
Implication of Animation on Android Security

Shan Wang†¶, Zhen Ling†∗, Yue Zhang‡, Ruizhao Liu†, Joshua Kraunelis‖, Kang Jia†, Bryan Pearson§, Xinwen Fu¶
†Southeast University. Email: shanwangsec@gmail.com,{zhenling,ruizhaoliu,kangjia}@seu.edu.cn

‡Jinan University. Email:zyueinfosec@gmail.com
‖The MITRE Corporation. Email: jkraunelis@mitre.org

§University of Central Florida. Email: bpearson@knights.ucf.edu
¶University of Massachusetts Lowell. Email: xinwen fu@uml.edu

Abstract—We find that seemingly innocuous animations widely
used in Android can pose great threats to user security and
privacy. Both entrance and exit animations can be exploited. In
our draw-and-destroy overlay attack, a malicious app periodically
draws and destroys transparent UI-intercepting overlays, which
can be put over victim apps to intercept user inputs stealthily.
Although Android is patched to show alerts if there is an overlay
over an app, quickly drawing and destroying malicious overlays
can exploit the slow-in animation of the notification alert view
and suppress the alert. In our draw-and-destroy toast attack, a
malicious app periodically creates a new customized toast over
a victim app before the previously customized toast disappears.
This attack exploits the fade-out animation of the toast so that
transition between two successive toasts cannot be observed.
The two draw-and-destroy attacks can be building blocks of
other attacks. We particularly study the password-stealing attack
given its severe consequence, in which the draw-and-destroy toast
attack displays a fake keyboard over the original keyboard and
the draw-and-destroy overlay attack places transparent overlays
over the fake keyboard to intercept user inputs. Extensive real-
world experiments are conducted to validate the feasibility and
effectiveness of the attacks. We also discuss defense measures
mitigating the attacks. We are the first to discover the security
implications of animation on Android security.

I. INTRODUCTION

Animation is a standard element in modern user interface
(UI) design [7], [8], [30]. It adds visual cues notifying a user
of a view switch and new content, and provides a polished
appearance for mobile apps [19]. Immediately view switching
with no animation may look disconcerting to users [26].
Animation is also used to defeat attacks such as UI phishing
attacks [9]. In such a UI phishing attack, a malicious app
creates a fake UI, mimicking and covering the UI of a victim
app in a surreptitious way so that a user may fail to notice
the fake UI, and type sensitive information such as credentials.
With animation, switching from the genuine UI to the fake one
may cause flickers and alert the user of phishing attacks.

In this paper we show that the seemingly innocuous
animation can be abused and cause security and privacy
issues. When Android displays a view, which corresponds
to a rectangular area on the screen, it creates a view object
for drawing and event handling, and then gradually displays
the view with animation. Animation is also used to gradually
exit the view. We demonstrate that the slow-in or slow-out
animation of a view can be exploited by two novel Android UI
attacks—draw-and-destroy overlay attack and draw-and-destroy
toast attack—without raising security alerts.

The slow-in animation can be exploited to launch a novel
draw-and-destroy overlay attack suppressing security alerts.
In our draw-and-destroy overlay attack, a malicious app

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

periodically performs the following sequence of operations
continuously, first drawing an overlay, then waiting for a
short period of time (denoted as the attacking window) and
finally destroying the overlay. In this way, the malware keeps a
sequence of overlays on top of a victim app so as to intercept
user inputs. When an overlay is drawn, Android 8.0 and
later displays a security alert in the notification drawer as
a security mechanism to alert the user and mitigate known
overlay attacks [1], [6], [33]. However, by carefully controlling
the attacking window length, our draw and destroy overlay
attack can suppress the security alert. The reason is that the
display of the alert uses the slow-in animation. Before the
animation could show the alert, the malicious app destroys the
overlay and thus stops the animation from showing the alert.

The fade-out animation can be exploited to launch a novel
draw-and-destroy toast attack for an extended period of time,
defeating Android security mechanism on overlapping toasts. In
our draw and destroy toast attack, a malicious app periodically
performs the following operations continuously, first creating a
customized toast, then waiting for a period of attacking window,
and finally creating a new customized toast before Android
automatically destroys the previous customized toast. In this
way, the malware keeps the toast on top of a victim app for
an extended period of time. Such a way of abusing animation
defeats Android’s defense preventing toasts from overlapping
each other [18]. The continuous “drawing” and “destroying” of
toasts do not cause flickers that may alert a user. The reason is
that the disappearance of the toast uses the fade-out animation.
Before the toast fades too much and the user may perceive
the difference, the malware creates a new toast with the same
customized interface.

The two draw-and-destroy attacks exploiting animation can
be building blocks of a variety of attacks. For example, a
malware may use the draw-and-destroy toast attack to show a
fake keyboard while the draw-and-destroy overlay attack can
stack transparent overlays over the toasts to intercept user inputs
on the fake keyboard. Transparent overlays are legitimate in
Android and allow the background to be visible to the user.
For example, a transparent/semi-transparent overlay over a map
allows a user to see both the map and overlay content.

Contributions: The main contributions of this paper are
summarized as follows. New Insights: We find that the perva-
sively used animation in Android causes security and privacy
issues. Our draw-and-destroy overlay attack exploits the slow-
in animation of notification alerts while the draw-and-destroy
toast attack abuses the fade-out animation of toasts.

