to alter them to suit

its own needs or desires. Strategies must be developed to

protect the integrity of agents [10].
In Ref. [6] Karjoth et al. propose a notion of

AppendOnlyContainer. The idea is to protect agent objects

in a container such that new objects can be added to it but

any subsequent modification of an existing object can be

detected by the agent’s owner with the use of checksum.

When an agent starts its itinerary, the agent’s owner

initializes the checksum based on a random nonce r. The

nonce must be kept secret by the agent owner and is not

carried by the agent. The initial checksum is as follows:

C0 Z Eownerfrg (1)

When a host i wants to insert data Di, then the data item

Di, Sigi(Di) and the identity of the host i, are inserted into the

appropriate arrays in the AppendOnlyContainer. The

checksum is then updated as follows:

Ci Z EownerfCiK1jjSigiðDiÞg (2)

Upon the agent’s return, the agent owner successively

decrypts the checksum, extracts the signature, and verifies

the signature against the corresponding object in the

container. If in the last iteration, the agent owner recovers

the original random nonce r, it can be inferred that the

AppendOnlyContainer has not been tampered with.

However, the mechanism in Ref. [6] does not indicate the

identity of the malicious host, and cannot detect the

modification of an agent by two colluded malicious hosts.

In Ref. [7] Vijil et al. incorporate and extend the notion of

the AppendOnlyContainer to include not only the detection

of tampering but also the identification of the malicious

host, and introduce the notion of Expected Number of

Deletions (END) to detect deletion of data by colluding

malicious hosts in static as well as dynamic settings.

Otherwise, Cheng and Wei propose some protocols to

prevent the two-colluder truncation attack and identify the

exact pairs of colluders for prosecution [8].

From the description of above works on agent integrity

verification, we can see that they often make verification

while the agent returns; if an agent is tampered in the

migration itinerary, it is not detected immediately. And if an

agent is tampered, we cannot get the correct execution result

of agent. Therefore, there is a significant demand for the

real-time attacks detection and the fault-tolerance agent

migration.
2.2. Agent fault-tolerance

We introduce the concept of trace to describe the nodes

sequence of agent migration. The ith node in the trace can be

called as the ith stage of agent migration.

The linear agent migration model can be viewed as a

pipeline [12] shown as Fig. 1. Where nodes represent hosts,

and edges represent migration of an agent from one host to

another. Each node corresponds to a stage of the pipeline.

Obviously, this model is not fault-tolerant. If a host is

malicious, then the agent cannot migrate to the destination



Fig. 1. The linear agent migration model.

Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546 533
successfully and correctly. Therefore, the linear model is not

fitted for an unsafe network environment though it is simple.

To achieve the fault-tolerance of agent migration, a

generally used approach is agent replication and voting. In

such method, many agent replicas are produced, and the

replicas run independently on different hosts. After the run

of replicas, the ultimate result is obtained by collecting

votes among the results of replicas.

The method suggested in Ref. [11] is representative of

these relative works [11–15]. Fig. 2 is the model of

replication agent migration computation with majority

voting described in Ref. [11], which can be called by us

as RAMMV.

In RAMMV, a node p in stage i takes as its input the

majority of the inputs it receives from the nodes comprising

stage iK1. And, p sends its output to all of the nodes that it

determines comprise stage iC1 [11]. Fig. 2 shows such a

fault-tolerance execution. The voting at each stage makes it

possible for the computation to heal by limiting the impact

of the faulty host in one stage on hosts in subsequent stages.

More precisely, in the architecture of RAMMV, it is

possible to tolerate faulty values from a minority of the

replicas in each stage.

However, as discussed in Section 1, such model is not

feasible in practice, mainly as this model requests that all

agent replicas be kept alive until the end of agent migration,

and the large numbers of agent replicas may cost significant

network and host resource. At the same time, the result

voting among the replicas of agent is also resource and time

consuming.

To make up the deficiency of the previous works about

agent integrity verification and fault-tolerance, and to solve

the POMH effectively, we suggest a novel agent AMFIV

and P-AMFIV.
3. A novel solution to the POMH in mobile agent

migration

3.1. AMFIV model

To solve the POMH effectively, we incorporate the ideas

of agent integrity verification and fault-tolerance, and present
Fig. 2. Replicated agent migration computation with majority voting

(RAMMV).
a novel agent migration fault-tolerance model based on

integrity verification called AMFIV.

Now we take a trace example to illustrate the principle of

AMFIV shown as Fig. 3.

Fig. 3 can be explained as follows:
†
 After the agent at stage i executes on hosti, it selects a

node with the highest priority as the next host to migrate,

i.e. hostiC1(0);
†
 The agent spawns a replica, and the replica migrates to

hostiC1(0);
†
 After the agent replica executes on hostiC1(0), hosti
makes integrity verification for it; if the integrity

verification result is ok, the agent on hosti is terminated,

and the agent on hostiC1(0) spawns a replica to migrate

to hostiC2(0); otherwise, it shows that hostiC1(0) is a

malicious one, then the agent on hosti re-selects another

host with the second priority as the next one to migrate,

i.e. hostiC1(1), and the model will execute the operations

as the same as above steps.
†
 If hostiC1(1) is also malicious, then the agent on hosti
will re-select another host hostiC1(2) with the third

priority as the next one to migrate.until there exists a

normal host to migrate or there do not exist any other

adjacent nodes to select. If hosti has not any other

adjacent nodes, then the agent on hosti returns to hostiK1,

and selects another node as hosti(1).

Sometimes, hosti cannot obtain answer from hostiC1

after sending verification request to it, then hosti will send

verification request again. If hosti still cannot obtain any

answer from hostiC1 after some times of request, then

hostiwill also consider hostiC1 as a malicious one.

