
17120 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

fASLR: Function-Based ASLR via TrustZone-M
and MPU for Resource-Constrained IoT Systems

Lan Luo , Xinhui Shao, Zhen Ling

https://orcid.org/0000-0002-5627-3521
https://orcid.org/0000-0001-9691-8702

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU 17121

most recent related work [5] that requires loading the whole
application code into RAM, fASLR can run an application
even if the application on flash is too large to be completely
loaded into RAM.

fASLR is user friendly and does not require any code instru-
mentation for the user code. A programmer only needs to
compile the NS code via the GCC compiler with specific
compiler flags. fASLR implements a block-based memory
management strategy to manage randomized functions in
RAM. To reduce overheads introduced by runtime fASLR,
three optimizations are adopted: 1) fASLR cleans up finished
functions from RAM only when the randomization region
(RR) is full; 2) a novel stack unwinding mechanism is devised
to precisely find all functions that are safe to be cleaned;
and 3) function call rewriting is used to replace the desti-
nation addresses of call instructions with the base addresses
of the corresponding randomized loaded callees so that the
call instructions can jump directly to the target loaded callees
without raising exceptions.

A conference version of this article [6] mainly focuses on
the optimized fASLR. In this journal version, we add a basic
memory management strategy and compare it with the opti-
mized fASLR in the conference paper. In addition, we formally
prove mechanisms adopted by fASLR do not affect execu-
tion correctness of the NS app. We also port three test apps
with relatively high time overheads evaluated in the conference
version to a more powerful TrustZone-M-enabled MCU and
compare the overheads at different MCUs. Finally, we discuss
the compatibility of using fASLR with other protection mech-
anisms for securing the runtime execution of MCU-based IoT
devices.

Our major contributions are summarized as follows.
1) We propose a function-based ASLR scheme for resource-

constrained IoT devices with limited RAM and flash.
fASLR dynamically loads only needed functions into
RAM and randomizes their entry addresses so as to
achieve large randomization entropy.

2) Novel schemes are designed for fASLR to perform
memory management and addressing. We carefully
address the issue of addressing since functions are ran-
domly moved around. Finished functions are removed
from RAM when there is no RAM to execute new func-
tion calls. Therefore, our scheme can run an NS app that
is larger than the RAM.

3) We formally prove that the NS app still runs correctly
with fASLR via logical reasoning.

4) We implement fASLR with a TrustZone-M-enabled
MCUs, SAM L11, and STM32. We validate the fea-
sibility and performance of fASLR with 21 applications
on SAML11 and three applications on STM32. fASLR
incurs a runtime overhead of less than 10% for all
the applications. We also compare the performance of
fASLR on SAM L11 and STM32 and show larger RAM
can reduce the overhead as expected.

Roadmap: The remainder of this article is structured as fol-
lows: we first discuss the background of TrustZone-M-enabled
processors in Section II. The threat model, design goals, and
system architecture of ASLR are then presented in Section III.

We also demonstrate the workflow of fASLR and two techni-
cal challenges in this section. In Section IV, we discuss the
technical challenges and present our solutions. We prove the
execution validity of the NS app with fASLR in Section V.
In addition, we analyze the effectiveness and performance
of fASLR in Section VI, and present experimental results in
Section VII. Finally, we discuss the compatibility of fASLR
with other security mechanisms in Section VIII, present related
work on fine-grained ASLR techniques for embedded systems
in Section IX, and conclude this article in Section X.

II. BACKGROUND

In this section, we introduce ARM Cortex-M MCUs and
TrustZone-M, which is used in this article. ARM Cortex-M
is a series of processors optimized for MCUs. Such proces-
sors come equipped with MPU, specific exception model, and
different processor modes for security concerns.

Memory Protection Unit: The MPU is the security exten-
sion that enforces memory access permissions (i.e., read,
write, and execute) for memory regions. Any access viola-
tion at memory address protected by MPU will trigger the
ARM HardFault exception handling. Once such an excep-
tion is triggered, the processor will stop the current execution
and execute the exception handler in the SW to respond to
the exception. Before the execution of the exception han-
dler, the processor context is first preserved in the call stack.
The stack frame of the exception context is composed of the
status registers (xPSR), program counter (PC),
link register (LR), and general-purpose registers R12
and R0 to R3. At the same time, LR is set with EXC_RETURN,
which is the address where the exception occurs.

