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Systems for Interaction Structures
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Abstract—Networked multiagent systems are very popular in
large-scale application environments. In networked multiagent
systems, the interaction structures can be shaped into the form of
networks where each agent occupies a position that is determined
by such agent’s relations with others. To avoid collisions between
agents, the decision of each agent’s strategies should match its
own interaction position, so that the strategies available to all
agents are in line with their interaction structures. Therefore,
this paper presents a novel decision-making model for networked
multiagent strategies based on their interaction structures, where
the set of strategies for an agent is conditionally decided by other
agents within its dependence interaction substructure. With the
presented model, the resulting strategies available to all agents
can minimize the collisions of multiagents regarding their inter-
action structures, and the model can produce the same resulting
strategies for the isomorphic interaction structures. Furthermore,
this paper uses a multiagent citation network as a case study to
demonstrate the effectiveness of the presented decision-making
model.

Index Terms—Citation networks, decision making, multiagents,
networked interaction structures, social network analyses.
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structures. In our decision-making model, we focus upon the
multiagent dependence relations that are always seen where
the strategies of some agents are dependent on others [12].
Dependence relations occur in multiagent systems due to
many reasons, such as resource constraints, environmental con-
straints, task allocations, etc. Clearly, the strategies available to
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Fig. 2. Dependence and domination substructures of agent d.

Obviously, the second-order domination substructure of ai can
be defined as

Dom (Domai
) = {〈aj , ak〉|aj ∈ A ∧ ak ∈ A

∧〈ai, aj〉 ∈ R ∧ 〈aj , ak〉 ∈ R} . (8)

Therefore, the nth-order domination substructure of ai can be
defined as

∏
n

Domai
=

n︷ ︸︸ ︷
Dom (Dom (· · · (Domai

) · · ·))

= {〈an−1, an〉|a1 ∈ A ∧ a2∈A ∧ · · ·
∧ an∈A ∧ 〈ai, a1〉∈R ∧ 〈a1, a2〉 ∈ R ∧ · · ·
∧〈an−1, an〉∈R} . (9)

The set of agents within the first-order domination substructure
of ai (called its first-order domination agents) is

Ωai
= {aj |aj ∈ A ∧ 〈ai, aj〉 ∈ Domai

}
= {aj |aj ⊗ r ∧ r ∈ Domai

} . (10)

Therefore, the set of all agents within the all-orders domination
substructures of agent ai is

∑
Ωai

=
⋃
k

{
aj |aj ⊗ r ∧ r ∈

∏
k

Domai

}
. (11)

Example 2: Now, we consider the dependence and domina-
tion substructures of agent d in Fig. 1, as shown in Fig. 2

Depd = {〈a, d〉, 〈c, d〉}
∏
2

Depd = {〈b, a〉, 〈b, c〉}

�d = {a, c}
∑

�d = {a, c, b} Domd = {〈d, e〉}∏
2

Domd = {〈e, j〉}
∏
3

Domd = {〈j, h〉, 〈j, i〉, 〈j, k〉}

∏
4

Domd = {〈i, k〉} Ωd = {e},
∑

Ωai
= {e, j, h, i, k}.

Lemma 1: Let an agent interaction structure be N = 〈A,R〉.
If N is a directed acyclic graph (DAG), we have ∀a, b ∈ A,
a ∈

∑
Ωb ⇒ a 
∈

∑
�b and a ∈

∑
�b ⇒ a 
∈

∑
Ωb.

Proof:

1) If ∃a, b ∈ A ⇒ a ∈
∑

Ωb ∧ a ∈
∑

�b, a ∈
∑

Ωb de-
notes that there is a path from b to a and a ∈

∑
�b

denotes that there is a path from a to b; therefore, there
is a cycle which contains a and b.

2) If ∃a, b ∈ A ⇒ a ∈
∑

�b ∧ a ∈
∑

Ωb, a ∈
∑

�b de-
notes that there is a path from a to b and a ∈

∑
Ωb

denotes that there is a path from b to a; hence, there is
a cycle that contains a and b.

Obviously, those situations are impossible in a DAG; there-
fore, we have Lemma 1. �

If two agents have identical ties to and from all other agents
in the interaction structure, we can say that they are structurally
equivalent.