From Fig. 3, we can see that agent does not need to

produce replica at every migration step. In AMFIV, first

agent migrates according to linear trace, only when the

agent integrity is tampered by a malicious host then a new

path is re-selected. But RAMMV model requires that the

replicas be produced at every migration step. On the other

hand, AMFIV limits the problem to be solved in single hop,

which avoid the multiple steps accumulative problem.

3.2. Simple analysis of AMFIV

3.2.1. Complexity and real-time property of AMFIV

Let the number of agent migration steps is n, and the

number of standby nodes in every step is m. Now we

analyze the complexity of AMFIV.

Obviously, the complexity of agent migration communi-

cation degrees in RAMMV is O(n!m)2, and the one in

AMFIV is O(n!m). So AMFIV reduces the complexity of

agent migration communication degrees from cube level to

square level. Therefore, the network load in AMFIV can be

reduced accordingly.

On the amount of replicas produced, the average

complexity in RAMMV is O(n!m); but in AMFIV, only



Fig. 3. The agent migration trace example of AMFIV.

1 Annotation: In this paper, the ‘migration’ signifies the migration of

replica, i.e. the agent on now host spawns a replica and the replica migrates

to next host, but the agent on current host keeps alive.

Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546534
under the worst situation, i.e. the first mK1 nodes are all

malicious in every step, the complexity can reach O(n!m).

Obviously, the worst situation seldom takes place in practice,

so AMFIV can also reduce the amount of agent replicas.

In AMFIV, the host in stage i can make verification for

the agent in stage iC1. Therefore, if the host in stage iC1

compromises the agent, the host in stage i can detect it

immediately, then the system may reselect a new itinerary to

migrate. So, AMFIV has real-time property, which outper-

forms the other related works on agent integrity verification.

3.2.2. Nonblocking and exactly-once property of AMFIV

Stefan et al. [15] proposed that fault-tolerant mobile

agent execution should have two properties: nonblocking

and exactly-once. Nonblocking ensures that agent execution

can proceed despite a single failure of the agent or the

machine; Exactly-once ensures that successful agent

execution is made only once.

Blocking occurs if a single failure prevents the execution

from proceeding. In contrast, an execution is nonblocking if

it can proceed despite a single failure. In AMFIV, if a host in

stage i is malicious, the host in stage iK1 can detect it. And

the agent on the host of stage iK1 can re-select another host

to migrate. Therefore, one malicious host cannot prevent the

agent execution from proceeding, AMFIV has the non-

blocking property.

Replication allows us to prevent blocking, but it can also

lead to a violation of the exactly-once execution. However,

such situation does not exist in AMFIV. In AMFIV, at first

agent migrates according to linear trace; if a malicious host

tampers the agent, the execution result on the malicious host

is discarded fully, and the agent in the former stage re-

selects a new host to execute. Therefore, at anytime only

one execution result is achieved. Therefore, AMFIV has the

exactly-once property.

3.3. Improved version of AMFIV: P-AMFIV

However, in AMFIV, the following attack may take place:

a malicious host at stage iC1 pretends to be a normal one, and

keeps the integrity of agent until the integrity verification

process (by hosti) is finished. However, after the integrity
verification is finished, the malicious host at stage iC1

compromises the agent integrity. Therefore, hosti will regard

hostiC1 as a normal one, so it will terminate agent on itself,

and transfer the control power to hostiC1, and hostiC1 can

make the compromised agent migrate to hostiC2. In this case,

the ultimate result of agent migration is not correct.

To solve such a problem, the AMFIV model can be

improved as follows: we can delay the time of agent integrity

verification. In AMFIV, the agent integrity verification is

executed immediately after the run of the agent on hostiC1,

but now we can delay the agent integrity verification until the

agent replica migrates to hostiC2 from hostiC1. We call such

improved AMFIV as P-AMFIV. After agent runs on hostiC1,

it can select a node as hostiC2, and spawns a replica to

migrate to hostiC2. But after the agent replica migrates to

hostiC2, it cannot execute immediately, at this time hosti first

makes integrity verification for the agent replica on hostiC2.

From Fig. 4 we can see that the verification time point of

AMFIV and P-AMFIV. If the integrity verification of the

agent replica on hostiC2 is eligible, then the agent on hosti is

terminated and hosti transfers the control power to hostiC1,

and the agent replica on hostiC2 can run. In the other case, it

shows that hostiC1 is malicious, so the agent on hosti re-

selects a new host to migrate, and the agent replica on hostiC2

is terminated, hostiC1 is also isolated. In P-AMFIV, we

suppose that the situation in which two consecutive

malicious hosts co-operate to make attack is not existent,

or else P-AMFIV is invalid.1

From Fig. 4, we can see that the agent integrity

verification of agent on hostiC1 does not take place between

hosti and hostiC1, but between hosti and hostiC2. For

simplicity, we do not consider the detail about when and

how to send verification requirement message by hosti. And

the detail of communication connection between hosti
and hostiC1 (or between hosti and hostiC2) is not discussed

here either. In our model and simulated environment, we

suppose hosti can communicate with hosti directly.



3.4. The agent integrity verification in P-AMFIV

Agent integrity includes the integrity of agent code, data

and state. The agent state integrity verification is very

difficult since the state of agent is dynamic during execution

and the owner of agent cannot make digital signature to it.

So we mainly concern about the integrity of agent code and

data, only discuss how to make agent code and data integrity

verification in P-AMFIV model. In our verification protocol,

we suppose the hosts have a shared key.
"
 Agent code integrity verification
In agent migration execution, only the agent owner can

change its code. Therefore, the agent code cannot be

modified in the migration itineraries.

After the agent executes on hostiC1, it spawns a replica

and the replica migrates to hostiC2. Before the agent replica

executes on hostiC2, we make code integrity verification to

detect that if the agent code is tampered by hostiC1. The

code integrity verification protocol is shown as Fig. 5.