Processor Mode: ARM Cortex-M processors support two
processor modes, i.e., thread mode and handler mode. While
the thread mode is for normal program execution and can
be either privileged or unprivileged, the handler mode is
for exception handling and only supports privileged software
execution.

TrustZone-M-Enabled MCU: MCU often runs either a bare-
metal-embedded application that usually consists of an infinite
loop performing a sequence of operations or a lightweight
real-time operating system (RTOS) such as FreeRTOS [7]. The
applications or RTOS are stored in the MCU on-chip memory.
There are two types of MCU on-chip memory: 1) flash or
EEPROM as the nonvolatile memory and 2) RAM as the
volatile memory. Usually, an MCU program is programmed
into the flash and executed directly in the flash, though
MCUs allow running code snippets in RAM for performance
concerns.

TrustZone-M is a hardware-based security technique
designed for MCUs, providing two isolated execution envi-
ronments named SW as the TEE, and NSW as the REE.
The on-chip resources, such as memories and peripherals are
divided into the two worlds as well. For simplicity, we use
the word “Secure” to describe resources in the SW and use
“Nonsecure” for those belonging to the NSW. Secure applica-
tion (abbreviated as app), for example, is an app in the SW. In
a TrustZone-enabled system, an SW program is able to access

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU 17125

of fALSR with respect to the timing of function cleaning and
calling loaded functions.

1) Call Stack Unwinding: Finished functions are found
through unwinding the Nonsecure call stack.

2) Cleaning on Demand: Finished functions are cleaned up
only if the available RR space is not large enough for
the callee.

3) Call Instruction Rewriting: We further reduce the run-
time overhead by overwriting a call instruction in a
loaded function if the callee of that call instruction has
already been loaded into RAM.

Call Stack Unwinding: The key of function cleaning is
to distinguish finished functions from all loaded functions in
RAM. However, it is difficult to trace all finished functions at
runtime because fASLR runtime does not capture any function
return information. Instead, our approach finds ancestor func-
tions of the current callee, and records all loaded functions.
Any function that is a loaded function but not an ancestor
function is a finished function that can be disposed. Now, the
problem is decomposed to record all loaded functions and find
all ancestor functions.

Like the trace stack working for the baseline memory man-

17128 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

ongoing fASLR operation with regard to the trapped function
call. A future function call is one that will occur after the
active function call. A function return will definitely occur
after the active function call is executed.

As an fASLR operation performs when an active function
call occurs, the operation is in full control of the execution of
the active function call. The validity of the active function call
depends on how the operation affects the program logic of the
call. On the other side, any future function call that may occur
after the current operation is generated by the execution of a
call instruction. The validity of such a call depends on whether
the call instruction points to the correct callee function. In
other words, the memory contents at the location pointed by
the destination address of the call instruction (i.e., static call
information) must be the correct callee function (either the
original callee in flash or the corresponding callee duplicate
in RR).

A function return obtains the return location through return
address. In ARM, leaf subroutine and nonleaf subroutine use
different ways to obtain the return address. For a leaf subrou-
tine, the return address is stored in the lr register, while a
nonleaf subroutine uses the return address stored in the stack
frame. Because fASLR does not intervene in the process of
putting a return address into the lr register or onto a stack
frame, it can be affirmed that all return addresses are generated
correctly as the original NS app (without fASLR) does. After
the generation of the return addresses, fASLR never changes
the lr register and stack frames used by normal program execu-
tion. So, until a function returns, the return address, no matter
it is in lr or on the stack, remains unchanged. The validity
of future function returns therefore requires that the memory
content pointed by the return addresses is valid for function
returns.

