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Abstract—Distributed and dynamic networks are ubiquitous
in many real-world applications. Due to the huge-scale, de-
centralized, and dynamic characteristics, the global topological
view is either too hard to obtain or even not available. So,
most existing community detection methods working on the
global view fail to handle such decentralized and dynamic large
networks. In this paper, we propose a novel autonomy-oriented
computing method (AOCCM) from the multiagent perspective for
detecting community structures in the distributed environment.
In particular, AOCCM utilizes reactive agents to pick the
neighborhood node with the largest structural similarity as the
candidate node, and thus determine whether it should be added
into local community based on the modularity gain. We further
improve AOCCM to a more efficient incremental version named
AOCCM-i for mining communities from dynamic networks.
AOCCM and AOCCM-i can be easily expanded to detect both
non-overlapping and overlapping global community structures.
Experimental results on real-life networks demonstrate that the
proposed methods can reduce the computational cost by avoiding
repeated structural similarity calculation and can still obtain the
high-quality communities.

Index Terms—Distributed and Dynamic Networks; Local Com-
munity Detection; Multiagent; Autonomy-Oriented Computi ng;
Incremental Computing

I. I NTRODUCTION

Real life networks, such as the transportation systems [1],
the computer science networks [2], and the online friend-
ship network systems (e.g., Twitter and Facebook) [3], [4],
are composed of a large number of highly interconnected
nodes/actors. And they often display a common topological
feature-community structure. Discovering the latent communi-
ties therein is a useful way to infer some important functions.

In general, a community should be thought of a set of
nodes that have more and/or better-connected edges between
its members than between its members and the remainder
of the network. The existing community definitions in the
literature can be roughly divided into three categories, one
is global-based [5], [6], [7], the other is based on the node-
similarity [8], [9], [10], [11], and the third is local-based [12],
[13], [14]. 1) The global-based definitions consider the graph
as a whole, and they follow the assumption that a graph has
community structure if it is different from a random graph i.e.,
null model. 2) The node-similarity-based definitions are based
the assumption that communities are groups of nodes similar
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AOC methodology for modeling decentralized networks. In
this system, every node is assigned an autonomous agent
for local community detection. For the LCD task of each
agent, a heuristic algorithm named AOCCM is presented, and
then its incremental version called AOCCM-i is designed for
handling community evolution. More specifically, our main
contributions are summarized in three-fold as follows:

1) We present a novel modularity gain criterion, based on
which a heuristic algorithm named AOCCM is designed
for the LCD task of each agent. The proposed method
is able to start from an arbitrary node in a distributed
network, and repeats two iterative steps (Update and
Join) until the local community has reached its con-
vergent status or the agent’s clock time is over.

2) We expand AOCCM to a more efficient incremen-
tal method (AOCCM-i) for mining communities from
dynamic and distributed networks. The process of
AOCCM-i is an iterative process consisting of a series
of discrete evolutionary cycles. In each cycle, the new
objective can be incremental updated based on the pre-
vious results and the dynamic changes of the network.

3) Based on the local communities detected by AOCCM or
AOCCM-i, we further propose two global versions for
non-overlapping and overlapping community detections.
Thorough experiments on real-life networks demonstrate
that the proposed methods can keep a nice balance
between the high accuracy and short running time.

The remainder of the paper is organized as follows: Sec-
tion II presents the related work about autonomy-oriented
computing and dynamic network mining. In Section III, we
give a problem definition of distributed community mining
and the basic ideas behind our method. Section IV introduces
the AOC-based method for community mining. In Section V,
we validate the proposed methods using some real-world
networks, and examine its performances in detail. We further
present an incremental AOC method for dynamic network
mining in Section VI, and finally conclude this paper in
Section VII.

II. RELATED WORK

Here we discuss related work from two areas: autonomy-
oriented computing, and dynamic network mining.

A. Autonomy-oriented computing

Early work in LCD can be adopted to autonomy-oriented
computing, which can be classified into two main cate-
gories: namely, 1) degree-based methods, and 2)similarity-
based methods.

