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Local Community Mining on Distributed and
Dynamic Networks from a Multiagent Perspective
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Abstract—Distributed and dynamic networks are ubiquitous
in many real-world applications. Due to the huge-scale, de-
centralized, and dynamic characteristics, the global toplogical
view is either too hard to obtain or even not available. So,
most existing community detection methods working on the
global view fail to handle such decentralized and dynamic lae
networks. In this paper, we propose a novel autonomy-oriered
computing method (AOCCM) from the multiagent perspective br
detecting community structures in the distributed environment.
In particular, AOCCM utilizes reactive agents to pick the
neighborhood node with the largest structural similarity as the
candidate node, and thus determine whether it should be adde
into local community based on the modularity gain. We furthe
improve AOCCM to a more efficient incremental version named
AOCCM-i for mining communities from dynamic networks.
AOCCM and AOCCM-i can be easily expanded to detect both
non-overlapping and overlapping global community structues.
Experimental results on real-life networks demonstrate tlat the
proposed methods can reduce the computational cost by avaidy
repeated structural similarity calculation and can still obtain the
high-quality communities.

Index Terms—Distributed and Dynamic Networks; Local Com-
munity Detection; Multiagent; Autonomy-Oriented Compulti ng;
Incremental Computing

I. INTRODUCTION

Real life networks, such as the transportation systems [1],
the computer science networks [2], and the online friend-
ship network systems (e.g., Twitter and Facebook) [3], [4],
are composed of a large number of highly interconnected
nodes/actors. And they often display a common topological
feature-community structure. Discovering the latent camim
ties therein is a useful way to infer some important function

In general, a community should be thought of a set of
nodes that have more and/or better-connected edges between
its members than between its members and the remainder
of the network. The existing community definitions in the
literature can be roughly divided into three categoriess on
is global-based [5], [6], [7], the other is based on the node-
similarity [8], [9], [10], [11], and the third is local-badd12],

[13], [14]. 1) The global-based definitions consider thephra

as a whole, and they follow the assumption that a graph has
community structure if it is different from a random graph |.

null model. 2) The node-similarity-based definitions aredzh

the assumption that communities are groups of nodes similar
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AOC methodology for modeling decentralized networks. land external degree of a sub-graph. Both measurements can
this system, every node is assigned an autonomous agacttieve high recall but suffer from low precision due to
for local community detection. For the LCD task of eacincluding many outliers [15].
agent, a heuristic algorithm named AOCCM is presented, andSimilarity-based methods utilize similarities betweenles
then its incremental version called AOCCM:-i is designed fdao help evaluate the local community quality. LTE algorith-
handling community evolution. More specifically, our mainm [23] is a representative of similarity based methods, gisin
contributions are summarized in three-fold as follows: a well-designed metric for local community quality known as
1) We present a novel modularity gain criterion, based okightness. There are a few alternative similarity-basettiose
which a heuristic algorithm named AOCCM is designe@uch as VSP [24] and RSS [25] that can also help evaluate
for the LCD task of each agent. The proposed methdde local community quality, although they are not origiyal
is able to start from an arbitrary node in a distributedesigned for LCD.
network, and repeats two iterative stepp@at e and Some multiagent technologies have been introduced into
Joi n) until the local community has reached its concommunity detection [26], [27], in which, each actor in the
vergent status or the agent’s clock time is over. networks is modeled as an agent and acts autonomously to to
2) We expand AOCCM to a more efficient incremenfind its community. For example, Chen et al. [28] formulated
tal method (AOCCM-i) for mining communities fromthe agents’ utility by the combination of a gain function
dynamic and distributed networks. The process @hd a loss function and make agents select communities
AOCCM-i is an iterative process consisting of a serieBy a game-theoretic framework to achieve an equilibrium
of discrete evolutionary cycles. In each cycle, the nefer interpreting a community structure. To consider in the
objective can be incremental updated based on the peéstributed experiment, Yang et al. [20] utilized reactagents
vious results and the dynamic changes of the networko make distributed and incremental mining of communities
3) Based on the local communities detected by AOCCM &ased only on their local views and interactions.
AOCCM-i, we further propose two global versions for Our new autonomy-oriented computing method (AOCCM)
non-overlapping and overlapping community detectionts also based on the multiagent perspective, in which, the
Thorough experiments on real-life networks demonstraiecal search model of each agent is also an extension of
that the proposed methods can keep a nice balaribe similarity model. However, in comparison to the above
between the high accuracy and short running time. approaches which calculate the quantitative metrics feryev