The agent code integrity verification protocol is

explained as follows: (Ki,iC2(x) denotes that encrypting x

with the key shared by hosti and hostiC2).
(A)
 hosti/hostiC2: i, Ri, Ki,iC2(ti);
(B)
 hostiC2/hosti: RiC2, Ki,iC2(Ri, tiC2);/*Ri denotes the

request message sent by hosti, and RiC2 denotes the

request message sent by hostiC2*/
(C)
 hosti /hostiC2: Ki,iC2(RiC2);/*(A), (B), (C) denote

the identification authentication between hosti and

hostiC2*/
(D)
 hostiC2/hosti: Ki,iC2(hash(CodeiC1jjtiC2));/*hostiC2

sends the hash value of the agent code on hostiC2 with

time stamp to hosti*/2
(E)
 hosti: Check:

compute hash(CodeijjtiC2);

if hash(CodeijjtiC2)ZZhash(CodeiC1jjtiC2)

then Agent code integrity is ok;

else Agent code integrity isn’t ok.

/*hosti computes the hash value of the agent code



Fig. 6. The protocol for agent data integrity verification.

Table 1

Basic syntax of p-calculus

Syntax We take an infinite set N of names of channels, ranged over by a, b,

etc. The process terms are then those defined by the grammar:

P,Q::ZO Nil

PjQ parallel composition of P and Q

�cðvÞ output v on channel

input v from channel c

c(w).p restriction: P is a process that makes a new,

private name n and then behaves as P.

(vn).P restriction: P is a process that makes a new,

private name n and then behaves as P.

[MZN].P match: behaves as described by P if M and N are

the same, otherwise is stuck

let (x,y)ZM in P pair splitting: behaves as P[N/x][L/y] if term MM

is the pair (N,L). Otherwise the process is stuck

case M of O:

P suc(x):Q

behaves as P if term M is O, as Q[N/x] if M is

suc(N), and otherwise is stuck.

Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546536
(C) hosti/hostiC2: Ki,iC2(RiC2);/*Similar to the pro-

tocol of agent code integrity verification, (A), (B),

(C) are used for identification authentication

between hosti and hostiC2*/

(D) hostiC2/hosti: CiC2, ADiC1, PROOFiC1;/*hostiC2

passes the agent data information to hosti*/

(E) hosti: Computes proofiC1Zhash(ADiC1KADi,

hash(Ci), PROOFi);/*Computes proofiC1 on hosti*/

(F) hosti: if (proofiC1ZZPROOFiC1) and (CiC2ZZ
hash(hash(Ci)))

then agent data integrity is ok;

else agent data integrity is not ok.
Analysis for the protocol: since CiC1Zhash(Ci), hostiC1

cannot obtain Ci from CiC1, hostiC1 does not know Cj

(j!iC1), and cannot modify Dj (j!iC1), so it cannot forge

PROOF. Therefore the protocol is secure. Obviously, if the

original data of agent is tampered by hostiC1, then proofiC1

is not equal to PROOFiC1, so the tampering of data integrity

can be detected, therefore the protocol is correct.

Obviously, we can see that the protocol can only detect any

tampering of the data collected before hostiC1, and cannot

detect whether hostiC1 collects dirty data. Therefore, the

protocol only guarantees the integrity of validly collected data.
4. Modeling P-AMFIV based on p-calculus

and spi-calculus

4.1. Introduction to p-calculus and spi-calculus

The p-calculus is a mathematical model of processes

whose interconnections change as they interact. The basic

computational step is the transfer of a communication link

between two processes; the recipient can then use the link for

further interaction with other parties. This makes the calculus

suitable for modeling systems where the accessible resources

vary over time. It also provides a significant expressive

power since the notion of access and resource underlie much

of the theory of concurrent computation, in the same way as

the more abstract and mathematically tractable concept of a

function underlies functional computation [18].
The basic concept behind the p-calculus is naming or

reference. Names are the primary entities, and they may

refer to links. Table 1 is the basic syntax of p-calculus

[19–21].

The simplest form of semantics for this calculus consists

of a reduction relation—a binary relation between process

terms, written as P/Q, indicating that P can perform a

single step of computation to become Q.

The spi-calculus is an extension of the p-calculus with

cryptographic primitives. It is designed for describing and

analyzing security protocols, such as those for authentica-

tion and verification. These protocols rely on cryptography

and on communication channels with properties like

authenticity and privacy. Accordingly, cryptographic oper-

ations and communication through channels are the main

ingredients of the spi-calculus [22].

Next, we will model P-AMFIV based on p-calculus and the

agent data integrity verification based on spi-calculus. Then

we use the p/spi calculus model reduction to simulate the

execution of P-AMFIV and the integrity verification. If the

p/spi calculus model reduction results are correct, it shows

that P-AMFIV and the integrity verification are correct.

4.2. Modeling P-AMFIV based on p-calculus

Now we will model P-AMFIV based on p-calculus, the

channels used are seen in Table 2.

The whole model of P-AMFIV is comprised of hosti,

hostiC1 and hostiC2. We first model them respectively based

on p-calculus.