Degree-based methods evaluate the local community quality
by investigating nodesdegrees. Some naive solutions, such
as l-shell search algorithm [21], discovery-then-examination
approach [15], and outwardness-based method [16], only con-
sider the number of edges inside and outside a local com-
munity. Clauset [22] defines local modularity by considering
the boundary points of a sub-graph, and proposes a greedy
algorithm on optimizing this measure. Similarly, Luo et al.[17]
present another measurement as the ratio of the internal degree

and external degree of a sub-graph. Both measurements can
achieve high recall but suffer from low precision due to
including many outliers [15].

Similarity-based methods utilize similarities between nodes
to help evaluate the local community quality. LTE algorith-
m [23] is a representative of similarity based methods, using
a well-designed metric for local community quality known as
Tightness. There are a few alternative similarity-based metrics
such as VSP [24] and RSS [25] that can also help evaluate
the local community quality, although they are not originally
designed for LCD.

Some multiagent technologies have been introduced into
community detection [26], [27], in which, each actor in the
networks is modeled as an agent and acts autonomously to to
find its community. For example, Chen et al. [28] formulated
the agents’ utility by the combination of a gain function
and a loss function and make agents select communities
by a game-theoretic framework to achieve an equilibrium
for interpreting a community structure. To consider in the
distributed experiment, Yang et al. [20] utilized reactiveagents
to make distributed and incremental mining of communities
based only on their local views and interactions.

Our new autonomy-oriented computing method (AOCCM)
is also based on the multiagent perspective, in which, the
local search model of each agent is also an extension of
the similarity model. However, in comparison to the above
approaches which calculate the quantitative metrics for every
node in the neighbor sets, the structural similarity of eachpair
of nodes in AOCCM is calculated only once. By introducing
the notion of modularity gain, which is seen as a quantified
criterion to decide whether the candidate node can be added
into the local community or not, the effectiveness of AOCCM
is very high.

B. Dynamic network mining

Recently, finding communities in dynamic networks has
gained more and more attention. A family of events on both
communities and individuals have been introduced in [29]
to characterize evolution of communities. An evolutionary
version of the spectral clustering algorithms has been firstly
proposed by Chi et al. [30], in which the graph cut is used as
a metric for measuring community structures and community
evolutions. Their work has been further expanded by Lin et
al. [31], in which, a graph-factorization clustering algorith-
m named FacetNet has been proposed to analyze dynamic
networks. The above mentioned studies often adopted a two-
step approach where first static analysis is applied to the
snapshots of the social network at different time steps, andthen
community evolutions are introduced afterwards to interpret
the change of communities over time. As they overlooked
the old community structures as obtained in the previous
snapshot, this strategy of re-calculating is not efficient.In the
framework of multiagent system, Yang et al. [20] introduced
an incremental AOC-based method (AOC-i), in which the
new community structure can be quickly derived based on
the incremental change and the old community structure as
obtained in the previous cycle. The proposed incremental
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computing method in our work is also AOC-based. Compared
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• i�ü data pool of vi

li �ü label of vi

Ai=<t,Ci(t),Bi(t)>
t�ü clock time
Ci(t)�ü community detected by
Ai at clock t
Bi(t)�ü boundary of Ai at clock t

The structure-oriented view The agent-oriented view
Fig. 1. The environment of the AOC system.

TABLE I
NOTATIONS OF THEAOC SYSTEM.

Symbol Description
� i the identi�ers of adjacent neighbors ofvi

� i the message pool onvi , which stores the messages from others agents
� i the data pool onvi , which the structural similarity betweenvi and its adjacent nodes
l i the community label ofvi

t the clock maintained by agentA i

Ci (t) the local community detected by agentA i at time t
Bi (t) the boundary area of agentA i at time t

The criterion agentA i uses to �nd the local community
containing the appurtenant nodevi is derived from [32], which
�nds a community with a large number of edges within itself
and a small number of edges to the rest of the network.