The remainder of the paper is organized as follows: Segode in the neighbor sets, the structural similarity of egain
tion Il presents the related work about autonomy-orient&i nodes in AOCCM is calculated only once. By introducing
computing and dynamic network mining. In Section I, wéhe notion of modularity gain, which is seen as a quantified
give a problem definition of distributed community miningeriterion to decide whether the candidate node can be added
and the basic ideas behind our method. Section 1V introdudg¥ the local community or not, the effectiveness of AOCCM
the AOC-based method for community mining. In Section \i$ very high.
we validate the proposed methods using some real-world
networks, an_d examine its performances in detail._We furthg Dynamic network mining
present an incremental AOC method for dynamic network

mining in Section VI, and finally conclude this paper in Recently, finding communities in dynamic networks has
Section VII. gained more and more attention. A family of events on both

communities and individuals have been introduced in [29]
Il. RELATED WORK to characterize evolution of communities. An evolutionary
Here we discuss related work from two areas: autonc’mw_ersion of the spectral cIust_ering_ algorithms has b_eeriyfirst
. . . L Efroposed by Chi et al. [30], in which the graph cut is used as
oriented computing, and dynamic network mining. a metric for measuring community structures and community
) ) evolutions. Their work has been further expanded by Lin et
A. Autonomy-oriented computing al. [31], in which, a graph-factorization clustering altor
Early work in LCD can be adopted to autonomy-orientech named FacetNet has been proposed to analyze dynamic
computing, which can be classified into two main cateietworks. The above mentioned studies often adopted a two-
gories: namely, 1) degree-based methods, and 2)simiarisfep approach where first static analysis is applied to the
based methods. shapshots of the social network at different time stepstlagal
Degree-based methods evaluate the local community qualitynmunity evolutions are introduced afterwards to intetpr
by investigating nodesdegrees. Some naive solutions, suich change of communities over time. As they overlooked
as [-shell search algorithm [21], discovery-then-examimatidhe old community structures as obtained in the previous
approach [15], and outwardness-based method [16], only camapshot, this strategy of re-calculating is not efficiémthe
sider the number of edges inside and outside a local coframework of multiagent system, Yang et al. [20] introduced
munity. Clauset [22] defines local modularity by considgrinan incremental AOC-based method (AOC-i), in which the
the boundary points of a sub-graph, and proposes a greedy community structure can be quickly derived based on
algorithm on optimizing this measure. Similarly, Luo et[dlZ] the incremental change and the old community structure as
present another measurement as the ratio of the internedelegbtained in the previous cycle. The proposed incremental
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computing method in our work is also AOC-based. Compared
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Viz<eie ie i li> [Ai=<t, Ci(t), Bi(t)>
* i tineighbors of t¢t+clock time
* i4Hmessage pool of yi Ci(t)-4community detected by
* i t#data pool of Ai at clock t
li Habel of v Bi(t) #boundary of Ai at clock

The structure-oriented view The agent-oriented view
Fig. 1. The environment of the AOC system.

TABLE |
NOTATIONS OF THEAOC SYSTEM.

Symbol Description

i the identi ers of adjacent neighbors of

i the message pool on, which stores the messages from others agents

i the data pool orv;, which the structural similarity between and its adjacent nodes
li the community label of;

t the clock maintained by age#y;
G@) the local community detected by agéeht at timet
Bi(t) the boundary area of ageA{ at timet

The criterion agen®\; uses to nd the local community ing corollary.
containing the appurtenant nodeis derived from [32], which ~ Corollary 1: The local modularity value of the community
nds a community with a large number of edges within itselG (t) will increase wherG (t) has high internal similarity and
and a small number of edges to the rest of the network. low external similarity.

