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A B S T R A C T

With the extensive application of IoT techniques, IoT devices have become ubiquitous in daily lives. Meanwhile,
attacks against IoT devices have emerged to compromise IoT devices by tampering with system pre-installed
programs or injecting new malware. To mitigate these attacks, integrity enforcement of IoT systems has been
proposed. The integrity of an IoT device system includes load-time integrity and runtime integrity. In this
paper, we design an IoT system based on ARM TrustZone to enforce the system integrity. First, we establish
the root of trust and propose a hybrid booting approach consisting of both secure boot and trusted boot to
enforce the system load-time integrity. Second, we investigate a paging-based process integrity measurement
method to measure the NW processes and conduct remote attestation based on the measurement results
ensuring the NW runtime process integrity. We implement an IoT prototype system on a NXP i.MX6Q SABRE
SD development board to assess its feasibility. Real-world experiment results demonstrate that our prototype
introduces negligible performance overhead to the original system.
1. Introduction

The widespread usage of smart devices in various industries and
fields brings a new era of Internet of Things (IoT). It is estimated that
a total number of 11.7 billion IoT devices are actively connected to the
Internet at the end of 2020, occupying 54% of overall online devices,
and 30 billion IoT connections are expected by 2025 [1]. The global IoT
market size has reached $250 billion in 2019 and is predicted to reach
$1463 billion by 2027 [2]. However, despite of the rapid growth of
IoT device number and market size, security has been overlooked due
to the lagging IoT security standards, inadequate investment in security
development as well as the lack of security awareness.

In recent years, extensive research efforts have been conducted to
attacks against IoT devices, including hardware attacks, operating sys-
tem (OS)/firmware attacks, and software attacks. (1) Hardware attack:
For IoT devices deployed in public places, such as surveillance cameras,
attackers can have physical access to them and leverage hardware
interfaces like universal asynchronous receiver/transmitter (UART) and
joint test action group (JTAG) interfaces to illegally tamper with the in-
ternal IoT system [3–5]. (2) OS/Firmware attack: The operating system
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image or firmware are usually stored in flash memory for IoT devices
and can be updated through network. The contents of a flash memory
can be maliciously modified through hardware attacks and a malicious
firmware image can be used for updating [6]. (3) Software attack:
Software vulnerabilities of IoT devices, like stack overflow, command
injection, etc. [7], can be leveraged to inject malware or maliciously
modify existing programs. All of these attacks involve tampering with
IoT system software, thus damaging the integrity of the original IoT
system.

To mitigate such attacks and enforce system integrity, some research
works have leveraged virtualization techniques to conduct system run-
time execution monitoring (REM) [8,9]. These solutions rely on vir-
tual machine monitors (VMM), namely hypervisors, that may contain
vulnerabilities due to their large codebase, and can be maliciously
modified before system boot. Meanwhile, the performance overhead
introduced by the virtualization-based REM is intolerable for low-cost
IoT devices.

Compared to x86 instruction set architecture, ARM, with virtues of
energy efficiency, is more suitable for low-cost IoT devices and has
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dominated the embedded system market, especially the mobile mar-
ket [10]. Additionally, recent ARM processors provide a system-level
security solution called TrustZone [11], which provides system-level
isolation by dividing both system hardware and software resources into
two domains, namely the Secure World (SW) and the Normal World
(NW). The SW is more privileged and can be leveraged to conduct REM
on the NW.

In order to enforce a strong system integrity policy, we leverage
ARM TrustZone technology to ensure both the load-time integrity and
the runtime integrity of the IoT system.

To enforce load-time integrity, we first establish the root of trust
(RoT) based on the OCROM and eFuse. Then, we propose a hybrid
booting approach consisting of the secure boot of the SW and the
trusted boot of the NW. The secure boot involves establishing a chain of
trust (CoT) initiated from the RoT for the SW boot images to ensure the
SW load-time integrity, while the trusted boot involves measurements
of the NW boot images and a remote attestation is conducted to verify
the NW load-time integrity.

On such basis, we investigate a paging-based process integrity mea-
surement and attestation method to monitor the NW status from SW.
A periodical measurement is conducted inside the SW on the code
segments of each NW process and the measurement results are sent to a
remote attestation server. The NW runtime process integrity is verified
if the received measurement results match with some pre-calculated
reference values.

We implement a prototype system on a Freescale i.MX6Q SABRE
SD development board [12] and evaluate its effectiveness against all
these attacks. According to experimental results, our system introduces
negligible performance overhead to the original IoT system.