New Attacks: The discovered novel draw-and-destroy
overlay attack and draw-and-destroy toast attack exploiting
animation can be building blocks of a variety of attacks
including password stealing, content hiding and payment hijack.

1122

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00111

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
11

1

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

We particularly study the password stealing attack given its
severe consequence. In our experiments, a password is random
and may contain lower case and upper case characters, numbers
and special symbols on different sub-keyboards. While the
evaluation in this paper focuses on the current most popular
Android versions including 8, 9 and 10, the attack works on the
newest Android 11 as shown in the anonymous video demo at
https://youtu.be/65B2sYHnTiA, which shows the interception

of a random password entered on the Bank of America app
(BofA) with a standard toast. Please refer to Section VI-C3 for
the description of the video.

Extensive Experiments and User Studies: Extensive real-
world experiments are conducted to validate the attacks. Our
experiments show that the attacks work against modern Android
OSes including the mainstream Android 10 and popular apps
such as Bank of America, Skype and Facebook. We conduct
human surveys with 30 participants typing passwords on the
Bank of America app to evaluate the attack stealthiness of our
attacks as presented in Section VI-C3. No participants noticed
abnormalities while one person reported slowness using the
app. We also use our own test app to collect data such as touch
events and touch-event capture rate.

Mitigation: We discuss defense measures, including inter-
process communication based and enhanced notification based
mechanisms over the Android Open Source Project (AOSP)
[24] to mitigate the attacks. Experiment results show that the
defense measures are effective and the performance overhead
is negligible.

Responsible disclosure: We have followed the responsible
disclosure policy and reported all our findings to the Google
Android Security Team. The Google Android Security Team
states that they “have passed the issues on to the feature team
for possible remediation.”

II. BACKGROUND

In this section, we introduce the Android overlay and toast
windows, some attacks abusing overlay or toast and Android
built-in defense measures.

A. Overlay
In Android, the overlay mechanism provides a capability

for an app to draw an overlay window on top of other apps. For
example, a music player may use an overlay as a floating widget
for users to play/pause music. However, such a mechanism
may be abused, and Android has adopted defense measures to
mitigate the threats as discussed below.

1) Overlay Attacks: In Draw On Top Attacks [6] against the
Android UI, a malicious app may draw an overlay window in the
foreground. There are two types of malicious overlays in terms
of the goals of the attacker: (1) UI-intercepting overlay: The
malware can obtain user inputs such as passwords by using this
type of overlay, in which a user interacts with the overlay instead
of the underlying victim app. (2) Non-UI-intercepting overlay:
This type of overlay can be used to perform a clickjacking
attack. When a malware creates an overlay with the attribute
of FLAG_NOT_TOUCHABLE, touch events pass through the
overlay (which does not receive the touch events, unlike the
UI-intercepting overlay) to a victim app hidden beneath the
malware. The overlay may display misleading contents. When
a user acts on the overlay, the user actually interacts with the
underlying victim app, e.g., granting administrative privileges
via the system Settings app to a malicious app or installing
another malicious app [16].

2) Built-in Defenses:

toasts by calling the function Toast.show() [3]. One toast
may appear before the previous toast disappears.

2) Built-in Defense: Android has the following defense
measures to mitigate toast attacks: (i) The TYPE_TOAST view
has been removed since Android 8.0. (ii) Android does not
allow the toast to overlap each other anymore, as documented
in the change log of Google titled “Prevent apps to overlay
other apps via toast windows” [18]). Instead, “the notification
manager shows toasts one at a time” [18]. That is, a system
service named the notification manager handles all requests of
showing toasts in order and shows toasts one after another. The
goal here is to insert gaps between multiple toasts so that the
user can notice toast attacks [3]. For example, if a sequence of
toasts are customized as a keyboard, the user will notice that
the keyboard flickers because of the gaps.

III. DRAW-AND-DESTROY OVERLAY ATTACK

In this section, we first introduce the threat model. Next,
we study the timing of the slow-in animation of the notification
alert view since that the timing is critical for the draw-and-
destroy overlay attack, which tires to suppress the notification.
We then present the workflow of the attack and analyze the
parameters affecting the attack.

A. Threat Model
The only assumption for the draw-and-destroy overlay attack

is the malicious app is an overlay app, which can create overlays
on top of other apps. The malicious overlay app may appear
like an innocent app and a victim accidentally installs it on
a smartphone. Overlay apps are common as shown by the
evaluation in Section VI-C2. For example, Google Maps uses
the overlay for navigation.

B. Slow-in Animation of Notification Alert
When an app pops up an overlay in the foreground, Android

System UI calls startTopAnimation() to perform the
slide down (slow-in) animation and gradually displays the
notification view in the notification drawer. The duration of
the animation is set to ANIMATION_DURATION_STANDARD,
which is 360 ms, to display the notification completely [25].
Interpolator refers to an animation modifier that “affects the
rate of change in an animation” [21]. By default, the mode of
the interpolator is set to FastOutSlowInInterpolator.