In summary, the validity of the active function call depends
on if the program logic is affected by an fASLR operation; the
validity of future calls is determined by static call information
and content validity of RR; Similarly, the validity of future
returns relies on the content validity of RR. In addition, the
auxiliary data structures, as we introduced in concepts, must
remain valid throughout the program execution so that any
fASLR operation can perform as designed. Thus, we can con-
clude that the validity of function calls and returns critically
relies on the validity of the following four objects throughout
the program execution.

1) Program logic of the active call.
2) Static call information.
3) Auxiliary data structures (LQ and RL).
4) Randomization region.
We name the union of these four objects as the crit-

ical reliance set. The validity of the critical reliance set
is in fact the necessary and sufficient condition for the
validity of the function calls and returns. In later proof,
we check the validity of the critical reliance set when-
ever the validity of function calls and returns need to be
verified.

3) Assumptions:
Assumption 1 (Correct Initial System Status): When the

system starts, the initial status of the whole system, including

the program logic, static call information, auxiliary data
structures, and memory state, is correct.

Assumption 2 (Serial Execution System): The MCU that
runs the program with fASLR is a serial execution system,
in which one computation can begin only after the previous
computation completes without parallelization.

D. Propositions

Proposition 1: Any operation of fASLR affects only func-
tion calls and returns of the NS app execution.

Proof: Program logic, which refers to the implementation
of the program’s design, is mutually determined by control
flow and data flow at runtime. For the operations listed in
Table I, the runtime fASLR does not modify any data flow
during execution. We thus focus on the influence on the control
flow. The control flow of a program can be divided into control
flow within a function (i.e., branches inside a function and
nonbranch execution) and control flow between functions (i.e.,
function calls and returns). It can be seen that operations listed
in Table I do not affect any execution within a function. Hence,
all Operations A, B, and C may affect only function calls and
returns of the NS app execution.

E. Lemmas and Theorem

Lemma 1: The correctness of the NS app execution main-
tains when Operation A finishes.

Proof: According to Proposition 1, Operation A can only
affect function calls and returns of the NS app. The validity
of function calls and returns, as we introduced in concepts,
can be verified by checking the validity of the critical reliance
set. Therefore, we prove Lemma 1 through justifying that the
critical reliance set remains valid when Operation A finishes.
Since Operation A is the ordered combination of three actions,
we first analyze whether each action affects the validity of the
critical reliance set. We assume that the critical reliance set is
valid upon the entry of Operation A. Such an assumption is
natural and common, and will be consistently used among the
proofs of all lemmas.

Action-1 only reads the entry address of the callee from the
stack and search the function record from the LQ. It never
writes any values or memory contents, and would not affect
the validity of the critical reliance set.

The condition in Action-2A first guarantees the callee can
be loaded into the RR. The loading action changes the status
of the RR and LQ. Note that before this action, both RR and
LQ are valid. So, we focus on the changes applied on them.
After loading the callee (denoted as x) into the RR, for the
occupied memory region (denoted as m) of the callee, indeed
a new function record {Addrx, Addr′x, Sx} is created in the LQ
to record that this region is being used. These are the solely
changes to the RR and LQ, and these two changes are entirely
correspondent. Conditions for the validity of RR are satisfied.
Therefore, both LQ and RR remain valid.

When Action-3 is applied, the RR contains x, which is the
duplicate of the callee. Action-3 forwards the control flow to
this duplicate so the program logic is exactly the same as
before.

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU 17129

So far, we have proved that any action of Operation A
does not affect the validity of the critical reliance set. Hence,
the critical reliance set will remain valid at the exit of
Operation A. The correctness of the NS app execution holds
at the exit of Operation A.

Lemma 2: The correctness of the NS app execution main-
tains when Operation B finishes.

Proof: Compared to Operation A, the only difference
of Operation B is that it performs Action-2B instead of
Action-2A. Therefore, we focus on the changes brought by
Action-2B. The effects of other actions of Operation B are
the same as Operation A.

Action-2B solely changes the static call information, i.e.,
the destination address of the active function call and adds the
corresponding rewriting record to the RL. The new destination
address Addr′y obtained from LQ is the correct base address of
the duplicate callee because LQ is valid upon the entry of this
operation. So, it is straightforward to see that both the static
call information and RL remain valid. The correctness of the
NS app execution is kept when Operation B finishes.