Definition 4: Interaction structural equivalence[8]. Let the
agent interaction structure be N = 〈A,R〉, where A denotes the
set of agents and R denotes the set of agent interaction relations;
|A| = m, |R| = n, ai, aj ∈ A, and 1 ≤ i, j ≤ m. Then, ai and
aj are structurally equivalent if for all agents ak ∈ A, k =
1, . . . ,m and k 
= i, j, and all interaction relations rx, x =
1, . . . , n, ai has an interaction relation to ak, if and only if aj
also has an interaction relation to ak, and ai has an interaction
relation from ak, if and only if aj also has an interaction relation
from ak. If ai and aj are structurally equivalent, we can denote
them as ai ≡ aj .

Lemma 2: If two agents are structurally equivalent, then they
have the same first-order dependence and domination agents,
i.e., (ai ≡ aj) ⇒ (�ai

= �aj
) ∧ (Ωai

= Ωaj
). Moreover, they

also have the same nth-order (n > 1) dependence and domina-
tion agents.

Proof: From Definition 4, if two agents are structurally
equivalent, they have the same first-order dependence agents
and first-order domination agents. According to (4) and (9), the
nth-order (n > 1) dependence substructure is fully dependent
on the (n− 1)th-order dependence agents and the nth-order
(n > 1) domination substructure is fully controlled by the
(n− 1)th-order dependence agents. Therefore, the two agents
have the same nth-order (n > 1) dependence and domination
agents. �

Example 3: From Fig. 1, the agent sets that have immedi-
ate in interaction relations to a and c are the same, namely,
{b}, and the agent sets that have immediate out interaction
relations from a and c are also the same: {d, e}. There-
fore, agents a and c are structurally equivalent. Moreover, h
and k are also structurally equivalent. Obviously, �a = �c =
{b}, Ωa = Ωc = {d, e}, �h = �k = {i, j}, Ωh = Ωk = { },∑

�a =
∑

�c = {b},
∑

Ωa =
∑

Ωc = {d, e, j, h, i, k}, and∑
�h =

∑
�k = {i, j, g, e, a, c, d, b, f}; therefore, Lemma 2

is validated.
Definition 5: If agent a is not in the all-orders dependence

and domination structures of agent b, i.e., (a 
∈
∑

�b) ∧ (a 
∈∑
Ωb) is true, then we can think that agent a is independent

from agent b, which can be denoted as a/� b. Obviously, we have
∀a, b ∈ A, a/� b ⇒ b/� a.

Lemma 3: Let an agent interaction structure be N = 〈A,R〉;
if N is a DAG, we have ∀a, b ∈ A, a ≡ b ⇒ a/� b.

Proof: Let ∃a, b ∈ A, a ≡ b. If ¬(a/� b) is true, then (a ∈∑
Ωb) ∨ (b ∈

∑
Ωa) is true. Now, a ≡ b; hence, (

∑
�a =∑

�b) ∧ (
∑

Ωa =
∑

Ωb) is true, which denotes that (a ∈∑
Ωa) ∨ (b ∈

∑
Ωb) is true. Such situation is impossible in a
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B. Constraints Among Agents’ Strategies in the
Interaction Structures

When agents interact with and depend on each other, there
may be some constraints which limit their available strategies
for avoiding collisions. For example, if there are two paths
between places x and y and each path can only be passed by
one agent at the same time, agent a1 will go from x to y and
agent a2 will go from y to x. Moreover, a1 has the priority to
select the path first (i.e., the decision of strategy of a2 depends
on the strategy of a1). Thus, we can set the constraint to a2 as
“a2 cannot select the same path as a1”.

Definition 6: Social constraint. Let there be, first, a finite
set of agents, A = {a1, a2, . . . , an}, and second, an initial set
of strategies for each agent, containing a finite and discrete
strategies’ domain for each agent, S = {S1, S2, . . . , Sn}∀i ∈
[1, n] and sij ∈ Si, where sij is the jth strategy that agent
ai adopts in the operation. Then, a social constraint set is
C = {C(A1), C(A2), . . . , C(Am)}, where each Ai is a subset
of the agents and each social constraint C(Ai) is a set of tuples
indicating the mutually consistent strategy values of the agents
in Ai.