Trm
Remove Overlay#1

Add Overlay#1

Android System

D

Malicious App

Worker Thread Main
Thread

System
Server

Notify Add

System
UI

Remove Notification

D

Overlay #1

Tn

Tas

Tam

Tmis

Trm

Remove Notification

Overlay #2

Tmis

Trm

reating notification
View and Animation
Performing Animation

Creating notification
View and Animation
Performing Animation

Remove Overlay#2
Add Overlay#1

Remove Overlay#1
Add Overlay#2Notify Remove then Add

Tas

Tam

Tam

D

Notify Remove

Tmis

Notify Remove then Add

Tas

Remove Notification

Creating notification
View and Animation
Performing Animation

Tn

Tn

Fig. 3: Entity interaction in the draw and destroy overlay attack

we find that the overlay adding event always reaches System
Server first. Denote the time period for System Server to
receive an overlay removing event as Trm and the time period
for System Server to receive an overlay adding event as Tam

(Tam < Trm). When the overlay removing event arrives at
System Server, System Server removes O1 instantly. After
removing O1, System Server checks whether there is still an
overlay from the same app in the foreground. If O2 shows
up before O1 is removed, System Server will find there is still
an overlay in the foreground and will not notify System UI
to remove the notification view. If this is the case, System UI
will continue to play the animation of the notification view.

According to our experiments, the malicious app cannot per-
form addView before removeView. addView is a blocking
function and delays removeView from notifying System
Server. If addView is performed before removeView, there
is a much higher chance that O2 shows up before O1 is removed,
the notification view animation continues and the attack fails.

Step 3 Waiting for a period of attacking window D.
After removing O1, if System Server finds there is no overlay
from the same app in the foreground, it notifies System UI to
remove the notification view. We choose such a small period D
that the animation has not shown the notification alert yet when
System UI is notified to remove the notification view. Therefore,
System UI stops the slide-down animation and removes the
notification view with function startTopAnimation in a
reverse way.

Step 4 Repeating Steps 2 and 3. Steps 2 and 3 are
repeated and the work thread schedules adding and removing
the two overlays through the main thread so as to maximize
the probability of capturing user inputs on the screen for an

extended period of time. Please note: since we add and remove
the two overlays O1 and O2 in turn, Steps 2 and 3 will be
repeated as follows:

Remove O1 then add O2 → Waiting for D → Remove O2

then Add O1 → Waiting for D → Remove O1 then add O2

→ Waiting for D . . .
Step 5 Finishing attack. When the attack is finished, the

last displayed overlay is removed.

D. Analysis
Fig. 3 shows that there may exist a gap Tmis between the

time overlay O1 is removed and the time overlay O2 shows
up. The malicious app will not be able to capture user touch
events since there is no malicious overlay during this gap,
that is, mistouches happen. We now analyze this gap, denoted
as mistouch duration Tmis. Tmis = Tas + Tam − Trm, and
may vary due to the performance of the overall system. For
example, we find that in Android 8 and 9, Tmis approaches
0. With Tmis ≈ 0, when the previous overlay is removed, the
next overlay can be added immediately. For Android 10 and
11, Tmis appears larger and is not negligible.

We now discuss how the attacking window D may affect the
chance of “mistouch”. Assume that the total attacking period
is T , which may vary depending on the ultimate goal of an
attacker. For example, if the goal of an attacker is to steal the
password of a victim app, the attacker may estimate T based
on the typing speed of the user S and the length L of the
password, i.e., T = S × L. We assume that the malicious app
runs the add/remove operations n = � T

D � times, and discuss a
general T in our technical report, which is available on request,
while the conclusion is similar. Based on the analysis in Fig.

1125

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

3, we derive the total mistouch time Tm as follows,

Tm =

n∑

i=2

T i
mis + T 1

am + T 1
as, (1)

where T i
mis is the mistouch time in the ith draw and destroy

period. n > 1 given that D is small and the attack has to last
long enough so as to capture user inputs. Therefore, we can
have the expectation of Tm as follows,

E(Tm) = (� T

D
� − 1)E(Tmis) + E(Tam) + E(Tas). (2)

It can be observed that expected mistouch time E(Tm) de-
creases as D increases.

Although a large D reduces the mistouch time according to
Formula (2), a large D may cause the notification view to be
shown on the notification drawer. Therefore, the attacker should
carefully choose an upper bound of D. Denote the time used
to construct a notification view as Tv. Denote Ta as the time
period that the animation plays before the notification view is
observable. As show in Fig. 3, to avoid displaying a noticeable
notification view in the notification drawer, the attacker has to
choose a D less than the time period between the creation of
the notification view and the display of the notification view
by the animation. That is,

D ≤ Tn + Tv + Ta. (3)

We derive the maximum D through real-world experiments
in Section VI.

IV. DRAW-AND-DESTROY TOAST ATTACK

In this section, we first introduce the threat model. Next,
we study of the fade-in and fade-out animation of the toast
and the behavior of the animation is critical for the the draw-
and-destroy toast attack. We then present the draw-and-destroy
toast attack workflow and briefly analyze the impact of the
animation on the attack.

A. Threat Model

malicious app creates a toast, sets the on-screen duration of the
toast, and then calls the function Toast.show() to notify
System Server.

The Notification Manager Service of System Server gen-
erates a token and puts the token into a queue via en-
queueToast(.). The token uniquely identifies the toast
and guarantees that the system does not create a number of
overlapping toasts [3].

The Notification Manager Service fetches a token from the
queue and notifies the Window Manager Service of the System
Server to draw the toast on the screen. Since the Notification
Manager Service is designed to process one token at a time,
the other tokens wait in the queue. In its source code, Android
specifies that the number of tokens associated with one app
in the queue should be no more than 50. The malicious app
can control the time interval D and make sure it generates the
required number of toasts for the attack.

When it is time for the toast to disappear, the Notification
Manager Service invokes the function removeView(.),
which notifies the Window Manager Service to remove the toast
on the screen. Once notified, the Window Manager Service
performs a fade-out animation to remove the toast on the
screen by calling startAnimation(.).