Lemma 3: The correctness of the NS app execution holds
when Operation C finishes.

Proof: We focus on Action-2C since it is the only
difference between Operations C and A.

Action-2C involves function cleaning and call instruction
restoring. Function cleaning changes RR and LQ. As for the
memory content of RR, Action-2C solely cleans the memory
with state O from the status view according to LQ and stack,
and deletes corresponding function records in LQ. This means
LQ remains valid, and the state transition of such memory
region is O→ A, which follows the previously defined tran-
sition rule. The consistency between LQ and RR is kept and
satisfies the first requirement for the validity of RR. Based
on the function cleaning process, the status view of the RR
before and after function cleaning can be presented as {I|O|A}
and {I′|O′|A′}, where I′ = I, O′ = Empty, and A′ = A + O.
Similarly, from the usage view, we have N′ = N + O,
U′ = U−O. Recall the second condition of a valid RR ensures
N = A and U = I + O. After cleaning, we have

U′ = U − O = I + O− O = I = I′ + O′

N′ = N + O = A+ O = A′.

This means that the RR after cleaning satisfies the second
condition as well. Now, we can conclude that RR and LQ are
still valid after cleaning.

Function cleaning may affect static information and RL.
When loaded functions are cleaned from RAM, rewritten
call instructions with the destination addresses pointing to
the cleaned functions need to be restored to point to their
original callees in flash. This is exactly what we do in this
action. While cleaning a function f , by scanning all corre-
sponding function records in RL, fASLR can precisely identify
in static information of the set of call instructions point-
ing to the cleaned function. For each found function record
{Addr′f : Addri, Addrf }, fASLR deletes the rewriting record
and restores the instruction i to use the original address Addrf

of the callee as the destination address. So, RL remains

Fig. 7. Execution model of the NS app with fASLR.

accurate and all static call information remains valid after
Action-2C.

We can conclude that the critical reliance set affected
by Operation C remains valid. So, the NS app can execute
correctly when Operation C is applied.

Lemma 4: The correctness of the NS app execution after
any operation in runtime fASLR will hold until the next
occurrence of a runtime fASLR operation, regardless of the
in-between program execution.

Proof: So far, we have proved that the occurrence of
any operation in runtime fASLR does not affect the valid-
ity of the critical reliance set. Hence, the correctness of the
program execution holds at the exit of each runtime fASLR
operation. Because only an operation in fASLR could possibly
change the validity of the critical reliance set, such validity
after an operation in fASLR holds until the next operation
happens. Such validity will not be affected by the specific
program execution during these two operations either because
the critical reliance set cannot be changed by any program
execution.

Recall that the validity of the critical reliance set is equiva-
lent to the validity of the function calls and returns and, thus,
equivalent to the overall correctness of the program execution.
Based on the observations above and Lemmas 1–3, the validity
of the critical reliance set prevails between consecutive run-
time fASLR operations. We can deduce that the correctness
of the NS app execution, not only holds after any operation in
runtime fASLR but also holds until the right next occurrence
of a runtime fASLR operation. Lemma 4 is proved.

Theorem 1: fASLR does not affect the correctness of the
NS app execution.

Proof: As we analyzed at the beginning of this section,
the execution of the NS app with runtime fASLR can be seen
as inserting several fASLR operations into the original exe-
cution of the NS app, as it runs in a serial execution system
as we assume in Assumption 2. Such an execution model is
illustrated in Fig. 7. For each operation, we combine the oper-
ation with the normal program execution right after it, until
the occurrence of the next operation, as an execution block.
So, the whole program execution can be seen as a chain of
such execution blocks.

We have proved that the NS app execution will remain cor-
rect when Operation A, B, or C completes in Lemmas 1–3
separately, and proved that the correctness of the NS app exe-
cution after any operation prevails until the right next operation
occurs in Lemma 4. According to Assumption 1, the whole
system is initialized correctly. Thus, the NS app execution is
correct at the beginning of block 1 in Fig. 7, and remains

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU 17131

rebase the callee; 4) function loading, which reads and writes
the function body; and 5) function rewriting, which overwrites
the destination of the call instruction with the entry point of
loaded function.