In reality, the social constraint with the arity of 2 is always
seen and is the basic form of most constraints. Thus, we mainly
consider such constraint form in this paper.

Definition 7: A binary social constraint is the one that only
affects two agents. If there is a binary social constraint cij
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Fig. 3. Example for strategy constraints and decision making.

the usefulness degree of a decision SL as |Csat|/|C|. Moreover,
a decision should enable the agents to have more total freedom
under the condition that social constraints can be satisfied.
Thus, we can extend the definition as

USL = α

((
n∑

i=1

fi

)
/n

)
+ β (|Csat|/|C|) (13)

where α and β are parameters to define the relative importance
of agent freedom degree and dependence constraint satisfaction
degree, respectively. We can set the values of the parameters
according to real situations. Therefore, our aim of decision
making is to explore the decision with the maximum degree
of usefulness.

Example 4: Fig. 3 is an example of the decided multi-
agent strategies with different usefulness degrees. Fig. 3(a)
is an interaction structure where there are four agents
{a1, a2, a3, a4} and four social constraints taken by the depen-
dence relations {c12 : s1 > s2, c24 : (s2 − 2) > s4, c13 : (s1 −
5) > s3, c43 : s4 > s3}. In such a system, it is assumed that
the agents can take actions of adopting values in the set S =
{1, 2, . . . , 10}; hence, the strategies are the values in S. The
initial strategy profiles of four agents are all set to {1, 2, . . .,
10}. Now, we randomly make four decisions and compute their
usefulness degrees, as shown in Fig. 3(b).

B. Basic Decision-Making Model for DAG Structures

If an interaction structure N = 〈A,R〉 is a DAG, then we
have the following: ∀ai ∈ A, �ai

is fixed [16]. The basic idea
in our model is as follows: ∀ai ∈ A, if we want to decide the
set of available strategies for agent ai, we should decide the sets
of available strategies for ∀ai ∈ �ai

in advance. Thus, we can
obtain the joint distribution of strategies for all agents step by
step.

Therefore, our algorithm can be designed as follows: At
first, we restrict the available strategies of the agents whose
dependence agents are all decided or empty; such iteration will
be repeated until it cannot find any undecided agents whose

dependence ones are all decided or empty. Now, if all agents
in the system can be decided with definite strategies, then the
decision making is successful; otherwise, it can be noted that
there are cycles in the interaction structure.

Algorithm 1. Decision making of multiagent strategies for
directed acyclic interaction structure
• Input A = {a1, a2, . . . , an} and R;
• Input S = {S1, S2, . . . , Sn}; /∗ the initial strategies ∗/
• Creatstack (stack);
• For ∀ai ∈ A:

if �ai
= { }, push (ai, stack);

• A′ = { };
• While (!empty(stack)) do:

1) au = pop(stack);
2) A′ = A′ ∪ {au};
3) for agent ∀aj ∈ Ωau

do:
i) Restrict Sj according to cuj ;
ii) �aj

= �aj
− {au};

iii) if �aj
= { }, push (aj , stack);

• If A == A′, return (“There are no cycles”);
else return (“There are cycles”);

• Output Sai
∀ai ∈ A′.

Algorithm 1 is O(n∗e), where n denotes the number of
agents and e denotes the number of dependence relations.

Theorem 1: Let the interaction structure be N = 〈A,R〉.
If N is a DAG, then Algorithm 1 can make a unique decision,
i.e., the decided strategies for all agents are definite.

Proof: ∀ai ∈ A, the set of available strategies for ai in
the decision making is fully determined by the following three
factors:

1) the initial set of strategies for ai;
2) the set of social constraints using ai as object agent,

namely, Depai;
3) the set of available strategies for �ai

in the decision
making.

Obviously, the uniqueness of 1) can be satisfied. Now, the
core procedure of Algorithm 1 is the same as the one of the
Topology Sorting Algorithm [17]; hence, �ai

is unique and
the uniqueness of 2) and 3) can also be satisfied. Therefore,
Algorithm 1 can make a unique decision for a directed acyclic
structure. �

Lemma 4: In the multiagent strategies decided by
Algorithm 1, if the set of strategies for one agent is empty,
then the dependence relations using such agent as object are
unlawful.