In summary, our contributions in this paper are listed as follows:

• We propose a hybrid booting approach based on ARM TrustZone
technology to enforce system load-time integrity.

• We investigate a paging-based process integrity measurement and
attestation method to enforce runtime process integrity.

• We implement a prototype system on a Freescale i.MX6Q SABRE
SD development board. Extensive empirical experiment results
demonstrate that our system can effectively defend and detect
different IoT attacks with little performance overhead.

The rest of this paper is organized as follows. Section 2 provides
the necessary background information on TrustZone, secure boot and
trusted boot. The system overview is presented in Section 3. The details
of the hybrid booting approach and the paging-based process integrity
measurement and attestation method are introduced in Sections 4
and 5, respectively. Section 6 evaluates the system effectiveness and
performance overhead. Related work is reviewed in Section 8. Finally,
we conclude this paper in Section 9.

2. Background

2.1. TrustZone overview

The ARM TrustZone technology [13] is a system-level security
extension to the ARM architecture since ARMv6. TrustZone divides the
system into two domains, Secure World (SW) and the Normal World
(NW), and enforces strong isolation between these worlds in terms of
both hardware and software resources.

TrustZone leverages dedicated hardware components to enforce
hardware resource isolation. An additional processor bit, Non-Secure
(NS) bit, indicates the current CPU state and is propagated through the
Advanced eXtensible Interface (AXI) system bus to the peripherals and
the memory. A peripheral can be configured as secure or non-secure
using TrustZone Protection Controller (TZPC), and a secure peripheral
can only be accessed by the SW when NS bit is cleared. Additionally,
the physical memory is separated into two isolated parts, i.e., the
2

secure memory and the non-secure memory, via TrustZone Address r
Space Controller (TZASC). The secure memory can only be accessed
by SW and any attempted access from NW is blocked, while the non-
secure memory can be accessed from both worlds. The switch between
these two worlds is accomplished via a Secure Monitor Call (SMC)
instruction.

Based on the hardware isolation mechanism provided by TrustZone,
both SW and NW run separated software suites, including different
operating systems and user-level applications. Generally, a rich OS and
client applications (CA) run in the NW while a secure OS and trusted
applications (TA) run in the SW. Programs in the SW have full access
to all system resources while programs in the NW can only access NW
resources but not those belonging to the SW. Therefore, security critical
tasks are often deployed inside the SW to be protected from an insecure
NW.

2.2. Secure boot and trusted boot

Secure boot is a mechanism that establishes a Chain of Trust (CoT)
on all system boot images. Secure boot relies on the public key cryptog-
raphy to verify image signatures before their execution [14]. A pair of
public and private key is generated for image signing and verification.
The private key is used to sign an image offline while the public key is
used to verify the image signature before one image is executed. The
whole secure boot process usually involves several images. The image
of the former boot stage verifies the image of the next boot stage, which
in turn forms a verification chain, known as the CoT. During the secure
boot, a single signature verification failure can terminate the whole
system booting process.

As for trusted boot, all system boot images are measured in each
boot stage [15]. The measurement results are accumulated to generate
a measurement list which uniquely identifies the particular firmware
images executed so far. The measurement list can be used for attesta-
tion. During trusted boot, an attestation failure will not terminate the
system, but the user may be alerted via a smart app.

Both secure boot and trusted boot anchor their trust on a root of
trust (RoT), which is inherently trusted. Therefore, the RoT is usually
established based on some invariable storage media whose content
cannot be modified once programmed.

3. System overview

In this section, we present the threat model and the basic idea of
the system design.

3.1. Threat model

We assume that attackers have physical access to IoT devices.
They can launch hardware attacks [3–5], OS/firmware attacks [6] and
software attacks [7] against IoT devices. Before the IoT devices are
powered up, the attackers can tamper with the firmware images of both
the SW and the NW stored in the flash memory. During system runtime,
the attackers can inject malware in the NW and tamper with NW
built-in programs arbitrarily. Sophisticated hardware attacks like bus
snooping attacks [16], cold boot attacks [17] and cache side channel
attacks [18] are out of the scope of this paper. We only consider the
security of the code section of a program, i.e., .text.

We assume that the program in ROM is secure since the On-Chip
OM (OCROM) is read-only and difficult to tamper with. We also as-
ume that the attackers cannot compromise the run-time SW; therefore,
W code is secure from software attacks. Finally, we assume that the
emote attestation server is secure and trustworthy.
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Fig. 1. The hybrid booting sequence.