D. Memory Overhead

The components of fASLR deployed in the SW include the
BE code, FRE code, FT, LQ, and RL. The FT is a static
table with three 4-byte attributes and its size is linear to the
total number of functions in the NS app. The LQ and RL
are dynamic data structures that contain function records and
rewriting records, respectively. Each function record has four
4-bytes and one 1-byte metadata, and a rewriting record con-
tains four 4-bytes data. The maximum number of records that
the LQ may use at runtime is equal to the number of func-
tions in the NS app, while the maximum number of rewriting
records in the RL is the total number of call instructions.
Formula (4) presents the size of the FT (i.e., MOt), LQ (i.e.,
MOq), and RL (i.e., MOl)

MOt = Nf × 3× 4 = 12Nf (4)

MOq = Nf × (4× 4+ 1) = 17Nf (5)

MOl = Nc × 4× 4 = 16Nc (6)

where Nf is the number of functions in the NS app, and Nc is
the number of function calls in the NS app.

E. Size Requirement of the Randomization Region

fASLR will run out of memory (OOM) if a new function
cannot fit into the RR and no function can be trimmed. To
avoid such an OOM issue, there is a size requirement of the RR
for a certain application. We define call path size as the total
size of all functions on a call path. The RR should be no less
than the largest call path of the application when fragmentation
compaction is applied by the memory management scheme.
We can calculate the size requirement by statically analyzing
the application code and perform defragmentation to the RR
if needed.

VII. EVALUATION

In this section, we first present the experimental setup. We
then present the evaluation of randomization entropy, runtime
overhead, and memory overhead.

A. Experiment Setup

fASLR is implemented and deployed on the SAM L11
Xplained Pro Evaluation Kit, a MCU development board using
the ARM Cortex-M23 core with TrustZone-M enabled. SAM
L11 has a 64-kB flash and a 16-kB SRAM.

Software in SAM L11 is built with the GNU Arm
Embedded Toolchain. User code, namely, the NS app code, is
compiled with two flags, -mlong-calls and -fno-jump-tables, to
eliminate instructions using relative addressing. We recompile
the C library with the same compiler flags. A Python script
runs during the compilation time to collect function metadata
and saves them in the FT. fASLR program and the FT are

Fig. 9. Air quality monitoring device.

Fig. 10. Entropy distribution.

part of the Secure application placed in the SW flash, while
the user app is deployed in the NSW flash.

We evaluate the performance of fASLR with 21 appli-
cations, including our own air quality monitoring system
(AirQualityMonitor). The air quality monitoring device, as
shown in Fig. 9, consists of a SAM L11 development board, a
PMSA003 air quality sensor module, and a SIM7000 cellular
module. The NS app in SAM L11 periodically receives air
quality data from PMSA003 and sends the data to SIM7000,
which then transfers the data to the AWS IoT platform via
secure MQTT protocol. The other 20 apps, including the
CoreMark benchmark [13], two microbenchmarks Cache Test
and Matrix Multiply created based on [14], nine benchmarks
of BEEBS (with the prefix Beebs-) [15], and eight SAM
L11 demo apps (with the prefix AS-) obtained from Atmel
Start [16].

B. Randomization Entropy

The entropy of function randomization changes dynamically
when a function call occurs. We explore the entropy for all test
applications. For each measured pair of k and V , we calculate
the corresponding entropy of function randomization accord-
ing to (1) and (2). Fig. 10 is the box plot demonstrating the
entropy distribution for each app. The smallest average entropy
is around 80 which is still considered to be large enough to
defend against brute-force guessing.

C. Runtime Overhead

fASLR introduces runtime overhead since it intercepts every
function call of the NS app for function randomization. We
evaluate the time overhead by measuring and comparing the
execution time of an application with and without fASLR.
We use the internal systick timer of the Cortex-M core to
record the execution time with precision of 0.01 s. Since the
main program of an IoT application is usually a big loop, in
the experiments we measure the execution time of 1000 loops

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

17134 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

its semantics. ILR [26] is an instruction-based randomization
scheme which relocates every instruction thereby achieving
high randomization entropy.