De�nition 3 (Local Modularity): The local modularity of
the communityCi (t), denoted asW (Ci (t)) , is given as follows:

W (Ci (t)) =
I (Ci (t))
jCi (t)j2

�
O(Ci (t))

jCi (t)jjCc
i (t)j

; (6)

where I (Ci (t)) =
P

v i ;v j 2C i ( t ) A ij , O(Ci (t)) =P
v i 2C i ( t ) ;v j 2C c

i ( t ) A ij , A = [ A ij ] is an n � n adjacency
matrix of the distributed networkG.
Based on the de�nition of local modularity, we have the
following theorem.

Theorem 1:The local modularity value of the community
Ci (t) will increase whenCi (t) has high intra-cluster density
and low inter-cluster density.

PROOF:The termI (Ci (t)) is twice the number of the edges
within Ci (t), and O(Ci (t)) represents the number of edges
betweenCi (t) and the rest of the network. Each term is
normalized by the total number of possible edges in each
case. Note that we normalize the �rst term byjCi (t)j2 rather
than jCi (t)j(jCi (t)j � 1) in order to conveniently derive the
modularity gain discussed below, but in practice this makes
little difference. Subject to this small difference, the local
modularity can be described as the intra-cluster density minus
the inter-cluster density. Thus the proof completes. �

Based on De�nition 2 and Theorem 1, we have the follow-

ing corollary.
Corollary 1: The local modularity value of the community

Ci (t) will increase whenCi (t) has high internal similarity and
low external similarity.

PROOF:A high value ofSin (Ci (t)) reveals a large number of
common neighbors of any adjacent node pair inCi (t), resulting
in a high value of intra-cluster density. While, a low value of
Sout (Ci (t)) reveals a small number of common neighbors of
any adjacent node pair betweenCi (t) and Cc

i (t), resulting in
a low value of intra-cluster density. �

In De�nition 2, as the second term will be made negligible
by the largejCc

i (t)j, a very small community can give a high
value ofW (Ci (t)) . We further make an adjustment in the spirit
of the ratio cut and maximize the following criterion:

Ŵ (Ci (t)) = jCi (t)jjCc
i (t)j(

I (Ci (t))
jCi (t)j2

�
O(Ci (t))

jCi (t)jjCc
i (t)j

); (7)

where the factorjCi (t)jjCc
i (t)j penalizes very small and very

large communities and produces more balanced solutions.
Suppose at clockt, A i explores the adjacent nodes in the

boundary areaBi (t), as shown in Fig. 2. It distinguishes
three types of links: those internal to the communityCi (t)(L ),
betweenCi (t) and the nodevj (L in ), betweenCi (t) and others
nodes inBi (t)(L out ). To simplify the calculations, we express
the number of external links in terms ofL andkj (the degree
of node vj ), so L in = a1L = a2kj , L out = b1L , with
b1 � 0, a1 � 1

L , a2 � 1
k j

(since anyvj in Bi (t) at least
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Fig. 2. TheŴ variant when a nodevj joins Ci (t ).

has one neighbor inCi (t)). So, the value ofŴ for the current
community can be written as:

Ŵ (Ci (t)) =
n � jC i (t)j

jCi (t)j
2L � (a1 + b1)L: (8)

Then, the variantŴ of the communityCi (t) [ vj becomes

Ŵ (Ci (t)[ vj ) =
n � jC i (t)j � 1

jCi (t)j + 1
2L(1+ a1)� (b1L + kj � a2kj ):

(9)
So we de�ne the modularity gain in the following.
De�nition 4 (Modularity Gain): The modularity gain for

the communityCi (t) adopting a neighbor nodevj can be
denoted as:

4 ŴCi ( t ) (vj ) = Ŵ (Ci (t) [ vj ) � Ŵ (Ci (t))

=
n � jC i (t)j � 1

jCi (t)j + 1
2L(1 + a1) � (b1L + kj � a2kj )

� (
n � jC i (t)j

jCi (t)j
2L � (a1 + b1)L )

= 2 n
a2kj jCi (t)j � L

jCi (t)j(jCi (t)j + 1)
� kj : (10)

It means that if a small node in terms of degree links many
nodes in communityCi (t), adopting it may increase the local
modularity of Ci (t). Therefore,4 ŴCi ( t ) (vj ) can be utilized
as a criterion forA i to determine whether the candidate node
vj should be included in the communityCi (t + 1) or not.