We can define the p-calculus model of hosti as follows:

hosti Z
def

next1ðcha1Þ:cha1ðRUNðagentiÞÞ

jchrðxÞ:ðlet ðcodeiC1; dataiC1Þ Z x in

ðchv1ðVALIDATEðcodeiC1; dataiC1ÞÞ:

chv2ðVALIDATEðcodeiC1; dataiC1ÞÞ:

(3)



chv3ðVALIDATEðcodeiC1; dataiC1ÞÞÞÞ

jchv1ðyÞ:ð½y Z true�:TERMINATEðagentiÞ

C ½y Z false�:ðnext1ðSELECTði C1ÞÞ:hostiÞÞ

Eq. (3) is explained as follows:
†

P K

hð

jch

ðch

ch

jch

jch
Hosti obtains the identity of hostiC1 (denoted as channel

cha1) from channel next1; then spawns a replica of agenti
after executing on hosti, and the replica migrates to

hostiC1 through channel cha1.
†
 Hostiobtains the executing result of agentiC1 on hostiC1

from channel chr, and makes verification (VALIDATE)

for its code and data integrity; then passes the verification

result to channels chv1, chv2, chv3.
†
 Hosti obtains the verification result from channel chv1, if

it is true the agent on hosti is terminated, or else hosti
should re-select a new node to migrate, and passes the

new node to channel next1, then repeats all the acts of the

model.
AMFIV_modelZdef ðnnext1; next2; cha1; cha2; chr; chv1; chv2

nnext1; next2; cha1; cha2; chr; chv1; chv2; chv3Þðnext1ðcha1Þ:cha

rðxÞ:ðletðcodeiC1; dataiC1Þ Z x in

v1ðVALIDATEðcodeiC1; dataiC1ÞÞ:chv2ðVALIDATEðcodeiC1; d

v3ðVALIDATEðcodeiC1; dataiC1ÞÞÞÞ

v1ðyÞ:ð½y Z true�:TERMINATEðagentiÞC ½y Z false�:ðnext1ðS

a1ðagentiC1Þ:next2ðcha2Þ:cha2ðRUNVALIDATE1

ÞÞ
We can define the p-calculus model of hostiC1 as

follows:

hostiC1 Z
def

cha1ðagentiC1Þ:next2ðcha2Þ:

cha2ðRUNðagentiC1ÞÞjnext2ðSELECTði C2ÞÞ

jchv2ðzÞ:ð½z Z true�:GETMASTER

C ½z Z false�:ISOLATEDÞ

(4)

Eq. (4) is explained as follows:
†
 HostiC1 receives the agent replica from channel cha1 and

runs it, hostiC1 selects the next node, then spawns the

agent after running and the replica migrates to the next

node.
†
 HostiC1 receives the verification result from channel

chv2, if the verification result is true then hostiC1 gets the

control power, or else hostiC1 is a malicious one and it

should be isolated.

We can define the p-calculus model of hostiC2 as

follows:

hostiC2 Z
def

cha2ðagentiC2Þ:chrðagentiC2Þ

jchv3ðuÞ:ð½u Z true�:RUNðagentiC2Þ

C ½u Z false�:TERMINATEðagentiC2ÞÞ

(5)

Eq. (5) is explained as follows:
†
 From channel cha2, hostiC2 receives the agent replica

after execution on hostiC1, and passes the code and data

of the agent replica to hosti through channel chr.
†
 HostiC2 receives the verification result from channel

chv3, if the result is true then hostiC2 executes the agent

replica, or else the agent replica is terminated.

Therefore, we can define the p-calculus model of

P-AMFIV as follows:

; chv3ÞðhostijhostiC1jhostiC2Þ

1ðRUNðagentiÞÞ

ataiC1ÞÞ

ELECTði C1ÞÞ:hostiÞÞ





Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546 539
/*hostiC1 selects the next node to migrate*/

����/
�next2 ðSELECTðiC2ÞÞ

ðnnext1; cha2; chr; chv1; chv2; chv3Þ

jchrðxÞ:ðletðcodeiC1; dataiC1Þ Z x in

ðchv1 ðVALIDATEðcodeiC1; dataiC1ÞÞ:chv2 ðVALIDATEðcodeiC1; dataiC1ÞÞ

chv3ðVALIDATEðcodeiC1; dataiC1ÞÞÞÞ

jchv1ðyÞ:ð½y Z true�:TERMINATEðagentiÞC ½y Z false�:ðnext1ðSELECTði C1ÞÞ:hostiÞÞ

jSELECTði C2ÞðRUNðRUNðagentiÞÞÞ

jchv2ðzÞ:ð½z Z true�:GETMASTER C ½z Z false�:ISOLATEDÞ

jSELECTði C2ÞðagentiC2Þ:chrðagentiC2Þ

jchv3ðuÞ:ð½u Z true�:RUNðagentiC2ÞC ½u Z false�:TERMINATEðagentiC2ÞÞÞ

/*hostiC1 spawns the agent after executing and the replica migrates to hostiC2*/

����/
t

ðnnext1; chr; chv1; chv2; chv3Þ

ðchrðxÞ:ðletðcodeiC1; dataiC1Þ Z x in

ðchv1 ðVALIDATEðcodeiC1; dataiC1ÞÞ:chv2 ðVALIDATEðcodeiC1; dataiC1ÞÞ

chv3ðVALIDATEðcodeiC1; dataiC1ÞÞÞÞ

jchv1ðyÞ:ð½y Z true�:TERMINATEðagentiÞC ½y Z false�

:ðnext1ðSELECTði C1ÞÞ:hostiÞÞ

jchv2ðzÞ:ð½z Z true�:GETMASTER C ½z Z false�:ISOLATEDÞ

jchrðRUNðRUNðagentiÞÞÞ

jchv3ðuÞ:ð½u Z true�:RUNðRUNðRUNðagentiÞÞÞ

C ½u Z false�:TERMINATEðRUNðRUNðagentiÞÞÞÞÞ

/*hostiC2 passes the received agent code and data back to hosti*/

����/
t

ðnnext1; chv1; chv2; chv3Þ

ðletðcodeiC1; dataiC1Þ Z RUNðRUNðagentiÞÞ in

ðchv1 ðVALIDATEðcodeiC1; dataiC1ÞÞ:chv2 ðVALIDATEðcodeiC1; dataiC1ÞÞ

chv3ðVALIDATEðcodeiC1; dataiC1ÞÞÞ

jchv1ðyÞ:ð½y Z true�:TERMINATEðagentiÞC ½y Z false�

:ðnext1ðSELECTði C1ÞÞ:hostiÞÞ

jchv2ðzÞ:ð½z Z true�:GETMASTER C ½z Z false�:ISOLATEDÞ

jchv3ðuÞ:ð½u Z true�:RUNðRUNðRUNðagentiÞÞÞ

C ½u Z false�:TERMINATEðRUNðRUNðagentiÞÞÞÞÞ



Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546540
/*Hosti makes integrity verification for the agent executed on hostiC1 (returned by hostiC2) and passes the