Although fine-grained ASLR is effective in mitigating a
single-memory disclosure attack, Snow et al. [3] found that
multiple memory disclosures are promising in bypassing fine-
grained randomization techniques. Motivated by this observa-
tion, they introduce an attack framework which bypasses fine-
grained randomization via just-in-time code reuse (JIT-ROP).
With the knowledge of a single-memory disclosure, the frame-
work is able to excavate memory contents of multiple memory
pages at runtime, search and assemble gadgets on-the-fly, and
then launch CRA. Accordingly a fine-grained randomization
approach named Isomeron [27] is proposed as the countermea-
sure to JIT-ROP attacks. Combining fine-grained ASLR with
execution path randomization, Isomeron makes any gadgets
unpredictable. Specifically, it generates diversified applica-
tion code using fine-grained ASLR, and loads both original
code and diversified code to the virtual address space at run-
time. During execution, a coin-flip decision is made upon
each function call to select the destination from either origi-
nal or diversified code. Related research has been performed
to overcome newly emerging CRAs and meet increasing
compatibility requirements [28]–[31].

Shi et al. [5] leveraged the TrustZone-M hardware exten-
sion to enable a function-level ASLR scheme for ARM-based
MCUs. The proposed system loads the NS code to NS RAM
and periodically reordering all functions at runtime. Compared
with our work, this scheme loads the whole application code
to RAM. Instead of loading the whole NS app code, our
mechanism—fASLR—only loads functions in use and cleans
up finished functions from RAM at runtime. fASLR requires
smaller RAM and achieves a larger randomization entropy for
resource-constrained IoT devices. Shi et al. [5] rewrote bina-
ries of the NS code offline and introduces a code size overhead
of about 10%–15%, while fASLR has a code size overhead
below 5%.

X. CONCLUSION

In this article, we propose fASLR for runtime software
security of resource-constrained IoT devices, particularly those
based on microcontrollers. fASLR leverages hardware-based
security provided by the TrustZone-M technique as the trust
anchor. It uses MPU and prevents direct code execution of
the application image in the NSW flash. Instead, it traps con-
trol flow in an exception handler and relocates functions to
be executed to a randomly selected location within the RAM.
A memory management strategy was designed for allocating
and cleaning up functions in the RR. We also optimized the
baseline function cleaning scheme to largely decrease runtime
overhead. fASLR is user friendly and only requires a user
compiling the app with specific flags. We formally prove that
fASLR will not affect the correctness of the NS app execution.
We implemented fASLR with a TrustZone-M-enabled MCU—
SAM L11. fASLR achieves high randomization entropy with
acceptable overheads. We will release fASLR to GitHub for
broad adoption and refine the implementation to further reduce
the overhead.

REFERENCES

[1] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Defeating
memory corruption attacks via pointer taintedness detection,” in Proc.
Int. Conf. Depend. Syst. Netw. (DSN), Jul. 2005, pp. 378–387. [Online].
Available: https://doi.org/10.1109/DSN.2005.36

[2] T. K. Bletsch, X. Jiang, and V. W. Freeh, “Mitigating code-reuse attacks
with control-flow locking,” in Proc. 27th Annu. Comput. Security Appl.
Conf. (ACSAC), Orlando, FL, USA, Dec. 2011, pp. 353–362. [Online].
Available: https://doi.org/10.1145/2076732.2076783

[3] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proc. IEEE Symp.
Security Privacy (SP), Berkeley, CA, USA, May 2013, pp. 574–588.
[Online]. Available: https://doi.org/10.1109/SP.2013.45

[4] “TrustZone for cortex-M.” ARM. [Online]. Available: https://
www.arm.com/why-arm/technologies/trustzone-for-cortex-m (Accessed:
Jun. 18, 2022).

[5] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and P. Chen, “HARM:
Hardware-assisted continuous re-randomization for microcontrollers,” in
Proc. IEEE Eur. Symp. Security Privacy (EuroS P), 2022, pp. 520–536.