IV. AOC-BASED METHOD FOR COMMUNITY MINING

In this section, we propose anAOC-based method for
Community Mining (in short as AOCCM henceforth). First,
we introduce the basic idea of AOCCM and then present
algorithmic details including the complexity analysis. Second,
we introduce how to use AOCCM to detect the global non-
overlapping and overlapping community structures.

In the AOC system, each agent, e.g.,A i , starts from
its appurtenant nodevi to �nd the densely connected local
community.A i works with two iterative steps:Update step
and Join step. First, the appurtenant nodevi is added into
the local community, e.g.,Ci (0) = f vi g. In theUpdate step,
A i refreshes the the boundary areaBi (t), and calculate the
structural similarities between nodes in the communityCi (t)
and their neighbor nodes inBi (t). In theJoin step,A i tries

to absorb a node inBi (t), e.g.,v�
j , having highest structural

similarity with nodes inCi (t) into the local community. If
4 ŴCi ( t ) (v�

j ) > 0, then the nodev�
j will be inserted into

Ci (t + 1) . Otherwise, it will be removed fromBi (t + 1) and
other nodes will be considered in the descending order of
the structural similarity. The two procedures above will be
repeated byA i in turn until its clock reaches the �nal timeT
or its boundary is empty. Then, the whole communityCi is
discovered.A i further selects the node with maximum degree
in Ci as the core node, the identi�er of which can be seen as
the label of detected community. The life-cycle of agentA i

on nodevi is given in the following.

Algorithm 1 The life-cycle of agentA i (AOCCM (A i ))
1: / * Initialization phase * /
2: t  0;
3: Ci (0)  f vi g;
4: Bi (0)  f vj jvj 2 � i g;
5: / * Active phase * /
6: while t < T do
7: v�

j = arg maxv j 2B i ( t )
P

v j 2C i ( t ) sij ;

8: if 4 ŴCi ( t ) (v�
j ) > 0 then

9: Bi (t+1)  B i (t)[f vk jvk 2 � j � ; vk =2 Ci (t)g�f v�
j g;

10: Ci (t + 1)  C i (t) [ f v�
j g;

11: else
12: Bi (t + 1)  B i (t) � f v�

j g;
13: end if
14: t  t + 1 ;
15: if Bi (t) = ; then
16: break;
17: end if
18: end while
19: / * Inactive phase * /
20: Ci = Ci (t);
21: l i  arg maxv j 2 Ci kj ;

Remark. Unlike existing methods [16], [22], [17], which
calculate the quantitative metrics for each node inB and select
the node who produces the greatest increment of the metric to
join C, each agentA i in the AOC system picks the neighbor
node with the largest structure similarity as the candidatenode
v�

j and calculate4 ŴCi ( t ) (v�
j ) to determine whether it should

be added intoCi (t +1) or not. The structural similarity re�ects
the local connectivity density of the network. The larger the
similarity between a node insideCi (t) and a node outside it,
the more common neighbors the two nodes share, and the more
probability they are at the same community. So the execution
of AOCCM on each agent is accelerated and the accuracy
remains high.