Step 2: Waiting for a period of D and creating next
toast. The worker thread chooses such a small D that the
main thread can create a new toast before the previous one is
removed. That is, a new token already exists in the queue before
the fade-out animation of the previous toast starts. Therefore,
once removeView(.) is called, the System Server fetches
the new token and creates the new toast.

Step 3: Repeating Step 2. The malicious app may repeat
Step 2 to keep a toast on top of a victim app for an extended
period of time until the attack is completed.

D. Analysis
In Fig. 5, there is a gap Tas between two consecutive toasts.

Tas is the time needed for System Server to create a new toast.
Despite the existence of Tas, users can hardly observe the toast
switching due to the fade-out animation, as our user study in
Section VI shows. To keep the toasts in the foreground for an
extended period of time, the attacker shall choose a D and a
toast creation strategy so that the toast token queue always has
tokens while the number of tokens in the queue is less than 50
at any time during the attack period T . To reduce the number
of toast switching within T , the attacker should choose a toast
duration of 3.5 s other than 2 s.

V. PASSWORD STEALING ATTACK

The draw-and-destroy overlay attack and the draw-and-
destroy toast attack can be combined to design a sophisticated
password stealing attack without alerting users. One challenge
of the password stealing attack is to determine when the user
enters the password and then the attack is performed. There
is related work addressing this challenge, e.g., by means of
shared memory side-channel [9] and accessibility service [17].

The detailed workflow of the attack is presented as follows.
To launch the attack at the appropriate time, the malicious app
determines whether the password input widget of a victim app
receives a focus from the user. Upon receiving the focus of
the password input widget, the malicious app can deploy both
draw-and-destroy toast attack and draw-and-destroy overlay
attack to intercept user inputs. To show a keyboard, the draw-
and-destroy toast attack is used to implement a fake keyboard

covering the real keyboard and switch subkeyboards according
to touch events intercepted by the draw-and-destroy overlay
attack. The fake keyboard and real keyboard are aligned and
appear the same. If the user taps the “shift” key on the fake
keyboard, the malicious app changes the keyboard view to
a new one with the correct subkeyboard layout. If the user
taps the “symbol” key such as the key of “?123” on the fake
keyboard, the malicious app changes the keyboard view to a
new one with special symbols. The draw-and-destroy overlay
attack uses transparent overlays to intercept all user inputs. We
implement a callback method on the overlay to capture touch
events, which contain the screen coordinates of user touches.
Please note: The overlays intercept user inputs, which cannot be
passed to the underlying real keyboard. The draw-and-destroy
overlay attack alone cannot be used as the password stealing
attack. Otherwise, the real keyboard underneath the overlays
cannot respond to user inputs and switch to subkeyboards.

After obtaining user touch events and the coordinates of the
touches, the malicious app can infer the tapped password. The
attacker first derives the center coordinate of each key on the
real keyboard by performing an offline analysis of the keyboard
layout in advance. Then the attacker computes the Euclidean
distance between the coordinate of the touched position on the
fake keyboard and the center coordinate of each real key. A
key is chosen as the typed key if the touched position has the
smallest Euclidean distance to the center coordinate of the key.

VI. EXPERIMENTAL E

1127

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Devices in Evaluation of D

Manufacturer Model OS Version
Samsung s8 8
Samsung SMG9 9
Google nexus6p 8
Google pixel 2xl, pixel 4 9
Google pixel 2 11
Vivo v1813A, x21iA, v1816A,

v1813BA
9

Vivo V1986A 10
Oppo PMEM00 9
Xiaomi mi5 8
Xiaomi mix 2s, mi6, mi8 9
Xiaomi mix3, Redmi, mi8, mi9 10
Xiaomi mi10 11
Huawei EML-AL00, mate20, PAR-

AL00
9

Huawei nova3 9.1
Huawei mate20 x, ELS-AN00,

ELE-AL00, OXF-AN00,
HLK-AL00

10

have an upper boundary to derive the maximum touch event
capture rate.

Upper boundary of D. To determine the upper boundary
of D, we try different Ds with the testing app that adds and
removes overlays using the 30 smartphones shown in Table I
to evaluate whether the notification view could be observed
with naked eyes. Fig. 6 shows the five possible outcomes of the
notification view with an increasing D. It can be observed that
the notification view is a container and shows up first. Other
elements in the notification view, including the notification
message string and any associated icons, are not displayed
until the notification view has been drawn completely. We
summarize the outcomes as follows:

Λ1: The animation does not have an effect yet. No
notification view shows up as illustrated in Fig. 6a. This is the
most desirable outcome for the attacker.

Λ2: The animation starts to perform, but is never completed
as shown in Fig. 6b. The notification view is partially visible.

Λ3: The animation is nearly completed. The notification
view is fully visible, but no message or icon is displayed in
the view as illustrated in Fig. 6c.

Λ4: The notification view is fully visible, and its associated
message is partially displayed in the view as shown in Fig. 6d.

Λ5: The animation is fully completed. The notification view
displays the associated message and icon as illustrated in Fig.
6e. This is the least desirable outcome for the attacker.