[6] X. Shao, L. Luo, Z. Ling, H. Yan, Y. Wei, and X. Fu, “fASLR: Function-
based ASLR for resource-constrained IoT systems,” in Proc. ESORICS,
2022.

[7] “freeRTOS—Market Leading RTOS (Real Time Operating System
for Microcontrollers).” [Online]. Available: https://www.freertos.org/
(Accessed: Jun. 18, 2022).

[8] “ARMv8-M Fault Handling and Detection.” ARM. [Online]. Available:
https://developer.arm.com/documentation/100691/0200/Fault-exceptions
(Accessed: Jun. 18, 2022).

[9] J. Yiu, “Chapter 2—Getting started with cortex-M programming,” in
Definitive Guide to Arm� Cortex�-M23 and Cortex-M33 Processors,
J. Yiu, Ed. Cambridge, MA, USA: Newnes, 2021, pp. 19–51.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128207352000020

[10] S. M. Hejazi, C. Talhi, and M. Debbabi, “Extraction of forensi-
cally sensitive information from windows physical memory,” Digit.
Investig., vol. 6, pp. S121–S131, Sep. 2009. [Online]. Available: https:/
/www.sciencedirect.com/science/article/pii/S1742287609000474

[11] A. Follner, A. Bartel, and E. Bodden, “Analyzing the gadgets,” in Proc.
Int. Symp. Eng. Secure Softw. Syst., 2016, pp. 155–172.

[12] M. D. Brown and S. Pande, “Is less really more? why reducing code
reuse gadget counts via software debloating doesn’t necessarily indicate
improved security,” 2019, arXiv:1902.10880.

[13] “CPU Benchmark—MCU Benchmark—CoreMark.” Embedded
Microprocessor Benchmark Consortium. [Online]. Available: https://
www.eembc.org/coremark/ (Accessed: Jun. 18, 2022).

[14] H. Quinn. “Microcontroller Benchmark Codes for Radiation Testing.”
Los Alamos National Security. [Online]. Available: https://github.com/
lanl/benchmark_codes (Accessed: Jun. 18, 2022).

[15] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks for
energy measurements on embedded platforms,” 2013, arXiv:1308.5174.

[16] “ATMEL Start.” Microchip. [Online]. Available: https://start.atmel.com/
(Accessed: Jun. 18, 2022).

[17] “STM32L562E-DK—Discovery Kit With STM32L562QE MCU.”
STMicroelectronics. [Online]. Available: https://www.st.com/en/
evaluation-tools/stm32l562e-dk.html (Accessed: Jun. 18, 2022).

[18] SWIAT. “On the Effectiveness of DEP and ASLR.” Microsoft
Security Response Center. 2010. [Online]. Available: https://msrc-
blog.microsoft.com/2010/12/08/on-the-effectiveness-of-dep-and-aslr/

[19] “ARM11 MPCore Processor Technical Reference Manual.” ARM.
[Online]. Available: https://developer.arm.com/documentation/ddi0360/
f/memory-management-unit/memory-access-control/execute-never-bits
(Accessed: Jun. 18, 2022).

[20] “Apply Mitigations to Help Prevent Attacks Through Vulnerabilities.”
Microsoft Docs. 2021. [Online]. Available: https://docs.microsoft.
com/en-us/microsoft-365/security/defender-endpoint/exploit-protection?
view=o365-worldwide

[21] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in Proc. Int. Symp. Res. Attacks Intrusions Defenses, 2017, pp. 259–284.

[22] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proc. IEEE Symp. Security Privacy, 2014,
pp. 276–291.

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

LUO et al.: fASLR: FUNCTION-BASED ASLR VIA TrustZone-M AND MPU 17135

[23] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commodity
software,” in Proc. 22nd Annu. Comput. Security Appl. Conf. (ACSAC),
2006, pp. 339–348.

[24] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring: Self-
randomizing instruction addresses of legacy x86 binary code,” in Proc.
ACM Conf. Comput. Commun. Security, 2012, pp. 157–168.