verification result to the corresponding channels*/

����/
t

ðnnext1Þðð½VALIDATEðcodeiC1; dataiC1Þ Z true�:TERMINATEðagentiÞ

C ½VALIDATEðcodeiC1; dataiC1Þ Z false�:ðnext1ðSELECTði C1ÞÞ:hostiÞÞ

jð½VALIDATEðcodeiC1; dataiC1Þ Z true�:GETMASTER

C ½VALIDATEðcodeiC1; dataiC1Þ Z false�:ISOLATEDÞ

jð½VALIDATEðcodeiC1; dataiC1Þ Z true�:RUNðRUNðRUNðagentiÞÞÞ

C ½VALIDATEðcodeiC1; dataiC1Þ Z false� :TERMINATEðRUNðRUNðagentiÞÞÞÞÞ

/*Annotation: RUN(RUN(agenti)) denotes that agent runs on hostiC1, which is equal to RUN(agentiC1);

RUN(RUN(RUN(agenti))) denotes that agent runs on hostiC2, which is equal to RUN(agentiC2).

Obviously, when agent migrates to hostiC2 and before it runs on hostiC2, we can denote the agent as RUN(RUN(agenti)).*/
From above p-calculus model reduction of

P-AMFIV, we can see: if the integrity of agent code and

data is ok, the ultimate result is TERMINATE(agenti)

jGETMASTER jRUN(RUN(RUN(agenti))), so the agent on

hosti is terminated, hostiC1 gets the control power, agent

runs on hostiC2, and agent migrates according to a linear

trace; if the integrity of agent is tampered by hostiC1, the

result is (vnexti)next1(SELECT(iC1).hostijISOLATED

jTERMINATE (RUN(agenti))), so hosti re-selects another

node as the next one to migrate, and repeats the acts of the

model, and hostiC1 is isolated, the agent on hostiC2 is

terminated.

Therefore, from the above reduction of the p-calculus

model of P-AMFIV, the reduction result is correct, so we

can see that P-AMFIV is correct accordingly.
4.3. Modeling the agent data integrity verification

based on spi-calculus

Spi-calculus is the extension of p-calculus, which is used

for describing the cryptography protocol [22]. As the agent

code integrity verification sub-module is relatively simple,

so here we only make analysis to the agent data integrity

verification sub-module. We can model the agent data

integrity verification based on spi-calculus, and make

reduction for the model to simulate the execution of

integrity verification.

In our spi-calculus model, the channels used are shown in

Table 3.

In our agent data integrity verification sub-module, we

can define the spi-calculus model of hosti as follows:
hosti Z
def

pass1ð½hashðCiÞ�k;ADi;PROOFiÞjchaninðxÞ:

ðletðw;ADiC1;PROOFiC1Þ Z x

in case w of f½CiC2�kg in

(7)

ðchanc ðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y

in ð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C½ðhash2ðCiÞsCiC2Þ or ðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ



Table 3

List of channel name in the spi-calculus

Channel Sender Receiver Message

Pass1 hosti hostiC1 [hash(Ci)]k, ADi,

PROOFi

Pass2 hostiC1 hostiC2 [hash(hash(Ci))]k, ADiC

1, hash(DiC1,hash(Ci),

PROOFi)

chanin hostiC2 hosti CiC2, ADiC1, PROOFiC1

chanout hosti hosti proofiC1 computed on

hosti
chanc hosti hosti CiC2 that extracted from

the message received

from hostiC2.

Result hosti The system (includes

hosti, hostiC1, hostiC1)

The verification rust of

agent data integrity

[hash(Ci)]k denotes that encrypts hash(Ci) with the key k.

Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546 541
Eq. (7) is explained as follows:
†
 Hosti passes [hash(Ci)]k, ADi and PROOFi to hostiC1

through channel pass1.
†
 From channel chanin, hosti receives CiC2, ADiC1 and

PROOFiC1 that passed by hostiC2; hosti computes

hash(hash(Ci)), proofiC1Zhash(ADiC1KADi, hash(Ci),

PROOFi), and passes the computing result to channels

chanc and chanout;
†
 From chanc and chanout, hosti receives hash2(Ci) and

proofiC1, and then compares hash2(Ci) and proofiC1 with
CiC2, PROOFiC1. If they are the same, then passes ‘true’

to channel result, or else passes ‘false‘ to channel result.

We can define the spi-calculus model of hostiC1 as

follows:

hostiC1 Z
def

pass1ðzÞ:ðletðu;ADi;PROOFiÞ Z z

in case u of f½hashðCiÞ�kg in

pass2 ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞ

(8)

Eq. (8) is explained as follows:
†
 From channel pass1, hostiC1 receives [hash(Ci)]k, ADi

and PROOFi that passed from hosti, and executes agent,

then computes PROOFiC1Zhash(ADiC1KADi, CiC1,

PROOFi), and passes PROOFiC1 with ADiC1 to channel

pass2.