Table II shows the upper boundary of D that produces
the effect of Λ1, the best case for the attacker. For brevity,
we use the model number and Android version to refer to a
smartphone. It can be observed that Android 10 has a greater
upper boundary of D compared with Android 8 and Android 9.
We explore the source code of Android, and find in Android 10,
the time it takes the System Server to notify the System UI of
drawing a notification view (Tn in Fig. 3) is longer than that on
Android 8 and Android 9. Android 10 introduces a new service
named Android Notification Assistant (ANA), which provides
a way for apps to manage notifications. ANA is initialized
before the notification is created. Android 10 intentionally
introduces a 100 ms (200 ms in Android 11) delay when the
System Server sends out the notification so as to gain some time
for initialization of ANA. As a result, our attack can benefit
from the delay and the upper boundary of D is larger for
Android 10. According to the analysis in Section III-D, since

the performance of different smartphones varies, D is different
for distinct phones. To address this issue, the malicious app
can collect the phone information before launching the attack
so as to select an appropriate upper boundary of D.

Impact of the load. We have conducted experiments to
find how the load of the smartphone can affect the upper
boundary of D. We compare three cases in terms of the number
of background apps: no background app, three popular apps
(i.e., facebook, amazon, and zoom) and five popular apps (i.e.,
facebook, amazon, zoom, youtube, and twitter). For each case,
we perform our attack to evaluate the upper boundary of D.
We find that the optimal upper boundaries of D for no app,
three apps and five apps in the background are almost the
same. Consequently, the influences of the load on the phone is
negligible.

TABLE II: Upper boundary of D (ms) on different smartphones

Model Android Version Upper boundary of D for Λ1

s8 8 60
SMG9 9 240

nexus6p 8 150
pixel 2xl 10 225
pixel 4 10 185
pixel 2 11 330

mi5 8 125
mix 2s 9 155

mi8 9 215
mi6 9 215

Redmi 10 395
mi8 10 300
mix3 10 220
mi9 10 210
mi10 11 290

mate20 9 200
EML-AL00 9 365
PAR-AL00 9 130

nova3 9.1 285
mate20 x 10 260

ELS-AN00 10 220
ELE-AL00 10 220
OXF-AN00 10 240
HLK-AL00 10 215
PMEM00 9 135

x21iA 9 85
v1816A 9 95

v1813BA 9 215
v1813A 9 85
V1986A 10 80

Touch event capture rate. We perform a real-world user
study to evaluate the touch event capture rate versus D and
show the correctness of the theoretical analysis in Section III.
The touch event capture rate is the number of touch events
captured by the malicious app divided by the total number
of touch events. To evaluate the impact of D on the touch
event capture rate, D is set to 50 ms, 75 ms, 100 ms, 125
ms, 150 ms, 175 ms, and 200 ms. For each D, each of the
30 participants enters 10 sequences of random strings into an
input widget of the testing app on their smartphones. Each
random string has 10 characters. Therefore, a total of 100
random characters are entered by each participant. For each D,
every participant has a touch event capture rate calculated as
the number of captured characters over 100. Please note here
we evaluate the touch event capture rate versus D although the
notification view/alert may show up with a big D.

Fig. 7 is the box plot showing the impact of D on the
touch event capture rate. We label the mean value of the touch
event capture rate of the 30 participants for each D. It can be
observed that when D increases, the mean value of the touch

1128

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

(a) Λ1 (b) Λ2 (c) Λ3 (d) Λ4 (e) Λ5

Fig. 6: Possible outcomes of notification view

event capture rate increases. The mean value of the touch event
capture rate of 30 participants is around 91% when D reaches
around 150 ms. The experiment results match our analysis in
Section III.

Fig. 8 gives the impact of Android versions on the touch
event capture rate in the draw-and-destroy overlay attack versus
D. It shows that the touch event capture rate for Android 10
is lower than that for Android 8 and 9. Android 10 only has
a touch event capture rate of around 90% even if D reaches
200 ms. According to our empirical experiment results, Trm

in Android 10 is significantly reduced while Tam and Tas

do not change much compared with Android 8 and 9. This
phenomenon increases the mistouch duration Tmis = Tas +
Tam − Trm, and thus the touch event capture rate decreases.

����

����

������������������

������

0

20

40

60

80

100Touch event capture (%)

61.0 79.8 86.7 89.0 91.0 92.8 92.8 ������

D u r a t i o n (m s)

���������������0�H�D�Q � 2 � X � W � O � L � H � U � V F i g . 7 : T o u c h e v e n t c a p t u r e r a t e v . s . d u r a t i o n i n d r a w - a n d - d e s t r o y o v e r l a y a t t a c k T A B L E I I I : S u c c e s s r a t e s a n d e r r o r s o f t h e p a s s w o r d s t e a l i n g a t t a c k t h a t s u p p r e s s e s t h e n o t i “ c a t i o n v i e w / a l e r t

P

a

s

s

w

o

r

d

l

e

n

g

t

h

4

6

8

1

0

1

2

L

e

n

g

t

h

e

r

r

o

r

s

1

0

1

5

1

9

2

3

2

6

W

r

o

n

g

t

o

u

c

h

e

d

k

e

y

s

7

8

8

9

9

C

a

p

i

t

a

l

i

z

a

t

i

o

n

e

r

r

o

r

s

6

7

9

9

1

2

S

u

c

c

e

s

s

r

a

t

e

s

9

2

.

3

%

9

0

%

8

8

%

8

6

.

3

%

8

4

.