Complexity Analysis. The running time of AOCCM on
agent A i is mainly consumed in line 7 of Algorithm 1,
which is selecting the neighbor node with the largest structure
similarity. AgentA i can implement it using a binary Fibonacci
heapH i [23], which takes two steps: 1)Extract
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O(n0 logn0
i ), wheren0

i is the number of nodes inferred (nodes
in Ci [ Bi ). 2) Update (for each node in currentBi (t), A i

updates its sum of structure similarities with nodes inCi (t)).
First, the sum of structure similarities with nodes inCi (t)
for each nodevj 2 B i (t) should be computed, which can
be completed inO(k0

i ) time, wherek0
i is the mean degree

of inferred nodes. For nodes which are not inH i , A i inserts
them into H i in O(1) time; otherwise, it takesO(1) time
to make an Increase-Key operation. As the above steps are
executedO(m0

i ) times, wherem0
i is the number of edges in

Ci [ Bi . Therefore, the total time of theUpdate steps is
O(m0

i k
0
i ). Adding all together, the total time complexity is

O(m0
i k

0
i + n0

i logn0
i ) for AOCCM on agentA i .

Non-overlapping Community Detection.Non-overlapping
community detection aims to �nd a goodK -way partition
P = fP 1; � � � ; PK g, where Pk is the k-th community, in
which l i = l j 8vi ; vj 2 P k , and P1 [ � � � [ P K � V ,
Pk \ P k 0 = ; 8 k 6= k0. K is automatically determined by
results of eachAOCCM (A i ). Our assumption is that similar
adjacent agents will return analogous community structures,
in which the core nodes are almost unanimous. Therefore,
if A i detects the the same community label, their appur-
tenant nodes are likely to be in the same community. The
process of AOCCM expansion algorithm for non-overlapping
(in short as AOCCMnO henceforth) is given as follows,
where L = f l i ji = 1 ; � � � ; ng is the label list of nodes in
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TABLE III
ACCURACY COMPARISON ON REAL-WORLD NETWORKS.

Community Comm.
AOCCM LWP ELC LTE

size P R F1 P R F1 P R F1 P R F1

Karate -A 16 1.00 0.58 0.73 0.94 0.49 0.64 0.93 0.49 0.64 1.00 0.49 0.66
Karate -B 18 0.97 0.47 0.63 0.97 0.44 0.61 0.89 0.48 0.63 1.00 0.57 0.73

NCAA-AC 9 1.00 1.00 1.00 0.70 0.48 0.57 0.68 0.56 0.61 1.00 1.00 1.00
NCAA-BE 8 1.00 1.00 1.00 0.48 0.47 0.48 0.51 0.67 0.58 0.80 1.00 0.89
NCAA-Ten 11 1.00 1.00 1.00 0.33 0.26 0.29 0.17 0.21 0.19 1.00 1.00 1.00
NCAA-SE 12 1.00 1.00 1.00 0.81 0.55 0.65 0.83 0.85 0.84 1.00 1.00 1.00
NCAA-PT 10 0.91 0.82 0.86 0.68 0.58 0.62 0.68 0.73 0.70 0.91 0.82 0.86
NCAA-Others 5 0.12 0.24 0.16 0.21 0.40 0.27 0.14 0.52 0.22 0.19 0.32 0.24
NCAA-MA 13 1.00 0.50 0.67 0.78 0.48 0.60 0.81 0.78 0.79 0.86 0.50 0.64
NCAA-MV 8 1.00 1.00 1.00 0.76 0.70 0.73 0.67 0.70 0.69 1.00 1.00 1.00
NCAA-WA 10 1.00 1.00 1.00 0.65 0.45 0.53 0.67 0.60 0.63 1.00 1.00 1.00
NCAA-Twelve 12 1.00 1.00 1.00 0.67 0.40 0.52 0.61 0.56 0.35 1.00 1.00 1.00
NCAA-SB
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Fig. 5. AOCCMnO on small social networks.

in B. The metric calculations are somewhat duplicate, which
can not be simpli�ed. Especially, the stopping criteria for
ELC is to jude whether the current community is a “p-strong
community”, which will cost more time in every search step.

B. Performance of AOCCMnO

Here, we �rst apply AOCCMnO to the two small social net-
works with ground truth:Karate andNCAA. The purpose is
to gain a direct understanding of non-overlapping community
detection by network visualization. Then, we further compare
AOCCMnO with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34].