We can define the spi-calculus model of hostiC2 as

follows:

hostiC2 Z
def

pass2ðvÞ:chanin ðvÞ (9)

Eq. (9) is explained as follows: From channel pass2,

hostiC2 receives PROOFiC1 and ADiC1, and passes them

back to hosti through channel chanin.

Therefore, we can define the spi-calculus model of the

agent data integrity verification in P-AMFIV as follows:
VALIDATE_model Z
def
ðnpass1; pass2; chanin; chanout; resultÞðhostijhostiC1jhostiC2Þ

hðnpass1; pass2; chanin; chanout; resultÞðpass1ð½hashðCiÞ�k;ADi;PROOFiÞjchaninðxÞ:

ðlet ðw;ADiC1;PROOFiC1Þ Z x

(10)

in case w of f½CiC2�kg in

ðchancðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y

inð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C ½ðhash2ðCiÞsCiC2Þ or ðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ

jpass1ðzÞ:ðletðu;ADi;PROOFiÞ Z z

in case u of f½hashðCiÞ�kg in

pass2ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞ

jpass2ðvÞ:chanin ðvÞÞ



Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546542
Now we can use the spi-calculus operational semantics and reduction rules to describe the execution of the agent data

integrity verification in P-AMFIV.

/*The initial spi-calculus model of agent data integrity verification*/

VALIDATE_model

hðnpass1; pass2; chanin; chanout; resultÞðpass1 ð½hashðCiÞ�k;ADi;PROOFiÞjchaninðxÞ:

ðletðw;ADiC1;PROOFiC1Þ Z x

in case w of f½CiC2�kg in

ðchanc ðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y

inð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C ½ðhash2ðCiÞsCiC2Þ orðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ

jpass1ðzÞ:ðletðu;ADi;PROOFiÞ Z z in

case u of f½hashðCiÞ�kgin

pass2ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞ

jpass2ðvÞ:chanin ðvÞÞ

/*hosti encrypts CiC1, and passes it with ADi and PROOFi to hostiC1*/

����/
t

ðnpass2; chanin; chanout; resultÞðchaninðxÞ:

ðletðCiC2;ADiC1;PROOFiC1Þ Z x

in case w of f½CiC2�kgin

ðchanc ðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y

inð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C½ðhash2ðCiÞsCiC2Þ or ðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ

jpass2 ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞ

jpass2ðvÞ:chanin ðvÞÞ

/*hostiC1 encrypts CiC2, and passes it with ADiC1 and PROOFiC1 to hostiC2*/

����/
t

ðnchanin; chanout; resultÞðchaninðxÞ:

ðletðCiC2;ADiC1;PROOFiC1Þ Z x

in case w of f½CiC2�kgin

ðchanc ðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y



Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546 543
in ð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C½ðhash2ðCiÞsCiC2Þ or ðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ

jchanin ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞÞ

/*hostiC2 passes CiC2, ADiC1, PROOFiC1 back to hosti*/

����/
t

ðnchanout; resultÞ

ððletðCiC2;ADiC1;PROOFiC1Þ Z ð½hashðhashðCiÞÞ�k;ADiC1; hashðDiC1; hashðCiÞ;PROOFiÞÞÞ

in case w of f½CiC2�kgin

ðchancðCiC2Þ:chanout ðhashðhashðCiÞÞ; hashðADiC1 KADi; hashðCiÞ;PROOFiÞÞÞÞ

jchancðCiC2Þ:chanoutðyÞ:ðletðhash2ðCiÞ; proofiC1Þ Z y

inð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C ½ðhash2ðCiÞsCiC2Þ or ðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞÞ

/*hosti computes CiC2 and proofiC1*/

����/
t

ðnresultÞð½ðhash2ðCiÞ Z CiC2Þ and ðproofiC1 Z PROOFiC1Þ�:resultðtrueÞ

C ½ðhash2ðCiÞsCiC2ÞorðproofiC1 sPROOFiC1Þ�:resultðfalseÞÞ

/*Making comparison and get the ultimate verification result*/
From the reduction result above, we can see that our

agent data integrity verification module can get correct

result; if the agent data integrity is not tampered by hostiC1,

then the ultimate result is ‘true’, or else the ultimate result is

‘false’.

Since the reduction result of the spi-calculus model of

agent data integrity verification is correct, the integrity

verification scheme presented by us is also correct.
Fig. 7. Network topology used in the simulation experiment.
5. Simulation experiment

Based on Aglets Software Development Kit v2 (Open

Source release) [23] and MAS Simulator [24], we construct

the simulation experiment environment and develop a

prototype system. We make some simulation experiments,

the network topology used in our experiment is shown as

Fig. 7. On every host of the migration path, agent collects

some data from the host. In our simulation experiment, we

mainly compare the P-AMFIV with other agent fault-

tolerance model.
In the network topology, the migration priority compari-

son among different nodes at each stage is as follows:

B1OB2OB3, C1OC2OC3, D1OD2OD3.
"
 Test 1. Test the fault-tolerance ability of linear

model, RAMMV and P-AMFIV
Test measure: By setting the hosts as normal or malicious

ones, then make simulation agent migration.

In Table 4, N denotes that the host is normal, and M

denotes that the host is malicious. If a host is malicious, then

the agent will be compromised and never move further. As it

is not convenient to figure out the exact path in RAMMV, so

we only denote the migration result of RAMMV as

‘success’ or ‘fail’.



Analyses to the result of Test 1:
(1)
 If there are not malicious hosts, the three models all

make agent migrate from A to E successfully.
(2)
 If there are any malicious hosts in the migration

itinerary, the linear model fails, so it has no fault-

tolerance ability. RAMMV and P-RAMFIV can make

agent migrate from A to E successfully, so they have

fault-tolerance ability.
(3)
 If the nodes in a stage are all malicious, such as No. 10,

the three models all fail.
"
 Test 2. Test the agent migration time of the three

models when all nodes are normal hosts.
Test measure: We set all nodes as normal hosts. By

software modulation, we make the network transmission

rate, network load and host CPU load change, then make

several agent migration simulation experiments. In the

simulation experiment, agent migrates from A to E, too.