Proof: From Definition 8, we have Lemma 4. �
Two graphs containing the same number of graph vertices

connected in the same way are considered isomorphic [18],
[19]; now, we present the definition of isomorphic multiagent
interaction structures, shown as follows.

Definition 14: Let there be two interaction structures; one is
G with the agent set Ag = {ag1, . . . , agn}, and the other is H
with the agent set Ah = {ah1, . . . , ahn}. G and H are said to
be isomorphic if, first, there is a bijection f such that interaction
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Fig. 4. Directed cyclic dependence structure.

relation 〈ai, aj〉 is in G iff 〈f(ai), f(aj)〉 is in H , and second,
the constraints taken by the interaction relations 〈ai, aj〉 and
〈f(ai), f(aj)〉 are the same.

Theorem 2: Assume a scenario in which two interaction
structures G and H satisfy the following: 1) G and H are
both DAGs; 2) G and H are isomorphic; and 3) ∀agi ∈ Ag

and its peer in H , namely, f(agi), the initial strategies of agi
and f(agi) are the same. Then, we can deduce that the decided
strategies of agi and f(agi) by using Algorithm 1 are the same.

Proof: From the definitions of conditional strategy and
decision making in the interaction structure, for agent a, it
is determined by its first-order dependence structure Depa.
Therefore, a’s final strategies in the restriction of decision
making is determined by the following: 1) the agents in Depa
(i.e., �a); 2) the strategies of �a; and 3) the constraints taken
by the interaction relations from ∀aj ∈ �a to a. Now, while
Algorithm 1 is used, agi and f(agi) have the same three factors
if G and H are isomorphic; thus, the decided strategies of agi
and f(agi) are the same. �

C. Extended Decision-Making Model for Interaction
Structures With Cycles

If there are any cycles in the interaction structures, then
there exist some agents whose �ai

cannot be decided. For
example, Fig. 4(a) is a directed cyclic structure, where a1 ∈
�a3

, a3 ∈ �a2
, and a2 ∈ �a1

. Therefore, we cannot make a
definite decision according to Algorithm 1.

There are many forms of cycles; among them, the simple cy-



JIANG et al.: DECISION MAKING OF NETWORKED MULTIAGENT SYSTEMS 1113

• Calling Algorithm 1; /∗ After the execution of Algorithm
1, now, the set of remaining agents is (∪iA

′′
i ) ∪A∗ ∗/

• For each
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Fig. 6. Case demonstration for Algorithm 3. (a) Interaction structure and initial strategies. (b) Social constraints of dependence relations. (c) Strategy decision
result by selecting a4 to break the cycle. (d) Strategy decision result by selecting a5 to break the cycle. (e) Strategy decision result by selecting a6 to break the
cycle.

Fig. 7. Example for the citation network and operation citation relations.

4) An agent cannot cite the operation result of itself (Cita-
tion Rule 4).

5) Agent a cannot cite the results of agents in the all-orders
dependence structures of a (Citation Rule 5).

6) If two agents are independent of each other in the inter-
action structures, then they can cite each other (Citation
Rule 6).

Example 6: Fig. 7 shows an agent citation network; there-
fore, now, we can design some operation citation relations.

B. Strategies and Decision Making in Multiagent
Citation Networks

In citation networks, the strategies of a are the set of agents
from which a can cite operation results. For example, if Sa =
{a1, a2, a3}, then agent a can cite the operation results from
agents a1, a2, and a3.

Definition 15: In the environment of citation network
〈A,R〉, where A denotes the agents and R denotes the citation
links among agents, a useful decision is the one that restricts
the citation relations among agents to satisfy the requirements
of multiagent citation rules.

Obviously, to satisfy the requirements of citation rules ∀a ∈
A, the set of strategies of agent a should have the following
properties (decision laws).

1) Law 1: ∀a ∈ A,
∑

Ωa ⊆ Sa (Citation Rule 1 and 2).
2) Law 2: ∀a, b ∈ A, b ∈

∑
�a ⇒ b 
∈ Sa (Citation Rules 3

and 5).
3) Law 3: ∀a ∈ A, a 
∈ Sa (Citation Rule 4).
4) Law 4: ∀a, b ∈ A, a/� b ⇒ (a ∈ Sb ∧ b ∈ Sa) (Citation

Rule 6).
Now, according to the decision laws, we can design the

conditional strategy set of agent a ∈ A as

Sa|�a
= A− {a} −

∑
�a. (14)

Therefore, the decision of the whole system can be the joint
distribution of the conditional strategies of all agents which can
satisfy the requirements of citation rules, i.e., we have

SL=S(a1, a2, · · · an)=
n
∧
i
Sai|�ai

=
n
∧
i

(
A− {ai}−

∑
�ai

)
.