Karate is split into two parties following a disagreement
between an instructor (node 1) and an administrator (node
34), which serves as the ground truth about the commu-
nities in Fig. 5(a). We employ AOCCMnO to extract non-
overlapping communities from the network. The result is
shown in Fig. 5(b), which supplements the division of the club
with more information. More interestingly, AOCCMnO actu-
ally tends to partition this network into four rather than two
communities, as indicated by the nodes in four colors/shapes

in Fig. 5(b). This implies that there exits a latent sub-party
(including nodes 6, 7, 11) inside the party led by node 1, and
a latent sub-party (including nodes 25, 26, 32) inside the party
led by node 34.

The ground truth ofNCAAlabels nodes with their actual
conferences, corresponding twelve different colors/shapes in
Fig. 5(c). As shown in Fig. 5(d), AOCCMnO generally well
captures the “sharp-cut” teams in conferences “AC”, “BE”,
“Ten”, “SE”, “MV”, “WA”, and “Twelve” respectively, al-
though there yet exists some teams assigned mistakenly. Note
that nearly all the ”Orangered rectangle” in Fig. 5(c) are totally
detected mistakenly by AOCCMnO. This is indeed reasonable
since those nodes have very few internal connections, actually,
they represent �ve independent teams (Utah State, Navy, Notre
Dame, Connecticut and Central Florida) in NCAA.

Modularity and Running Time Comparison. The global
non-overlapping community structure can be evaluated by
some prede�ned quantitative criterions, in which, the mod-
ularity of Newman and Girvan [5] is one of most popular
quality functions. Modularity can then be written as follows
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TABLE IV
MODULARITY AND RUNNING TIME COMPARISON BY AOCCMNO, FNM [5], FUC [7], METIS [33],AND CLUTO [34].

Network AOCCMnO FNM FUC METIS Cluto
Karate 0.38/0.03s 0.38/0.05s 0.42/0.03s 0.24/0.01s 0.36/0.02s
NCAA 0.58/0.20s 0.57/0.20s 0.60/0.06s 0.08/0.01s 0.60/0.03s
Facebook 0.73/2.68s 0.78/8.45m 0.84/6.29s 0.79/0.53s 0.82/4.24s
PGP 0.67/0.44s 0.85/179.42m 0.88/22.50s 0.83/1.76s 0.72/11.90s
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Fig. 6. The accuracy for different� on the four test networks.

Q =
1

2m

X

ij

(Aij −
ki kj

2m
)χ(li , lj ), (16)

where theχ-function yields one if nodesvi andvj are in the
same community (li = lj ), zero otherwise.

In order to verity the effectiveness of AOCCMnO, we
compare it with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34]. For each method/net-
work, Table IV displays the modularity that is achieved and
the running time. The modularity obtained by AOCCMnO
are slightly lower than FUC’s, but it outperforms nearly all
the other methods. In terms of running time, METIS has
a great advantage due to its powerful parallel processing
modules. However, it perform poor on graphs with obscure
community structure, e.g.,Karate andNCAA. AOCCMnO,
on the contrary, keeps a nice balance between high modularity
and short running time.

C. Performance of AOCCMO

To evaluate the performance of AOCCMO, we also employ
the PRF framework. Let̂Ck be thek-th overlapping com-
munity, which obeyŝC1 ∪ · · · ∪ ĈK ⊆ V . In the following,
we introduce a membership thresholdα, 0 < α ≤ 1 , to
control the scale at which we want to observe the overlapping
communities in a network.