The agent migration time comparison in Test 2 is shown

in Fig. 8.
Analyses for the result of Test 2:
(1)
 The agent migration speed of linear model is the fastest;
(2)
 Though the agent migration trace of P-AMFIV is linear

when all nodes are normal, the migration speed of P-

AMFIV is slower than the linear model since the agent

integrity verification in P-AMFIV takes time.
(3)
 Since many replicas are produced at every stage in

RAMMV, at each stage every node waits all agent

results of previous stage, and the majority voting takes

time, therefore the agent migration speed in RAMMV is

the slowest.
"
 Test 3. Test the agent migration time of RAMMV

and P-AMFIV when there are malicious hosts.
Test measure: we set C1 and D1 as malicious hosts. By



Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546 545
Analyses for the result of Test 3:
(1)
Fig.

Test
The agent migration speed of RAMMV is slower than

that of P-AMFIV, since the majority voting and

communication of many agent replicas in RAMMV

take more time than the integrity verification in P-

AMFIV.
(2)
Fig. 11. The max host memory cost of each node in RAMMV and P-
The agent migration speed gap between RAMMV and

P-AMFIV in Fig. 9 is less than the one in Fig. 8, since in

Test 2 all nodes are normal so the agent migration trace

in P-AMFIV is linear.
AMFIV in Test 5.

"
 Test 4. Test the max memory cost of the three models

when all nodes are normal hosts
Test measure: We set all nodes as normal hosts, and keep

the states of the network and hosts stable, then test the max

memory cost of the all nodes of the three models while

executing agent simulation migration.

The max memory cost of hosts in the three models when

all nodes are normal hosts can be seen in Fig. 10.

Analyses for the result of Test 4:
(1)
 In the linear model and P-AMFIV, since AB1C1D1E is

the agent migration path, the memory costs of those

nodes on the path are higher than that of other nodes. In

RAMMV, since all nodes execute agent replicas and

majority voting, the memory costs of all nodes are the

highest.
(2)
 On the nodes A, B1, C1, D1 and E, the memory cost in

linear model is the lowest, the memory cost in P-AMFIV

and RAMMV are almost the same.
"
 Test 5. Test the max memory cost of RAMMV and

P-AMFIV when there are malicious hosts
Test measure: We set some nodes as malicious hosts

(here we set B1, C1, C2 and D1 as malicious hosts), and keep

the states of the network and hosts stable, then test the max
10. The max host memory cost of each node in the three models in

4.
memory cost of the all nodes of the two models while

executing agent simulation migration.

The max memory cost of the hosts in the two models

when B1, C1, C2 and D1 are malicious hosts can be seen in

Fig. 11.

Analyses for the result of Test 5:
(1)
 In P-AMFIV, the max memory cost of the hosts on the

migration path (AB2C3D2E) and the malicious hosts is

higher than the one of other hosts.
(2)
 Generally, the host memory cost in RAMMV is higher

than the one in P-AMFIV.
(3)
 Generally, the max memory cost of malicious hosts is a

little more than the ones of the normal hosts, since the

malicious hosts cost more memory resource when they

undertake malicious acts.
Summarization: from the results of above 5 tests, we can

see that P-AMFIV provided by us has the fault-tolerance

ability similar to RAMMV, but the P-AMFIV can improve

agent migration speed and save hardware resource cost

compared to RAMMV. Moreover, the tampering of agent

integrity can be detected in single hop, so the agent can re-

select a new itinerary immediately.
6. Conclusion

In this paper, by incorporating the ideas of agent integrity

and fault-tolerance, we suggest a novel agent migration

fault-tolerance model based on integrity verification called

AMFIV and its improved version P-AMFIV. Comparing to

other related works of agent integrity verification, our model

can detect the attack immediately and need not wait for the

return of agent; comparing to other works of agent fault-

tolerance, our model save network load and host resource,

and also improve the agent migration speed.

To testify the correctness of P-AMFIV, this paper models

P-AMFIV and the agent data integrity verification based on

p/spi-calculus. The correctness of P-AMFIV is testified by

making reduction based on p/spi-calculus.



Y.C. Jiang et al. / Microprocessors and Microsystems 28 (2004) 531–546546
To testify the efficiency of P-AMFIV, this paper makes

some simulation experiments for comparing P-AMFIV with

RAMMV. The result proves that P-AMFIV outperforms

RAMMV.

We will continue improving our works in the future

research in area, such as the security of the integrity

verification protocol and the authentication between hosts,

etc.
References

[1] D.M. Chess, Security issues in mobile code systems in: G. Vigan

(Ed.), Mobile Agents and Security, LNCS1419, Springer, Berlin,

1998, pp. 1–14.

[2] F. Hohl, Time limited blackbox security: protecting mobile agents

from malicious hosts in: G. Vigna (Ed.), Mobile Agents and Security,

Springer, Berlin, 1998, pp. 92–113.

[3] F. Hohl, A protocol to detect malicious hosts attacks by using

reference states 2000, available at: http://elib.uni-stuttgart.de/opus/

volltexte/2000/583/.

[4] G. Vigna, Cryptographic traces for mobile agents Mobile Agents and

Security, in: G. Vigna (Ed.),, Mobile Agents and Security, Springer,

Berlin, 1998, pp. 137–153.

[5] W.M. Farmer, J.D. Guttma, V. Swarup, Security for mobile agents:

authentication and state appraisal, Proceedings of the Fourth

European Symposium on Research in Computer Security, Rome,

Italy, Sept. 1996, pp. 118–130.