De nition 3 (Local Modularity): The local modularity of  PrRooRA high value ofS;, (G (t)) reveals a large number of
the communityG (t), denoted a8V (G (t)), is given as follows: common neighbors of any adjacent node paigift), resulting

1(G (1) (G (1)) in a high value of intra-cluster density. While, a low value o
W(G(1)) = iC )2 jQ(t)ijC(t)j; (6)  Sou (G(t)) reveals a small number of common neighbors of
! any adjacent node pair betwe@nt) and G’(t), resulting in
phere 1(G(1)) = vy 2c, i OG() = alow value of intra-cluster density.
viac; (v 2cery A » A = [Aj] is ann  n adjacency  |n De nition 2, as the second term will be made negligible
matrix of the distributed network. by the largeiCt(t)j, a very small community can give a high
Based on the de nition of local modularity, we have thealue ofW (G (t)). We further make an adjustment in the spirit
following theorem. of the ratio cut and maximize the following criterion:
Theorem 1:The local modularity value of the community
G (t) will increase whenG (t) has high intra-cluster density . .
and low inter-cluster density. W(G() = jQ(t)iiCic(t)J(l S10) (G (1) ) (1)

YT v
PrRoOOFEThe terml (G (t)) is twice the number of the edges 1G] IG OISO
within G (t), and O(G(t)) represents the number of edge¥here the factoiG (t)jjC(t)j penalizes very small and very
betweenG(t) and the rest of the network. Each term idarge communities and produces more balanced solutions.
normalized by the total number of possible edges in eachSuppose at clock, A; explores the adjacent nodes in the
case. Note that we normalize the rst term [§(t)j? rather boundary areeB;(t), as shown in Fig. 2. It distinguishes
than jG (t)j(iG (t)j 1) in order to conveniently derive thethree types of links: those internal to the communtgt)(L ),
modularity gain discussed below, but in practice this makéetweenG (t) and the node; (L, ), betweerG (t) and others
little difference. Subject to this small difference, thecab nodes inB;(t)(Lou ). To simplify the calculations, we express
modularity can be described as the intra-cluster densibusi the number of external links in terms bf andk; (the degree
the inter-cluster density. Thus the proof completes. of nodevj), soLin = al = akj, Low = biL, with
Based on De nition 2 and Theorem 1, we have the followr 0, a1 &, & %(since anyv; in Bi(t) at least
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to absorb a node iB;(t), e.g.,v; , having highest structural
similarity with nodes inG(t) into the local community. If

4 We iy(v;) > 0, then the nodey; will be inserted into
G(t +1). Otherwise, it will be removed froms;(t + 1) and
other nodes will be considered in the descending order of
the structural similarity. The two procedures above will be
repeated byA; in turn until its clock reaches the nal tim&

or its boundary is empty. Then, the whole commur@y is
discoveredA; further selects the node with maximum degree
in C; as the core node, the identi er of which can be seen as
the label of detected community. The life-cycle of agént

on nodey; is given in the following.

Fig. 2. TheW variant when a node; joins G (t).

has one neighbor i (t)). So, the value ofV for the current Algorithm 1 The life-cycle of agenf\i (AOCCM (A))

community can be written as: 1: / «Initialization phase *1
2t 0
W)= SO G b © 3 GO f vg
JG ()] 4: Bi(0) f vjjvj 2 ig;
Then, the varian of the communityG (t) [ v; becomes 5 / *Active phase </
6: whilet<T do
. . 7: VvV, = arg max,, 2B (1) v: 2C: (t Sij X
n C i(t 1 J 1 j i (1)
WEOIE WZL(M' a;) (mL+k ak): & if 4 W (V) > 0then
@ < Bi(t+1) B i(O[f wiw 2 | ;w 2C()gf vjg;
So we de ne the modularity gain in the following. 10: Gt+1) Ci(O[fva

De nition 4 (Modularity Gain): The modularity gain for 11  €lse

the communityG (t) adopting a neighbor node; can be 12 Bi(t+1) B () fvg
denoted as: 13 end if
14: t t+1;
4We o (vj) = WGM) [ vj) W(G(H) 15 if Bi(t) = ; then
_njci@)j 1 16: break;
T Tomjer @ra) (;brkoak),, engif
n icC ()i 18: end while
(jcjgftl)(j)JZL (a1 + b)L) 19: / Inactive phase  */
i i 20: Cj = G(1);
2K jG(t)] L ' _
- — - i 10) 21:;  argmaxy 2c Kj;
SOOI (0) 2l argmaxyzck

It means that if a small node in terms of degree links many

nodes in community; (t), adopting it may increase the local - . ;
modularity of G(t). Therefore4 W (V) can be utilized calculate the quantitative metrics for each nod8iand select

as a criterion forA; to determine whether the candidate nod@e nade who produces the greatest increment of the metric to
vi should be included in the communig/(t + 1) or not. join C, each agenA; in the AOC system picks the neighbor
! node with the largest structure similarity as the candidaige

v; and calculatet \f\\/q (v, ) to determine whether it should
be added intd; (t+1) or not. The structural similarity re ects

In this section, we propose aAOC-based method for the local connectivity density of the network. The largee th
Community Mining (in short as AOCCM henceforth). First,similarity between a node insidg(t) and a node outside it,
we introduce the basic idea of AOCCM and then presetite more common neighbors the two nodes share, and the more
algorithmic details including the complexity analysisc8ed, probability they are at the same community. So the execution
we introduce how to use AOCCM to detect the global nomf AOCCM on each agent is accelerated and the accuracy
overlapping and overlapping community structures. remains high.