3.2. System design

We propose a hybrid secure and trust booting method and a process
integrity measurement and attestation method to ensure the system
load-time integrity and run-time process integrity, respectively.

The hybrid booting procedure is comprised of the secure boot of the
SW and the trusted boot of the NW. Fig. 1 illustrates the hybrid booting
sequence. On powering up, the first-stage bootloader starts to run first.
It loads the second-stage bootloader into memory, verifies its integrity
3
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Fig. 3. CAAM blob structure.

4.3. Trusted boot

After the secure OS kernel gets started, trusted boot is used to boot
up the NW to ensure its integrity. The trusted boot for the NW involves
two phases: the offline hash chain calculation phase, and the online
trusted boot phase. Furthermore, the remote attestation key needs to
be securely stored in the flash memory.

4.3.1. Offline phase
We design a hash chain to measure the NW images, as shown in the

upper half of Fig. 4. The initial hash value is set to 0 (V = 0). The hash
value is updated by concatenating the current value V and next image
I on the chain, V = Hasℎ(V ∥I). The NW consists of two images: the
rich OS kernel image and the file system image. Therefore, the final
value of the hash chain is calculated as V = Hasℎ(Hasℎ(0∥I1)∥I2) and
it is stored in the remote attestation server as the reference value for
NW integrity verification.

The final hash value V is encrypted with the remote attestation
key before being sent to the remote attestation server for NW integrity
verification. The remote attestation key is a symmetric encryption key
and is generated offline. Both the remote attestation server and the IoT
4
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Fig. 6. Measurement results of the init code segment.

5. Paging-based process integrity measurement and attestation
method

In this section, we present the basic idea of process integrity mea-
surement. Then we elaborate on the process integrity measurement
method and the process integrity remote attestation method.

5.1. Basic idea

We propose a paging-based process integrity measurement and at-
testation method to ensure the integrity of NW processes at the runtime.
Recall that the SW is trusted at the load-time and runtime as the
secure boot of the SW and TrustZone hardware isolation techniques
are applied. However, NW programs are still untrusted at the runtime
despite of the NW trusted boot, since the NW may be invaded by
attackers who can inject malware or tamper with built-in programs in
the NW. Note that, different from PC environment, after an IoT device
is deployed, the system always executes the same set of pre-installed
programs instead of installing new programs on user demand. As a
result, we can perform offline measurement on the code sections of
the pre-installed programs at the page granularity level in the NW and
store measurement results as reference values on the remote attestation
server. Then we measure the code segments of the runtime processes
residing on the memory page using a measurement TA in the SW, and
finally send the results to the remote attestation server to verify the
integrity of processes.

5.2. Offline program measurement

All of the program code are stored in the .text section of the
corresponding ELF files of the programs. However, the code is loaded
and run in the memory in terms of the paging mechanism. Therefore,
the .text sections of all NW programs can be divided into several
segments in terms of a page size (i.e., 4 KB) offline. The hash values
of each segment are calculated and saved on the attestation server as
the reference values to verify the integrity of NW processes.

We take the first user-level process (i.e., init) as an example. The
size of its code segment is of 0x6844 bytes, occupying 7 pages in terms
of a 4 KB page size. The last part that cannot occupy one full page
is handled in accordance with its actual size. A SHA256 hash of each
page is calculated, generating 7 structures of {processname, pageℎasℎ},
as shown in Fig. 6. The {processname, pageℎasℎ} structures of all NW
ELF files are calculated and saved in a hash table on the attestation
server as the reference for process integrity verification.

5.3. Runtime process integrity measurement

The SW measurement TA measures the code segment of each pro-
cess periodically in the memory. After encrypting the measurement
results with the remote attestation key, the measurement TA sends
them to the attestation server that verifies the runtime process integrity.

In Linux, processes are managed using the process descriptor
task_struct shown in Fig. 7. Each task_struct manages one process
and contains all information of that process, including process ID,
5

Fig. 7. Linux task_struct and mm_struct.

process name, address space, etc. All task_structs are organized as a
doubly-linked list by the field tasks. The virtual address of process 0’s
task_struct, named init_task, is stored in the kernel symbol table file,
i.e., System.map. Starting from init_task, all task_structs can be traversed
and the information of all processes can be collected. The field mm of
task_struct points to a memory descriptor mm_struct which is used to
manage the virtual address space of a process. The fields start_code and
end_code describe the starting and ending address of the process code
segment respectively and can be used to locate the code segment of a
process in the memory.