(15)

Theorem 5: The decision making of multiagent strategies
implemented by (14) and (15) is useful, and the final set of
strategies available to all agents can satisfy the citation rules
(i.e., can satisfy the decision laws).

Proof: Now, we prove that the decided strategies satisfy
the four decision laws.

1) ∀b ∈
∑

Ωa ⇒ b 
∈
∑

�a, we have b ∈ (Sa|�a
= A−

{a} −
∑

�a) according to (14). Therefore, in the
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Fig. 8. Example to demonstrate the conditional strategy and decision making
in citation networks.

decision results determined by (15), a can cite opera-
tion results from agent b∀b ∈

∑
Ωa, which then satisfies

Law 1.
2) For agent a ∈ A, if b is the all-orders dependence agents

of a, i.e., b ∈
∑

�a
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Fig. 9. Case demonstration for the decision making in citation networks.

Moreover, the strategies of {ai|∀ai ∈ (A− ({av} ∪∑
Ω′

av
))} do not need to be changed.

2) Given an environment 〈A,R〉, au, av ∈ A, if an existing
citation link 〈au, av〉 is deleted, then the set of strategies
∀ai ∈ ({av} ∪

∑
Ω′

av
) can be changed as follows:

∀ai ∈
(
{av} ∪

∑
Ω′

av

)
,

S ′
ai

= Sai
∪
(
{au} ∪

∑
�

′
au

−
∑

�
′
ai

)
(17)

where
∑

Ω′
av

,
∑

�
′
au

,
∑

�
′
ai

are the ones in the new
structure, Sai is the set of strategies of ai in the old
structure, and S ′

ai
is the set of strategies of agent ai in

the new structure.

Moreover, the strategies of {ai|∀ai ∈ (A− ({av} ∪∑
Ω′

av
))} need not be changed.

Theorem 6: Given an environment 〈A,R〉 and a decision SL
that is useful for the existing citation structure, the adjustment
law can obtain useful decision for the new citation structure.

Proof: The proof can be seen in the Appendix. �
Example 9: We can take the citation network and strategies

in Fig. 9 (ix) as an example to demonstrate our adjustment
law. Fig. 10 shows the adjustment for interaction relation
oscillation.

2) Scalability for the Growth of Citation Structures: The
growth of citation networks can be based on the dynamics
of interacting links that is motivated by the joining agents to
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Fig. 10. Case demonstration for the adjustment law: (a) 〈f, d〉 is added to
the citation structure; now, the strategies of agent d, b, c, h, g are adjusted.
(b) 〈d, h〉 is deleted from the citation structure; now, the strategies of agent
h and g are adjusted.

construct links (re)directing them toward selected existing
agents [21]. If the citation structure at time t is 〈At, Rt〉,
where At denotes the set of agents and Rt denotes the set of
agent citation links, and if the citation structure at time t+ i
is 〈At+i, Rt+i〉, where At+i denotes the set of agents and
Rt+i denotes the set of agent citation links, then the growth
of agent citation structure satisfies the following: At ⊆ At+i

and Rt ⊆ Rt+i. When the citation structure grows, we do not
need to make decisions by starting from scratch, which is costly.
Thus, we should expand the existing decided strategies locally.

Growth Law: Given an environment 〈A,R〉 and the exist-
ing decision SL, we let an agent a and some citation links
associated with it be added to the existing structure, the new
set of agents be A′, and the new citation structure be R′. The
growth of citation links should not produce any cycles in the
new citation network; now, we change the strategies of agents
according to the following laws.

1) ∀ai ∈
∑

�a, their strategies are changed as S ′
ai

= Sai
∪

{a}.
2) ∀ai ∈

∑
Ωa, their strategies are changed as S ′

ai
= Sai

−
{a} = Sai

.
3) ∀ai ∈ (A′ −

∑
Ωa −

∑
�a − {a}) ⇒ ai/� a, their strat-

egies are changed as S ′
ai

= Sai
∪ {a}.