Definition 5 (α-Overlapping Community):The k-th α-
overlapping community, denoted bŷCk (α), is defined

as:
Ĉk (α) = { vi |ui;k ≥ α} . (17)

Therefore, we can use each node in a overlapping com-
munity as a seed and report AOCCMO’s average precision,
recall and F1-measure. The precision(P̂ (α)), recall(R̂(α)) and
F1-measure(̂F1(α)) of the detectedα-overlapping community
structure are defined as follows:

P̂ (α) =

P
k=1 ;··· ;K

P
v i ∈Ĉk ( � )

|Ĉk ( � )∩T i |

|Ĉk ( � ) |P
k=1 ;··· ;K

P
v i ∈Ĉk ( � ) 1

, (18)

R̂(α) =

P
k=1 ;··· ;K

P
v i ∈Ĉk ( � )

|Ĉk ( � )∩T i |
|T i |P

k=1 ;··· ;K

P
v i ∈Ĉk ( � ) 1

, (19)

F̂1(α) =
2P̂ (α)R̂(α)

P̂ (α) + R̂(α)
. (20)

Fig. 6 shows the accuracy in the function ofα for the
four test graphs, from which we can observe that: 1)the recall
values for AOCCMO have a significant improvement in all
scales, compared with previous AOCCM algorithms; 2) the
values ofα in the range[0.6, 0.8] are optimal, in the sense
that overlapping communities extracted by AOCCMO in this
region have a high F1-measure; 3)AOCCMO performs better
in dense networks rather than in sparse networks.

VI. I NCREMENTAL AOC-BASED METHOD FOR MINING

DYNAMIC NETWORKS

In real world, an AOC system could be updated period-
ically depending on new local updates. We can useG =
{G1,G2, · · · ,GT } to denote a collection of snapshot graphs
for a given dynamic network overT discrete time steps. Let
Cl = {Cl

1, · · · ,Cl
n l } be the archived objective of the AOC

system at timel, wherenl is the total number of agents. The
problem of incremental community detection can be simplified
to accurately and efficiently computeCl +1 when the network
is updated fromGl to Gl +1 .

One immediate approach to solve the above problem is to
directly apply the AOCCM algorithm on each agent in the
updated network as discussed in Section IV. Obviously, the
strategy of re-calculating is not efficient as it overlooks the old
community structure in the previous snapshot. To address this
issues, we try to find an incremental functionz ∗, which can
figure out the new community structure based on the previous
archived objective and the incremental update:

Cl = z ∗(Cl−1, � Gl ), (21)
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where � Gl = (� V l , � E l ) = Gl − Gl−1 denotes the
incremental update of the networkG at time l.

A. Incremental AOC-based method

In the incremental AOC-based method (in short as AOCCM-
i henceforth), the network to be mined is dynamically chang-
ing, that will trigger the agents to detect the new community
structure. We can understand the AOCCM-i algorithm as an
iterative process consisting of a series of discrete evolutionary
cycles. In thel-th evolutionary cycle, the new objective of
agentAi can be quickly derived based on its previous local
community (Cl−1

i ) and the incremental update of the network
(� Gl ). The life-cycle of agentAi in thel-th evolutionary cycle
is given in Algorithm 4:

Algorithm 4 The life-cycle ofAi in thel-th evolutionary cycle
1: /*Initialization phase*/
2: t← 0;
3: Cl

i (0) ← Cl−1
i ;

4: Bl
i (0) ← { vj |vj 6∈ Cl−1

i , vk ∈ Cl−1
i , < vj , vk , wjk >∈

� E l } ;
5: if Bl

i (0) = ∅ then
6: go to Step 22;
7: end if
8: /*Active phase*/
9: while t < T do

10: v∗j = argmaxv j ∈Bl
i ( t )

P
v j ∈C l

i ( t ) sij ;

11: if 4 ŴC l
i ( t ) (v

∗
j ) > 0 then

12: Bl
i (t+1) ← Bl

i (t)∪{ vk |vk ∈ � j � , vk /∈ C l
i (t)}−{ v∗j } ;

13: Cl
i (t + 1) ← Cl

i (t) ∪ { v∗j } ;
14: else
15: Bl

i (t + 1) ← Bl
i (t) − { v∗j } ;

16: end if
17: t← t + 1 ;
18: if Bl

i (t) = ∅ then
19: break;
20: end if
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