Since the SW and NW have different virtual memory address spaces,
the NW virtual addresses should be translated into physical addresses.
Then these physical addresses are mapped to SW virtual addresses.
Linux divides a process’ virtual address space into two parts, i.e, the
kernel space and the user space. The kernel space uses the linear
address translation method. There is a fixed interval va2pa_offset
between a kernel space virtual address va_kernel and its corresponding
physical address pa_kernel, as shown in Eq. (1).

pa_kernel = va_kernel − va2pa_offset (1)

The user space conducts address translation using paging. The field
pgd of mm_struct points to the base address of the page table. A user
space virtual address va_user can be translated to its corresponding
physical address pa_user through page table walk page_table_walk, as
shown in Eq. (2).

pa_user = page_table_walk(pgd, va_user) (2)

The secure OS uses one-level paging structure to manage the SW
memory space. A physical address pa is mapped into the SW virtual
address space using Eq. (3).

va = page_table(pa) (3)
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Fig. 8. Measuring pages of NW process code segments.

(1) The measurement TA maps the physical address of init’s
task_struct into the SW virtual address space using Eq. (3)
and obtains the mm field in accordance with the structure of
task_struct. Note that the obtained mm contains the NW virtual
address of init’s mm_struct.

(2) The measurement TA obtains the physical address of init’s
mm_struct according to Eq. (1).

(3) The physical address of init’s mm_struct is transformed to the
corresponding SW virtual address according to Eq. (3). The
measurement TA obtains start_code, end_code, and pgd from
mm_struct. Note that the obtained pointers also contain NW
virtual addresses.

(4) According to start_code and end_code as well as the page size,
the measurement TA calculates the number of pages the init
process’s code segment occupies and the starting NW virtual
address of each page. The physical address of init’s page table
can be located using pgd. Since the code segment of init is in the
NW user space, the virtual address of each page is transformed
to its corresponding physical address according to Eq. (2). Be-
sides, the measurement TA determines whether a page currently
resides in the physical memory according to the Present bit of
its corresponding page table entry.

(5) The physical address of each page is transformed to the cor-
responding SW virtual address according to Eq. (3) and the
measurement TA reads and measures the content of each page.

The SHA256 hash values of pages in the memory are calculated
and concatenated to form a measurement result M of one process.
The format of the result M is ‘‘##process name##number of page
hashes##page hash 1, page hash 2, page hash 3, . . . , page hash n’’.

5.4. Process integrity attestation

The NW process measurement results generated by the SW mea-
surement TA are used as the attestation information and forwarded to
the remote verifier by the NW attestation CA for NW process integrity
remote attestation, as shown in Fig. 9. We design a protocol for the
remote attestation. The detailed workflow is illustrated as follows.

(1) The IoT device requests a Nonce from the remote verifier. After
establishing a TLS connection to the remote verifier, the NW
attestation CA requests a Nonce from the verifier and passes it to
the SW measurement TA. The measurement TA makes a secure
copy of the Nonce in the SW memory.

(2) The measurement TA reads the memory pages of the ith NW
process’ code segment and calculates its measurement M .
6
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Fig. 9. NW process integrity remote attestation.

(3) The measurement TA encrypts the attestation information. Mi
and Nonce are encrypted with the remote attestation key K used
in the trusted boot phase. Then we can obtain the ciphertext
Ei = AES − 128 − CBC(Nonce∥Mi, K).

(4) The measurement TA passes the ciphertext Ei to the attestation



Journal of Systems Architecture 119 (2021) 102240Z. Ling et al.
Fig. 10. Trusted air quality monitoring prototype.

Fig. 11. Air quality monitoring prototype architecture.

6.2. Effectiveness

The evaluation of the secure boot process in the SW is aimed to
verify whether the second-stage bootloader can detect any violation if
the image of the secure OS, the public key, or the signature is tampered
with. In the experiments, four different secure OS images are evaluated:
an intact one, one with a tampered secure OS, one with a tampered
public key, and one with a tampered signature. Only the intact image
can boot successfully, while the others fail to boot up due to verification
errors. The results show that the secure boot can enforce the load-time
integrity of the SW.