3

%

1129

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

length. (i) A length error happens when the derived password
length is less than the entered password length. A mistouch
event of our attack or misspelling by a user may result in
such a length error. (ii) A capitalization error is discovered
when the length of the derived password is the same as the
password required to type, but the case of one or more letters
is different. A mistouch event of our attack (i.e., the “shift” key
is not captured) or misspelling may result in such an error case.
(iii) A wrong touched key error is identified when the derived
password length is the same as the entered password length,
but one or more letters are different. Misspelling by a user
may result in such an error case. The passwords used in these
experiments include both uppercase and lowercase letters, and
the toasts are used to load different fake subkeyboards if the
“shift” key is tapped. The overhead of switching the different
keyboards may cause additional delay and result in errors too.
Table III shows that our attack can achieve a success rate of
88% with the popular password length of 8 using the draw and
destroy attacks. Even if the password length is 12, the success
rate is 84.3% for the password stealing attack.

Password stealing attack against real-world apps. We
deployed our password stealing attacks against 8 popular apps
listed in Table IV and found all of them are subject to our
password stealing attacks using the two draw and destroy
attacks. Among all the apps, Alipay performs better than others.
Alipay is one of the most popular online payment platforms in
China. The number of its active users hit 870 million according
to a recent report [28], [38]. Alipay disables accessibility events
when a user types a password into the password input widget,
and our malicious app cannot determine the timing for the attack.
Without the accessibility events, the malicious app cannot obtain
the object reference of the password input widget and thus
cannot fill up the password input widget to hide the attack.

TABLE IV: Apps under testing

App Name Version Attacks
Bank of America 8.1.16 �a

Skype 8.45.0.43 �
Facebook 196.0.0.16.95 �
Evernote 8.4.1 �
Snapchat 10.44.3.0 �
Twitter 7.68.1 �
Instagram 69.0.0.10.95 �
Alipay 10.1.65 *b

a “�”: the tested app can be compromised with no change.
b “*”: while the app can be compromised, extra efforts are needed.

We are able to defeat the security feature of Alipay as
follows. Before a user types a password, the user has to input the
username. Alipay does not disable the dispatch of accessibility
events sent from the username input widget. This allows us to
determine the timing, deploy our attack and derive the object
reference of the password input widget: (i) Identifying the timing
to deploy the attack. When a user interacts with an input widget,
a few events indicate the state of the typing progress. When
a user starts typing, two events (i.e., TYPE_VIEW_TEXT_-
CHANGED and TYPE_WINDOW_CONTENT_CHANGED) are
sent by the input widget. When a user finished typing and
switches the focus to another widget, only one event (i.e.,
TYPE_WINDOW_CONTENT_CHANGED) was sent by the input
widget. The accessibility event TYPE_WINDOW_CONTENT_-
CHANGED sent from the username input widget can be used
to indicate the starting time for our attack. (ii) Obtaining the

object reference of the password input widget. We can obtain
the object reference of the password input widget by analyzing

A. IPC-based Defense Mechanism
Methodology: In Android, IPC is implemented by the

Binder, through which different processes can communicate
with each other. For example, an app can call addView()
and removeView(.) methods to notify the System Server
of drawing and destroying overlays. Such a call incurs an
information-rich Binder transaction, which can be used to de-
termine which method is called as well as the caller, i.e., the app
that calls the method. We can change the Binder code (in a mi-
nor fashion), collect the Binder transactions of interest and uti-
lize the pattern of the attack to detect and thus terminate them.

We implement a scheme detecting the draw and destroy
overlay attack via Android’s Binder mechanism using the
Android Open Source Project (AOSP) [24]. Our detection
mechanism works as follows: (i) Collect and forward the
collected information including the method caller and timestamp
of each Binder transaction of interest to an analyzer; (ii)
To detect the draw and destroy overlay attack, the analyzer
uses a decision rule, which considers two factors: the number
of addView() and removeView() calls and the duration
between a pair of addView() and removeView() calls.

Experiment results show that the defense measure is
effective and the performance overhead is negligible. The details
can be found in our technical report, available on request.

B. Enhanced Notification Based Defense Mechanism
In the draw and destroy overlay attack, quickly drawing and

destroying malicious overlays can interrupt the display of the
notification alert due to the slow-in animation of the alert. To
mitigate this issue, we modify the System Server to postpone
notifying the System UI to remove the notification alert. Then
the whole alert can be displayed in the notification drawer so
that the user can see it and the attack is defeated.

We implement this defense approach using the Android
Open Source Project (AOSP) [24] of Android 10.0 as follows:
(i) When an app invokes removeView(.) to destroy an
overlay and notify the System Server, a delay of t ms is added
in the System Server code before notifying the System UI to
remove the current notification alert in the notification drawer.
(ii) During the delay, if the same app adds a new overlay and
notifies the System Server, the System Server does not notify
the System UI to remove the alert. Otherwise, the System Server
notifies System UI to remove the alert after the delay. We install
our customized AOSP with t = 690 ms on a Google Pixel 2
and have validated its effectiveness of defeating the draw and
destroy overlay attack. To defeat the draw and destroy toast
attack, we may change the scheduling algorithm for adding
more delay between successive toasts so that the flicker of
successively displayed toasts may alert the user.

VIII. RELATED WORK

In this section, we review the most related work on Android
UI attacks and defenses.

Android UI attacks. Rydstedt et al. [32], [34] demonstrate
that mobile browsers are subject to various UI attacks. They
design the tap-jacking attacks to steal WPA secret keys and
fingerprint the user’s geolocation. Our attacks apply to both
the browsers and all Android UIs. Felt et al. [13] show that UI
attacks may go beyond the mobile browsers. For example, in
their work, users can be lured to type their sensitive information
such as their credentials into a fake mobile login screen
controlled by an attacker. Niemietz et al. [31] proposed multiple
attacks against the Android UI, including the legacy toast attack.