In the AOC system, each agent, e.d\;, starts from Complexity Analysis. The running time of AOCCM on
its appurtenant nodg; to nd the densely connected localagent A; is mainly consumed in line 7 of Algorithm 1,
community.A; works with two iterative stepddpdate step which is selecting the neighbor node with the largest stmact
and Join step. First, the appurtenant nodeis added into similarity. AgentA; can implement it using a binary Fibonacci
the local community, e.gG (0) = fvig. In theUpdate step, heapH; [23], which takes two steps: Bxtract
A; refreshes the the boundary arBg(t), and calculate the
structural similarities between nodes in the commuitt)
and their neighbor nodes B;(t). In theJoin step,A; tries

Remark. Unlike existing methods [16], [22], [17], which

IV. AOC-BASED METHOD FOR COMMUNITY MINING
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O(n°logn?), wheren?is the number of nodes inferred (nodes
in Ci [ Bi). 2) Update (for each node in currer;(t), A;
updates its sum of structure similarities with nodegi(t)).
First, the sum of structure similarities with nodes @t)
for each nodev; 2 Bj(t) should be computed, which can
be completed inO(k?) time, wherek? is the mean degree
of inferred nodes. For nodes which are notHp, A; inserts
them intoH; in O(1) time; otherwise, it take©(1) time
to make an Increase-Key operation. As the above steps are
executedO(m?) times, wherem? is the number of edges in
Ci [ Bi. Therefore, the total time of th&lpdate steps is
O(m%?9). Adding all together, the total time complexity is
O(m%?+ nPlogn?) for AOCCM on agentA;.

Non-overlapping Community Detection.Non-overlapping
community detection aims to nd a gooH -way partition
P = fPq; Pk g, where Py is the k-th community, in
which |} = |j 8Vi;Vj 2 Py, and Pl[ [P K V,
P« \P o = ;8 k 6 k% K is automatically determined by
results of eaclROCCM (A;). Our assumption is that similar
adjacent agents will return analogous community strusture
in which the core nodes are almost unanimous. Therefore,
if A; detects the the same community label, their appur-
tenant nodes are likely to be in the same community. The
process of AOCCM expansion algorithm for non-overlapping
(in short as AOCCMNnO henceforth) is given as follows,
wherelL = fljji = 1; ;ng is the label list of nodes in
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TABLE Il
ACCURACY COMPARISON ON REAEWORLD NETWORKS

Community Comm.— AOCCM LWP ELC LTE

size| P R|FL| P R[FL| P RJ|FL|PJ|R]JF
Karate -A 16 [ 1.00] 058] 0.73] 0.94] 0.49] 0.64] 0.93] 0.49] 0.64 1.00] 0.49] 0.66
Karate -B 18 | 0.97|0.47| 063|097 0.44| 0.61| 0.89 | 0.48| 0.63| 1.00| 0.57 | 0.73
NCAAAC 9 [1.00] 1.00] 1.00] 0.70] 0.48] 0.57] 0.68] 0.56| 0.61] 1.00| 1.00 | 1.00
NCAABE 8 | 1.00| 1.00| 1.00| 0.48| 0.47| 0.48| 0.51| 0.67 | 0.58 | 0.80 | 1.00 | 0.89
NCAATen 11 |1.00|1.00| 1.00| 0.33| 0.26 | 0.29| 0.17 | 0.21| 0.19 | 1.00 | 1.00 | 1.00
NCAASE 12 | 1.00| 1.00| 1.00| 0.81 | 0.55| 0.65| 0.83 | 0.85| 0.84 | 1.00 | 1.00 | 1.00
NCAAPT 10 | 0.91|0.82|0.86| 0.68| 0.58| 0.62| 0.68 | 0.73| 0.70 | 0.91| 0.82 | 0.86
NCAAOthers 5 [0.12]0.24|0.16/|0.21|0.40| 0.27| 0.14| 0.52| 0.22| 0.19| 0.32 | 0.24
NCAAMA 13 | 1.00| 0.50| 0.67 | 0.78| 0.48 | 0.60 | 0.81 | 0.78 | 0.79 | 0.86 | 0.50 | 0.64
NCAAMV 8 | 1.00| 1.00| 1.00| 0.76| 0.70| 0.73| 0.67 | 0.70| 0.69 | 1.00 | 1.00 | 1.00
NCAAWA 10 | 1.00| 1.00| 1.00| 0.65| 0.45| 0.53| 0.67 | 0.60 | 0.63 | 1.00 | 1.00 | 1.00
NCAATwelve 12 | 1.00| 1.00| 1.00| 0.67 | 0.40 | 0.52 | 0.61 | 0.56 | 0.35 | 1.00 | 1.00 | 1.00
NCAASB
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-