The evaluation of the trusted boot process in the NW is aimed to
verify whether our prototype can report the abnormal system status to
the attestation server if the rich OS or the filesystem image is tampered
with. After we tamper with the rich OS or the filesystem image, our
prototype can boot up and function normally without being shut down
by force. However, the remote attestation server has already detected
the abnormal system status which can be sent to the user informing
that the device is not trusted any more. The results show that by use of
the trusted boot in the NW, even if NW images are tampered with, the
NW programs can be executed, while the abnormal system status can
be verified by the remote attestation server.

We assess the runtime process integrity measurement and attesta-
tion so as to verify whether our prototype can detect a newly-inserted
malware or a tampered pre-installed program in the NW. We insert a
malware into the NW. After the malware starts, the attestation server
detects the malware and shows its name. Furthermore, we tamper
with the code segment of a pre-installed program serial_arm in the
NW. After restarting serial_arm, the attestation server indicates that
a pre-installed program is tampered with. The results show that the
paging-based process integrity measurement and attestation method
can enforce runtime process integrity of the NW.
7

6.3. Performance

The performance evaluation of the hybrid boot is designed to mea-
sure the consumed time during the secure boot and trusted boot. We
record the time consumed by both the secure boot module and the
trusted boot module as well as the total booting time of second-stage
bootloader and the secure OS, respectively. We conduct the timing
measurement of the hybrid booting process for 30 times and take
the average of the time. As the results shown in Table 1, the secure
boot module introduces little overhead in the second-stage bootloader.
Also, the trusted boot module slows down the secure OS booting
process dramatically. The reason is that the filesystem image has a total
size of 107 MB, and it takes a lot of time measuring it. Under real
circumstances, the filesystem image can be compressed down to less
than 1 MB, which can erase such performance bottleneck. In addition,
a total booting time of approximate 9.2 s is tolerable in terms of user
experience.

We evaluate the performance overhead introduced by the mea-
surement TA and attestation CA in the paging-based process integrity
measurement and attestation method. We use LMBench [19] to eval-
uate the system performance. In the experiments, we measure and
compare the execution time of various Linux system services with
the measurement TA and attestation CA enabled and disabled. We
continuously call each system service for 1000 times, the call interval of
each system service is 250 ms, and the whole performance evaluation
lasts about 30 min. As shown in Table 2, when the measurement TA
and attestation CA are enabled, the delay introduced to the evaluated
services fluctuates between −0.55% and +0.67%. The results show
that our the measurement TA and attestation CA introduce negligible
performance overhead to the original system, and it is feasible to
actually deploy our prototype system. Note that the time interval of NW
process integrity measurement event is determined based on the trade-
off between performance and security. Due to the limited computing
resources of IoT devices, frequent measurement events will jeopardize
the whole system performance. Additionally, a period adaptation way
can be taken to actively adjust the measurement time interval at the
runtime [20].

7. Security analysis and limitations

This section conducts security analysis on both the hybrid booting
approach and the paging-based process integrity measurement and
attestation method and discusses their limitations.

7.1. The hybrid booting approach

The hybrid booting approach ensures that the system starts from
a legal state. The root of trust in our hybrid booting approach is
established based on the eFuse and OCROM which are tamper-proof.
Starting from the RoT, a chain of trust is established through the secure
boot phase and a single image verification failure will terminate the
whole booting process. After a successful secure boot, the SW measures
the NW images and the measurement results are used for remote
attestation. If the NW images are maliciously modified by an attacker,
the remote attestation will fail and the user is alerted. Therefore, any
offline modification to both the SW and the NW images will be detected
and the system can only be in normal operation after a successful
hybrid boot.

7.2. The paging-based process integrity measurement and attestation method

Both the SW measurement TA and the measurement results are
secure from the NW. The secure boot ensures that only pre-installed
SW programs will run inside the SW. Base on the hardware isolation
mechanism provided by TrustZone, the SW measurement TA cannot
be compromised by the NW. Additionally, the measurement results are
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Table 1
Results of hybrid boot performance evaluation.

Secure/trusted boot module booting time (ms) Total booting time (ms) Ratio (%)

Second-stage bootloader 23.7 6430.0 0.37
Secure OS 1276.0 2863.0 44.57
Table 2
Results of LMBench performance evaluation.

System service Program integrity measurement and data transfer OFF (μs) Program Integrity Measurement and Data Transfer ON (μs) Difference (%)

null syscall 0.4230 0.4253 +0.54
open/close 10.1292 10.1865 +0.57
pagefault 1.2594 1.2678 +0.67
signal handler install 1.1063 1.1082 +0.17
fork+exit 1159.5902 1153.2701 −0.55
fork+exec 3410.6390 3405.9838 −0.14
select(250fd) 16.4555 16.4623 +0.04
encrypted inside the SW and then forwarded to the NW for network
transmission. Only the SW and the remote attestation server have
access to the decryption key and the NW can never get the plaintext.