4) For agent a, S ′
a = A′ − {a} −

∑
�a.

Theorem 7: Obviously, the four parts of the growing law are
all determined according to (14) and (15); thus, the growth law
can obtain useful decision results.

Example 10: We now take Fig. 9 (ix) as an example; let
a new agent z and two new citation links 〈z, g〉 and 〈h, z〉
be added to the structure. Now, we can change the decided
strategies of the system according to our growth law; the result

Fig. 11. Case demonstration for the growth law.

is shown in Fig. 11. Obviously, the final decided strategies can
satisfy the citation rules for the new citation structure; hence,
the decision is useful.

V. RELATED WORK

Our research is related to the decision making of multiagents,
where each agent should make decisions about which action to
perform to ensure a good joint action for the whole multiagent
group. Generally, related work can be categorized as follows.

1) Decision Making of Multiagents Based on Game Theory
and Economics [22]: While agents inhabit a shared environ-
ment, they negotiate with each other to decide their actions
[30]–[34]. To conduct negotiations, they always adopt game
theory or other economics techniques, such as bargaining, auc-
tion, contracting, etc. The negotiation protocols and decision-
making procedures are always focused. The related works
include two aspects: cooperative agents and self-interested
agents.

In the decision making of cooperative agents, the agents
need to cooperate with each other to solve a problem or to
reach a common goal. For example, Moehlman et al. [23]
use decentralized negotiation to solve the distributed planning
problem; Lander and Lesser [24] employ multistage negotiation
as a means to conduct distributed searches among agents; Pelta
and Yager [25] consider a problem of mediated group decision
making where a number of agents provide a preference function
over a set of alternatives and present an optimization approach
for the decision strategies in mediated multiagent negotiations.
Another typical example for the decision making of cooperative
multiagents is the one in robot soccer, where the agents share a
common decision-making criterion and take into account what
their partners are able to do [26]. Therefore, in cooperative
agents, they always negotiate to reach an agreement, and the
decision is made according to the maximum utility of the
system.

In the decision making of self-interested agents, the agents try
to maximize payoff without concern of the global good; thus,
such a self-interested agent will choose the best negotiation
strategy for itself [27]. Game theory is a branch of economics
that is always used to study interactions between self-interested
agents [3]. Game theory may be used to analyze the problems
of how interaction strategies can be designed to maximize the
welfare of an agent in a multiagent encounter and how protocols
or mechanisms can be designed that have certain desirable
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information that it has about the preferences and behaviors
of other agents. The decision making of self-interested agents
is typically seen in the market or electronic commerce [28].
For example, Lomuscio et al. [29] present a classification
scheme for the negotiation of self-interested agents in electronic
commerce.

2) Decision Making of Networked Agents: With large-scale
and networked application environments, distributed decision
making for the coordination of networked agents has received
much attention in recent years. In the related works on decision
making of networked agents, a network of agents with initially
different opinions can reach a collective decision and hence
take action in a distributed manner [11]. Saber and Murray
provide convergence, performance, and robustness analyses of
an agreement protocol for a network of integrator agents with
directed information flow and (perhaps) switching topology,
which mainly relies on the tools of algebraic graph theory and
matrix theory [10]. Roy et al. [11] introduce a quasi-linear
stochastic distributed protocol that can be used by a network
of sensing agents to reach a collective action agreement; more-
over, they put forth the viewpoint that it is useful to consider
the information-fusion and decision-making tasks of networks
with sensing agents jointly, as a decentralized stabilization
or agreement problem. Gal et al. [34] describe several new
decision-making models that represent, learn, and adapt to
various social attributes that influence people’s decision making
in open mixed networks including agents and people.

3) Modeling the Interdependence Among Multiagents: The
dependence among multiagents can be modeled by dependence
networks. The dependence network can be used for the study of
emerging social structures, such as groups and collectives, and
may form a knowledge base for managing complexity in both
competitive and organizational or other cooperative contexts
[12]. Sichman and Conte [12] model multiagent interdepen-
dences among different agents’ goals and actions and construct
a tool for predicting and simulating their emergence. Wong and
Butz [13] propose an automated process for constructing the
combined dependence structure of a multiagent probabilistic
network, where the dependence structure is a graphical rep-
resentation of the conditional independencies that are known
to hold in the problem domain. Generally, the related works
on the interdependence among multiagents mainly focus on
the knowledge representation and reasoning dependence among
multiagents.