Most of those vulnerabilities were already fixed. Chen et al.
[9] reported that the UI state change can be observed through
publicly accessible side channels so that the attackers can pop
up a spoofing UI according to the UI state. Bianchi et al. [6]
analyze multiple scenarios where users can be deceived by a
malicious app, such as Draw on top, App switch and Fullscreen.
In each scenario, they also list several attack vectors and present
a PKI-based framework for UI verification.

Bianchi et al. are the first to leverage the overlays to deploy
attacks. Since then, overlay-based malware/attacks have been
reported in [35], [36], [39]. More recently, Alepis et al. [1]
show that a transparent overlay activity can cover a victim app,
stealing or interfering with user inputs. Yanick et al. [16] show
that how an app with the overlay mechanism and accessibility
service can launch a variety of stealthy and powerful attacks,
such as stealing user passwords or installing a malware. To
mitigate the overlay abuse above, Android introduces the
notification defense and our attacks can defeat such a defense.
Simone Aonzo et al. reveal that the modern password manager
apps and Instant Apps (i.e. apps that can run on the mobile
without installation) are vulnerable, and can be abused to design
phishing attacks [4]. Our attacks do not relay on the vulnerable
password manager apps or Instant Apps.

Android UI secure measures. We now discuss related
work on securing UIs. Fernandes et al. [14] demonstrate their
Trusted Visual I/O Paths (TIVO) prototype. TIVO enables the
user to set up a secure image displayed along with the current
app name and icon when the user taps and enters data. If the user
does not recognize the secure image, or if there is a discrepancy
between the secure image and the expected application name
and/or icon, then the UI is assumed to have been compromised.
This defense may hinder the user experience since a secure
image is always displayed in the foreground. Latter, in [15] they
proposed a defense against UI attacks in which a notification
pops up to tell the user when the background app displays
an overlay in the foreground. Android has adopted a similar
approach (i.e. the notification view approach) since Android
8 and our draw and destroy overlay attacks work against the
defense as discussed in Section III.

Android animation. Animation in UI can improve user
experience with both cognitive and affective benefits [12].
Animation can help users better understand what is happening
in UI. It can direct attention, provide state-change metaphors
and give noticeable feedback on user actions, thus reducing
cognitive load and preventing change blindness [11], [29].
Besides, animation makes the visual change on the screen
smooth and continuous and can reduce users’ uneasiness caused
by abrupt visual changes [7]. This makes the user experience
more pleasant and comfortable.

IX. CONCLUSION

We are the first to exploit the seemingly innocuous ani-
mation used on mobile devices and design novel UI attacks
of severe threats. Particularly, we systematically investigate
Android’s animation mechanism and present the draw-and-
destroy overlay attack and the draw-and-destroy toast attack,
which can be components of a variety of practical attacks such
as password stealing. Extensive evaluation and user studies are
conducted on popular brands of smartphones such as those from
Google and Samsung to validate the discovered attacks. The
password stealing attack can achieve a success rates of 88%
with the popular password length of 8. To defeat the attacks,

1131

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

We design a detection framework using Android’s interprocess
communication (IPC) and other mitigation measures such as
the enhanced notification based mechanism.

ACKNOWLEDGMENT

This research was supported by National Key R&D
Program of China 2018YFB2100300, National Natural Sci-
ence Foundation of China Grant Nos. 62022024, 61972088,
62072103, 62102084, 62072102, 62072098, and 61972083,
by US National Science Foundation (NSF) Awards 1931871,
1915780, and US Department of Energy (DOE) Award DE-
EE0009152, by Jiangsu Provincial Natural Science Foundation
for Excellent Young Scholars Grant No. BK20190060, Jiangsu
Provincial Natural Science Foundation of China under Grant
No. BK20190340, Jiangsu Provincial Key Laboratory of
Network and Information Security Grant No. BM2003201, Key
Laboratory of Computer Network and Information Integration
of Ministry of Education of China Grant Nos. 93K-9, and
Collaborative Innovation Center of Novel Software Technology
and Industrialization. Any opinions, findings, conclusions, and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

[1] E. Alepis and C. Patsakis. Trapped by the ui: The android case. In
Proceedings of the 20th International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID), pages 334–354, Cham, 2017. Springer.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. Androzoo: Collecting
millions of android apps for the research community. In Proceeding of the
13th IEEE/ACM Working Conference on Mining Software Repositories
(MSR), pages 468–471, Austin, TX, USA, 2016. IEEE.

[3] Y. Q. M. T. Analyst). Tapjacking: An untapped threat in android, 2012.
[Online]. (Accessed 20 May. 2021).

[4] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio. Phishing attacks on
modern android. In Proceedings of the 25th ACM SIGSAC Conference
on Computer and Communications Security (CCS), pages 1788–1801,
Toronto, ON, Canada, 2018. ACM.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[6] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel, and
G. Vigna. What the app is that? deception and countermeasures in the
android user interface. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy (S&P), pages 931–948, San Jose, CA, USA, 2015.
IEEE.

[7] A. Chalbi. Understanding and designing animations in the user
interfaces. PhD thesis, Université lille1, 2018.