o,

(c) NCAA ground truth (d) NCAA AOCCMNO results

Fig. 5. AOCCMnO on small social networks.

in B. The metric calculations are somewhat duplicate, whigh Fig. 5(b). This implies that there exits a latent sub-part
can not be simplied. Especially, the stopping criteria fofincluding nodes 6, 7, 11) inside the party led by node 1, and
ELC is to jude whether the current community is a “p-strong latent sub-party (including nodes 25, 26, 32) inside thgypa
community”, which will cost more time in every search steded by node 34.

The ground truth oNCAAlabels nodes with their actual
B. Performance of AOCCMnO conferences, corresponding twelve different colors/ekap
Here, we rst apply AOCCMnNO to the two small social netFig. 5(c). As shown in Fig. 5(d), AOCCMnO generally well
works with ground truthKarate andNCAA The purpose is captures the “sharp-cut” teams in conferences “AC”, “BE”,
to gain a direct understanding of non-overlapping comnyunitTen”, “SE”, “MV”, “WA”, and “Twelve” respectively, al-
detection by network visualization. Then, we further comepathough there yet exists some teams assigned mistakenlg. Not
AOCCMNO with classical GCD methods, such as FNM [5khat nearly all the "Orangered rectangle” in Fig. 5(c) ataltyg
FUC [7], METIS [33], and Cluto [34]. detected mistakenly by AOCCMnO. This is indeed reasonable
Karate is split into two parties following a disagreemensince those nodes have very few internal connections, lactua
between an instructor (node 1) and an administrator (nothey represent ve independent teams (Utah State, NavyeNot
34), which serves as the ground truth about the commiame, Connecticut and Central Florida) in NCAA.
nities in Fig. 5(a). We employ AOCCMnO to extract non-
overlapping communities from the network. The result is Modularity and Running Time Comparison. The global
shown in Fig. 5(b), which supplements the division of thebclunon-overlapping community structure can be evaluated by
with more information. More interestingly, AOCCMnO actusome prede ned quantitative criterions, in which, the mod-
ally tends to partition this network into four rather thanotw ularity of Newman and Girvan [5] is one of most popular
communities, as indicated by the nodes in four colors/shapggiality functions. Modularity can then be written as follow
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TABLE IV
MODULARITY AND RUNNING TIME COMPARISON BY AOCCMNO, FNM [5], FUC [7], METIS [33],AND CLUTO [34].

Network AOCCMNnO FNM FUC METIS Cluto

Kar at e 0.38/0.03s 0.38/0.05s 0.420.03s 0.243.01s  0.36/0.02s
NCAA 0.58/0.20s 0.57/0.20s 0.600.06s 0.08).01s 0.60/0.03s
Facebook | 0.73/2.68s 0.78/8.45m 0.846.29s 0.799.53s 0.82/4.24s
PGP 0.670.44s 0.85/179.42m 0.8822.50s 0.83/1.76s 0.72/11.90s

as.:
Ci(a) = {viluix = a}. (17)

Therefore, we can use each node in a overlapping com-
munity as a seed and report AOCCMO’s average precision,
recall and F1-measure. The precisib(g)), recall(?(«)) and
F1-measure{1(a)) of the detected-overlapping community
structure are defined as follows:

(a) Karate (b) NCAA
SO Y@ a1
P(oz)= —E) Vi g kO 18] ’ (18)
k=1;-3K  viely( )1
P o P 1€ )NTi|
R(a) _ k_f__,,...,K Vi .BCK( ) [Ti | ’ (19)
k=1;-K  vieb( )1
2P(a) R(«)
Plla)= ————11 . 20
(c) Facebook (d) PGP (@) p(a)+ R(a) (20)