[25] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge
me if you can: Secure and efficient ad-hoc instruction-level randomiza-
tion for x86 and ARM,” in Proc. 8th ACM SIGSAC Symp. Inf. Comput.
Commun. Security, 2013, pp. 299–310.

[26] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d my gadgets go?” in Proc. IEEE Symp. Security Privacy, 2012,
pp. 571–585.

[27] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose,
“Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming,” in Proc. NDSS, 2015, pp. 1–15.

[28] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in Proc. IEEE Symp. Security
Privacy (SP), 2018, pp. 461–477.

[29] F. Xuewei, W. Dongxia, L. Zhechao, K. Xiaohui, and Z. Gang,
“Enhancing randomization entropy of x86-64 code while preserving
semantic consistency,” in Proc. IEEE 19th Int. Conf. Trust Security
Privacy Comput. Commun. (TrustCom), 2020, pp. 1–12.

[30] S. Priyadarshan, H. Nguyen, and R. Sekar, “Practical fine-grained binary
code randomization,” in Proc. Annu. Comput. Security Appl. Conf., 2020,
pp. 401–414.

[31] X. Wang, S. Yeoh, R. Lyerly, P. Olivier, S.-H. Kim, and B. Ravindran,
“A framework for software diversification with ISA heterogeneity,” in
Proc. 23rd Int. Symp. Res. Attacks Intrusions Defenses (RAID), 2020,
pp. 427–442.

Lan Luo received the B.S. degree in electrical engi-
neering from the Civil Aviation University of China,
Tianjin, China, in 2015, and the M.S. degree in
computer engineering and the Ph.D. degree in com-
puter science with the University of Central Florida,
Orlando, FL, USA, in 2018 and 2022, respectively.

Her research interests mainly cover security and
privacy of Internet of Things, security of embed-
ded system, network and software security, and
trustworthy computing.

Xinhui Shao received the B.S. degree in com-
munication engineering from Shanghai University,
Shanghai, China, in 2019. He is currently pursuing
the master’s degree in cyber science and engineering
with Southeast University, Nanjing, China.

His current research interests include Internet of
Things and privacy and security.

Zhen Ling (Member, IEEE) received the B.S.
degree from Nanjing Institute of Technology,
Nanjing, China, in 2005, and the Ph.D. degree
in computer science from Southeast University,
Nanjing, in 2014.

He is a Professor with the School of Computer
Science and Engineering, Southeast University. His
research interests include network security, privacy,
and Internet of Things.

Prof. Ling won the ACM China Doctoral
Dissertation Award in 2014 and the China Computer

Federation Doctoral Dissertation Award in 2015.

Huaiyu Yan received the B.S. degree in software
engineering from Southeast University, Nanjing,
China, in 2019, where he is currently pursuing the
Ph.D. degree in computer science and engineering.

His current research interests include Internet of
Things and privacy and security.

Yumeng Wei is currently pursuing the B.S. degree
in cyberspace security with Southeast University,
Nanjing, China.

Her research interests include software and
network security of Internet of Things devices.

Xinwen Fu (Senior Member, IEEE) received the
B.S. degree in electrical engineering from Xi’an
Jiaotong University, Xi’an, China, in 1995, the M.S.
degree in electrical engineering from the University
of Science and Technology of China, Hefei, China,
in 1998, and the Ph.D. degree in computer engineer-
ing from Texas A&M University, College Station,
TX, USA, in 2005.

He is a Professor with the Department of
Computer Science, University of Massachusetts
Lowell, Lowell, MA, USA. He was a tenured

Associate Professor with the Department of Computer Science, University
of Central Florida, Orlando, FL, USA. He has published at presti-
gious conferences, including the four top computer security conferences
(Oakland, CCS, USENIX Security, and NDSS), and journals, such as
ACM/IEEE TRANSACTIONS ON NETWORKING and IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING. His current research interests
are in computer and network security and privacy.

Dr. Fu spoke at various technical security conferences including Black Hat.

Authorized licensed use limited to: Southeast University. Downloaded on October 06,2022 at 07:50:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