[8] B.-W. Chang and D. Ungar. Animation: from cartoons to the user
interface. In Proceedings of the 6th annual ACM symposium on User
interface software and technology, pages 45–55, Atlanta, GA, USA,
1993. ACM.

[9] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into your app without
actually seeing it: Ui state inference and novel android attacks. In
Proceedings of the 23rd USENIX Security Symposium (Security), pages
1037–1052, San Diego, CA, USA, 2014. IEEE.

[10] Counterpoint. Global smartphone market share: By quarter. https://ww
w.counterpointresearch.com/global-smartphone-share/, 2020. [Online].
(Accessed 20 May. 2021).

[11] C.-E. Dessart, V. G. Motti, and J. Vanderdonckt. Animated transitions
between user interface views. In Proceedings of the International
Working Conference on Advanced Visual Interfaces (AVI), pages 341–
348, Capri Island, Naples, Italy, 2012. ACM.

[12] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete.
Temporal distortion for animated transitions. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), pages
2009–2018, Vancouver, BC, Canada, 2011. ACM.

[13] A. P. Felt and D. Wagner. Phishing on mobile devices. Citeseer, 2011.

[14] E. Fernandes, Q. A. Chen, G. Essl, J. A. Halderman, Z. M. Mao, and
A. Prakash. TIVOs: Trusted visual i/o paths for android. Technical
Report CSE-TR-586-14, University of Michigan, Ann Arbor, 2014.

[15] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman, Z. M.
Mao, and A. Prakash. Android ui deception revisited: Attacks and
defenses. In Proceedings of International Conference on Financial
Cryptography and Data Security (FC), pages 41–59, Christ Church,
Barbados, 2016. Springer.

[16] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee. Cloak and dagger:
from two permissions to complete control of the ui feedback loop. In
Proceedings of the 38th IEEE Symposium on Security and Privacy
(S&P), pages 1041–1057, San Jose, CA, USA, 2017. IEEE.

[17] Google. Accessibility, 2013. [Online]. (Accessed 20 May. 2021).

[18] Google. Prevent apps to overlay other apps via toa 7.5715 vQmdows, 2016.
[Online]. (Accessed 20 May. 2021).

[19] Google. Animations overview, 2019. [Online]. (Accessed 20 May.
2021).

[20] Google. Google Developer API (Fresh Rate), 2019. [Online]. (Accessed
20 May. 2021).

[21] Google. Google Developer API (Interpolators), 2019. [Online].
(Accessed 20 May. 2021).

[22] Google. Toa 7s overview, 2019. [Online]. (Accessed 20 May. 2021).

[23] Google. Android asset packaging tool. https://developer.android.goog
le.cn/studio/command-line/aapt2?hl=en, 2020. [Online]. (Accessed 20
May. 2021).

[24] Google. Android open source project, 2020. [Online]. (Accessed 20
May. 2021).

[25] Google. Google Developer API (ANIMATION DURATION STAN-
DARD), 2020. [Online]. (Accessed 20 May. 2021).

[26] Google. animation, 2021. [Online]. (Accessed 20 May. 2021).

[27] Google. View, 2021. [Online]. (Accessed 20 May. 2021).

[28] A. Group. Alibaba (Website) , 2020. [Online]. (Accessed 20 May.
2021).

[29] V. Head. Designing interface animation. Rosenfeld Media, 2016.

[30] B. Merz, A. N. Tuch, and K. Opwis. Perceived user experience of
animated transitions in mobile user interfaces. In Proceedings of the 2016
CHI Conference Extended Abstrac7s on Human Fac7ors in Computing
Systems (CHI), pages 3152–3158, San Jose, CA, USA, 2016. ACM.

[31] M. Niemietz and J. Schwenk. Ui redressing attacks on android devices.
In Proceedings of Black Hat Abu Dhabi, pages 1–7, Abu Dhabi, 2012.

[32] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden. An investigation of the
android/badaccen7s malware which exploi7s a new android tapjacking
attack. Technical report, Technische Universität Darmstadt, 2015.

[33] F. Roesner and T. Kohno. Securing embedded user interfaces: Android
and beyond. In Proceedings of the 22nd USENIX Security Symposium
(Security), pages 97–112, Washington, DC, USA, 2013. USENIX
Association.

[34] G. Rydstedt, B. Gourdin, E. Bursztein, and D. Boneh. Framing
attacks on smart phones and dumb routers: tap-jacking and geo-
localization attacks. In Proceedings of the 4th USENIX Workshop
on Offensive Technologies (WOOT), pages 1–8, Washington,D.C., USA,
2010. USENIX Association.

[35] T. Seals. Au7orooting, overlay malware are rising android threats, 2016.
[Online]. (Accessed 20 May. 2021).

[36] T. Spring. Scourge of android overlay malware on rise, 2016. [Online].
(Accessed 20 May. 2021).

[37] R. Whitwam. Android o feature spotlight: Android tells you if an app is
displaying a screen overlay, 2017. [Online]. (Accessed 20 May. 2021).

[38] Wikipad. Alipay(Wikipad), 2019. [Online]. (Accessed 20 May. 2021).

[39] W. Zhou, L. Song, J. Monrad, J. Zeng, and J. Su. The latest android
overlay malware spreading via sms phishing in europe, 2016. [Online].
(Accessed 20 May. 2021).

1132

Authorized licensed use limited to: Southeast University. Downloaded on October 22,2022 at 11:42:58 UTC from IEEE Xplore. Restrictions apply.