Summarization: The main concerns of related works can be
summarized as follows: 1) In the previous decision-making
works of multiagents based on game theory and economics,
they mainly focus on negotiation protocols and decision-
making procedures; 2) in the previous works on the decision
making of networked agents, they mainly concern the agree-
ment problems in which all agents in the network must achieve
the same opinion and on the connection between the network
topology and the performance of the agreement protocol; and
3) in the previous works on the interdependence among multi-
agents, they mainly focus on the knowledge representation and
reasoning dependence among multiagents.

Therefore, previous works seldom take into account the
interaction structures of agents. Aiming to solve the structured

interaction collision problem of networked multiagents, this
paper investigates the interaction structure-oriented decision
making.

VI. CONCLUSION

Networked structures are very popular in the large-scale
multiagent systems. We have presented a novel interaction-
structure-oriented decision model of networked multiagent
strategies, which can satisfy the requirement of interaction
structure among agents. The presented model can restrict the
strategies of all agents to match their interaction positions. The
presented decision-making model contains two parts: One is the
basic model for the directed acyclic interaction structure and the
other is the extended model for the directed interaction structure
with cycles. We theoretically prove that the former can produce
the unique outcome, which is to minimize the conflicts among
agents, and that the latter can produce the maximum utility.
Moreover, the model can produce the same resulted strategies
as for isomorphic structures.

Finally, we adopted a multiagent citation network to make
a case study. Through the case study, we can then see that our
model can minimize collisions for citation relations. In our case
study, citation networks are considered DAGs. However, there
are also some other special cases of citation structures that are
not DAGs, such as mutually citation companion agents and
cyclic citation structures occurred in some agents; therefore,
we will solve the strategy decision in cyclic citation structures
by using our extended model. Moreover, in the future, we will
focus on the application of our decision-making model in more
complex interaction structures, such as hypergraph, complex
social networks, etc.

APPENDIX

PROOF OF THEOREM 6

Obviously, the adjustment law can result in a useful decision
only if we can prove that the adjustment law satisfies the
requirements of the decision laws in Section IV-B.

1) Law 1: ∀a ∈ A,
∑

Ωa ⊆ Sa.
a) ∀ai ∈ (A− {au, av} −

∑
Ω′

av
)

i) ∀aj ∈ (A− {au, av} −
∑

Ω′
av
), if aj ∈

∑
Ωai,

then aj ∈
∑

Ω′
ai

and aj ∈ Sai
. Now, S ′

ai
= Sai

;
hence, aj ∈ S ′

ai
.

ii) For au, if au ∈
∑

Ωai
, then au ∈

∑
Ω′

ai
and au ∈

Sai
. Now, S ′

ai
= Sai

; thus, au ∈ S ′
ai

.
iii) For∀aj ∈ ({av} ∪

∑
Ω′

av
), if aj ∈

∑
Ωai

, then
aj ∈ Sai

.
• When a new citation link 〈au, av〉 is added to

the citation structure, the following occurs.
aj ∈ Ω′

ai
and S ′

ai
= Sai

; thus, we have aj ∈
S ′
ai

.
• When an old citation link 〈au, av〉 is deleted

from the citation structure, the following
occurs.

If aj ∈
∑

Ω′
ai

, S ′
ai

= Sai
; therefore, we

have aj ∈ S ′
ai

. If aj 
∈
∑

Ω′
ai

, then aj/� ai;
therefore, we also have aj ∈ S ′

ai
.
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b) For agent au
i) ∀aj ∈ (A− {au, av
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ii) For agent au
• When a new citation link 〈au, av〉 is added

to the citation structure, the following
happens.

Obviously, ai/� aj is not true in the new
structures; hence, we need not address them.

• When an existing citation link 〈au, av〉 is
deleted from the citation structure, the follow-
ing occurs.

If ai/� au or ai ∈
∑

Ωau
is in the old ci-

tation structure, then we have ai ∈ Sau
. We

have S ′
au

= Sau
⇒ ai ∈ S ′

au
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