Our measurement method now relies on the integrity of NW Linux
paging structure and process management kernel objects,
i.e., task_structs. Therefore, our method is vulnerable to malware ca-
pable of self-hiding, for example, transient rootkits [21]. Meanwhile,
the semantic gap issue involved in all REM projects is still an open re-
search topic [22] and existing TrustZone-based approaches can provide
security protection for such kernel objects [16,23]. We plan to dedicate
these semantic invariant protection topics to our future work.

8. Related work

8.1. Research and application of TrustZone

TrustZone is researched and widely deployed on different com-
puting devices, including mobile devices and IoT devices. (1) Mobile
Devices. Most ARM-based mobile devices are protected by TrustZone-
based TEE, such as smart phones produced by Apple, Samsung [24],
Huawei [25], Xiaomi, etc. (2) IoT Devices. TrustZone is used to protect
IoT smart devices. For example, Ukil et al. [26] proposed to provide
data security for IoT devices based on the TrustZone isolation mecha-
nism. TrustShadow [27] leverages TrustZone to protect programs from
untrusted Rich OSes. The program is placed in the SW to be isolated
from the Rich OS. Its requests for OS services are forwarded to the Rich
OS and the returning results are verified by TrustShadow. Recently,
TrustZone is leveraged to realize real-time communication for hybrid
dual-OS systems [28].

8.2. System load-time integrity verification

System load-time integrity verification techniques, e.g., secure boot
and trusted boot, are employed to defend offline firmware tamper-
ing attacks. Both secure boot and trusted boot require offline sys-
tem integrity measurement before system usage [29] and verify each
component step by step from the root of trust forming a chain of trust.

The hardware-based RoT has the virtues of stability, reliability and
small attack surfaces and therefore is preferred over the software-
based ones [15]. For example, NXP’s i.MX 6 series applications pro-
cessors implement High Assurance Boot (HAB) with boot ROM and
eFuse as the ROT [30]. Trusted Platform Module (TPM) [31], Mobile
Trusted Module (MTM) [32], Battery Backup Random Access Memory
(BBRAM) [33] can be leveraged to implement hardware-based RoTs.
The fingerprint of on-chip Static Random Access Memory (SRAM) can
be used to restore the seed for device key generation and thus provide
RoT for TrustZone SW [34].
8

8.3. System runtime integrity verification

System runtime integrity verification is widely deployed to detect
malicious or abnormal behaviors in computer systems, such as malware
injection and modification of pre-installed programs. For instance,
DRIVE [35] verifies the integrity of processes by comparing the mem-
ory image of the process with the corresponding executable binary
image. Chang et al. [9] propose a page-based process integrity veri-
fication method by measuring the pages of one executable program’s
code segment in a virtual machine. Upon each page fault triggered
by demand paging, the missing page is measured and its integrity
is verified before it is loaded into memory. Wang et al. [36] pro-
pose a data integrity detection method based on edge computing [37]
where self-balancing binary search trees are leveraged to accelerate
the data auditing process in the cloud. Recently, machine learning
technologies have been leveraged to detect malware [38] and software
vulnerabilities [39].

Hardware-based process integrity measurement and attestation have
been widely researched. For example, Hristozov et al. [40] propose a
Device Identity Composition Engine (DICE)-based system runtime in-
tegrity verification method for lightweight MCU-powered IoT devices.
Wang et al. [41] propose a hardware-based Instruction Stream Integrity
Checker(ISIC) to measure the integrity of instruction blocks during
program execution. Wehbe et al. [42] propose to connect a target em-
bedded device to an external hardware monitor. The hardware monitor
is responsible for measuring the pages of the target system’s processes
and comparing the measurement results with the pre-calculated ones
stored in its secure storage.

9. Conclusion

This paper designs a hybrid booting approach consisting of both
secure boot and trusted boot to enforce the IoT system load-time
integrity. On this basis, the paging-based runtime process integrity
measurement and attestation method is designed and implemented.
The trusted SW measures and verifies process integrity of the NW to
enforce the runtime process integrity of the system. An IoT prototype
system is implemented on an IMX6Q SABRE SD development board.
Extensive evaluations are performed to demonstrate the effectiveness
of the system.
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