Fig. 6. The accuracy for different on the four test networks. Fig. 6 shows the accuracy in the function af for the

four test graphs, from which we can observe that: 1)the ecal
values for AOCCMO have a significant improvement in all
ki ki scales, compared with previous AOCCM algorithms; 2) the
Q= om (A - %)X(livli)’ (16)  values ofa in the range[0.6,0.8] are optimal, in the sense
I that overlapping communities extracted by AOCCMO in this
where they-function yields one if nodes; andv; are in the region have a high F1-measure; 3)AOCCMO performs better
same communityl{ = [j), zero otherwise. in dense networks rather than in sparse networks.

In order to verity the effectiveness of AOCCMnO, we
compare it with classical GCD methods, such as FNM [5],
FUC [7], METIS [33], and Cluto [34]. For each method/net-
work, Table IV displays the modularity that is achieved and
the running time. The modularity obtained by AOCCMnO In real world, an AOC system could be updated period-
are slightly lower than FUC’s, but it outperforms nearly alically depending on new local updates. We can @&e=

VI. INCREMENTAL AOC-BASED METHOD FOR MINING
DYNAMIC NETWORKS

the other methods. In terms of running time, METIS hasG!,G?,-.- G'} to denote a collection of snapshot graphs
a great advantage due to its powerful parallel processifig a given dynamic network oveF discrete time steps. Let
modules. However, it perform poor on graphs with obscu@ = {C},---,C! } be the archived objective of the AOC

community structure, e.gkar at e and NCAA. AOCCMnO, system at timd, wheren' is the total number of agents. The
on the contrary, keeps a nice balance between high modulagitoblem of incremental community detection can be simlifie
and short running time. to accurately and efficiently compu@** when the network
is updated fronG' to G'** .

One immediate approach to solve the above problem is to
C. Performance of AOCCMO directly apply the AOCCM algorithm on each agent in the

To evaluate the performance of AOCCMO, we also emplaypdated network as discussed in Section IV. Obviously, the
the PRF framework. Le€, be thek-th overlapping com- strategy of re-calculating is not efficient as it overlodks bld
munity, which obeys; 0 -- 0 €k O V. In the following, community structure in the previous snapshot. To addréss th
we introduce a membership threshald 0 < o« < 1, to issues, we try to find an incremental functieri, which can
control the scale at which we want to observe the overlappifigure out the new community structure based on the previous
communities in a network. archived objective and the incremental update:

Definition 5 @-Overlapping Community)The k-th «-
overlapping community, denoted b{y(a), is defined c'=z*(C'1, G, (21)
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where G' = ( V', E') = G' - G'-! denotes the
incremental update of the netwotk at time.

A. Incremental AOC-based method

In the incremental AOC-based method (in short as AOCCM-
i henceforth), the network to be mined is dynamically chang-
ing, that will trigger the agents to detect the new community
structure. We can understand the AOCCM-i algorithm as an
iterative process consisting of a series of discrete eilaty
cycles. In thel-th evolutionary cycle, the new objective of
agentA; can be quickly derived based on its previous local
community C!fl) and the incremental update of the network
( G"). The life-cycle of agent; in thel-th evolutionary cycle
is given in Algorithm 4:

Algorithm 4 The life-cycle of4; in the(-th evolutionary cycle
1 /+Initialization phasex*/

t « 0

:GO) - G

: Bil(o) - {'Ui |'Uj D:D(:rl,’Uk 0 C=717< v, vk, wik >0

E'};

- if B/(0) = Othen
go to Step 22;

end if

-/ xActive phasex/

- while t < T do p

10. v = arg Mary epl(ty v, ec () Si

11: if OWer g (v) > 0 then

12: BI(t+1) « BI(OH welue O j ,w IO} v}

13: G+l - g Qg v}

2w N

14: else
15: BI(t+1) « B{(t) -{v};
16:  end if

17 t «~ t+1;

18:  if Bl(#) = Othen

19: break;

20. endif

[(1)314488(8)514361(R20 9.96264 Tf 25.d [([33043(d)-347.391(1)0.965521(f)-4.2603]TJ /RS 7.9731 Td82965521(0)-355.203(S)1.93104(t)0.964296(e)-1.¢
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