[6] G. Karjoth, N. Asokan, C. Gulcu, Protecting the computation results

of free-roaming agents, Proceedings of the Second International

Workshop on Mobile Agents (MA098), LNCS 1477, Springer, Berlin,

1998, pp. 195–207.

[7] E.C. Vijil, S. Iyer, Identifying collusions: co-operating malicious

hosts in mobile agent itineraries, In Proceedings of the 2nd

International Workshop on Security in Mobile Multi-Agent Systems

(SEMAS-2002), Bologna, Italy, 2002.

[8] J.S.L. Cheng, V.K. Wei, Defense against the truncation of

computation results of free-roaming agents, LNCS2513, Springer,

Berlin, 2002, pp. 1–12.

[9] V. Roth, On the robustness of some cryptographic protocols for mobile

agent protection, LNCS 2240, Springer, Berlin, 2001. pp. 1–14.

[10] M.J. Grimley, B.D. Monroe, Protecting the integrity of agents: an

exploration into letting agents loose in an unpredictable world, ACM

Crossroads 1999, available at: http://www.acm.org/crossroads/xrds5-

4/integrity.html.

[11] F.B. Schneider, Towards fault-tolerant and secure agentry, Invited

paper, Proceedings of 11th International Workshop on Distributed

Algorithms, Sarbucken, Germany, 1997.

[12] Y. Minsky, R. van Renesse, F.B. Schneider, Cryptographic support for

fault-tolerant distributed computing, Proceeding of the Seventh ACM

SIGOPS European Workshop, Ireland, 1996, pp. 109–114.

[13] B. Hardekopf, K. Kwiat, S. Upadhyaya, Secure and fault-tolerant

voting in distributed systems 2001, available at: http://www.cs.

buffalo.edu/(shambhu/resume/aero01.pdf.

[14] S. Pears, J. Xu, C. Boldyreff, Mobile agent fault tolerance for

information retrieval applications: an exception handling approach,

Proceeding of The Sixth International Symposium on Autonomous

Decentralized Systems (ISADS 003), April 2003.

[15] S. Pleisch, A. Schiper, Fault-tolerant mobile agent execution, IEEE

Transactions on Computers 52 (2) (2003) 209–222.

[16] B.S. Yee, A sanctuary for mobile agents, in: DARPA Workshop on

Foundations for Secure Mobile Code 1997 available at: http://www.

cs.ucsd.edu/~bsy/pub/sanctuary.ps.
[17] P. Maggi, R. Sisto, Experiments on formal verification of mobile

agent data integrity properties 2002, available at: www.labic.disco.

unimib.it/woa2002/papers/15.pdf.

[18] J. Parrow, An introduction to the p-calculus in: J.A. Bergstra,

B.A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra,

Elsevier, New York, 2001, pp. 479–543.

[19] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I and

II, Information and Computation 100 (1) (1992) 1–77.

[20] P. Sewell, Applied p-a Brief Tutorial, Computer Laboratory,

University of Cambridge, July 28 2000, available at: www.cl.cam.

ac.uk/users/pes20/apppi.pdf.

[21] R. Milner, The polyadic p-calculus: a tutorial in: F.L. Bauer,

W. Braueer, H. Schwichtenberg (Eds.), Logic and Algebra for

Specification, Springer, Berlin, 1993, pp. 203–246.

[22] M. Abadi, A.D. Gordan, A calculus for cryptographic protocols-the

spi calculus 2000, available at: ftp://ftp.cl.cam.ac.uk/papers/adg/spi.

ps.gz.

[23] Aglets Software Development Kit v2 (Open Source), 2002, available

at: http://www.trl.ibm.com/aglets/.

[24] MAS Simulator 1.4.1, 2002. available at: http://dis.cs.umass.edu/

download.html.

[25] Y. Jiang, Z. Xia, Y. Zhong, S. Zhang, The construction and analysis of

an agent fault-tolerance model based on p-Calculus, Proceedings of

the 2004 International Conference on Computational Science, LNCS

3038, Springer, Berlin, 2004, pp. 591–598.
Yichuan Jiang was born in 1975. He received his MS degree in

computer science from Northern Jiaotong University, China in 2002.

He is currently a PhD candidate in computer science of the Department

of Computing and Information Technology, Fudan University, China.

His research interests include mobile agent system, artificial intelli-

gence and network security.
Zhengyou Xia was born in 1974. He received his MS degree in fuse

technology from Nanjing University of Science and Technology in

1999, and received his PhD degree in computer science from Fudan

University in 2004. He is currently a lecturer in the Department of

Computer, Nanjing University of Aeronautics and Astronautics, China.

His research interests include information security, mobile agent and

active network.
Yiping Zhong was born in 1953. She is now an associate professor, and

also the associate director of the Department of Computing and

Information Technology of Fudan University, China. Her research

interests include network system, information security and data

communication.
Shiyong Zhang was born in 1950. He is now a professor and PhD

supervisor, and also the director of the Center of Networking and

Information Engineering of Fudan University, China. His research

interests include network system, mobile agent system and network

security.


	Defend mobile agent against malicious hosts in migration itineraries
	Introduction
	Overview of agent integrity verification and fault-tolerance
	Agent integrity verification
	Agent fault-tolerance

	A novel solution to the POMH in mobile agent migration
	AMFIV model
	Simple analysis of AMFIV
	Improved version of AMFIV: P-AMFIV
	The agent integrity verification in P-AMFIV

	Modeling P-AMFIV based on pi-calculus and spi-calculus
	Introduction to pi-calculus and spi-calculus
	Modeling P-AMFIV based on pi-calculus
	Modeling the agent data integrity verification based on spi-calculus

	Simulation experiment
	Conclusion
	References


