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Abstract—Freenet is a well-known anonymous communication
system that enables file sharing among users. It employs a
probabilistic hops-to-live (HTL) decrement approach to hide the
originator among nodes in a multi-hop path. Therefore, all nodes
shall exhibit identical behaviors to preserve anonymity. However,
we discover that the path folding mechanism in Freenet violates
this principle due to behavior discrepancy between downloaders
and intermediate nodes. The path folding mechanism is designed
to optimize the network topology of Freenet. A delayed path
folding message by a successor node may incur a timeout event
at its predecessor, and an intermediate node reacts differently to
such timeout with a downloader. Therefore, malicious nodes can
deliberately trigger the timeout event to identify downloaders.
The complex implementation of the path folding timeout detec-
tion mechanism in Freenet complicates our de-anonymization
attack. We thoroughly analyze the underlying cause and develop
three strategies to manipulate three types of messages respectively
at the malicious node, minimizing the false positive rate. We
conduct extensive real-world experiments to verify the feasibility
and effectiveness of our attack. They show that our attack
achieves a true positive rate of 100% and false positive rate
of near 0% under two different Freenet download modes.

I. INTRODUCTION

Freenet1 [1], [2], [3] is a popular anonymous communi-
cation system that supports various applications such as file
sharing and web forum. It is basically a peer-to-peer overlay
network functioning as a distributed hash table (DHT) [4].
Users can upload files to or download files from the network
anonymously through deploying a Freenet node. Each file in
Freenet is segmented into encrypted blocks of fixed size and
randomly distributed among Freenet nodes. Each Freenet node
contributes local storage space and bandwidth resources for
storing and transferring file blocks, respectively. The network
is organized into a small-world network [5] to guarantee each
node can reach rest nodes via a few hops. Freenet performs
hop-by-hop routing and employs a probabilistic hops-to-live
(HTL) decrement mechanism to enable file uploads and down-
loads through a multi-hop path and protect the anonymity for
both the uploader and downloader by preventing the successor
node in the path from identifying them.

Previous works have investigated the anonymity provided by
Freenet. Tian et al. [6], [7] discover the information leakage
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1Freenet project has been renamed to Hyphanet, however, we keep using

the original name since it is more familiar to the community.

caused by the loop detection mechanism during the routing
process, and propose a traceback attack against downloaders
by exploiting the loop detection protocol to uncover the routing
path and identify the originating node. Levine et al.



interest even if the attacker forces a timeout. We design
three different enhancement schemes by actively manipulating
distinct critical messages sent to the intermediate node so that
we can considerably reduce the false positive rate of our attack.

Our major contributions are summarized as follows.
• We are the first to expose fundamental weaknesses in

Freenet anonymity protection from a protocol design
standpoint. Specifically, upon thoroughly examining the
Freenet protocol design, we discover an exploitable
vulnerability in the path folding protocol for conducting
de-anonymization attacks, enabling the identification of
whether a victim predecessor node is a downloader.

• Freenet has a complex implementation of the path
folding timeout detection mechanism and may not detect
the path folding timeout correctly, leading to a significant
increase in false positive rates in our attack. We carefully
analyze the root cause and then design three schemes to
manipulate three types of Freenet messages respectively,
effectively addressing the imprecise timeout detection
issue and reducing the false positive rate.

• We demonstrate the feasibility and effectiveness of our
de-anonymization attack through extensive real-world
experiments. The results reveal that the anonymity of
downloaders in Freenet is severely undermined and a
Freenet downloader node with default output bandwidth
limit or less can be de-anonymized with a 100% true
positive rate and a false positive rate close to 0%.

Responsible disclosure: We disclosed our de-
anonymization attack to Freenet, which confirmed the
vulnerability. We had been working with Freenet to test their
patch until the vulnerability was completely mitigated [11].

II. BACKGROUND ON FREENET

In this section, we provide an overview of the Freenet net-
work structure, the process of file uploading and downloading,
as well as the path folding mechanism in Freenet.

A. Freenet network structure

Freenet is a peer-to-peer anonymous information storage
and retrieval system, with nodes contributing their local stor-
age space and bandwidth resources to the network. Each
Freenet node is assigned a random location between 0 and 1
on a logical ring with a circumference of 1. A new node joins
Freenet by firstly connecting with some seed nodes to discover
other existing nodes, and then selecting some of the existing
nodes as its peers (or neighbors). The number of peers a node
can have is determined by the contributed output bandwidth.
In Freenet, the distance between a node and 70% of its peers
is within 0.01, while the remaining peers are more than 0.01
away from the node. This results in the formation of a small-
world network in Freenet. A node can upload or download data
stored in the Freenet network through its connected peers.

B. File uploading and downloading

In Freenet, each file has an associated uniform resource
identifier (URI) with two options: content hash key (CHK)
or signed subspace key (SSK). File uploading starts from

chunking the file into encrypted 32KB file blocks and then
generating a CHK for each block as the block URI. The
CHK contains information such as the hash of the block,
a decryption key, etc., where the hash of the block is also
referred to as the routing key used to locate the block in
Freenet. Then the CHKs of all blocks are enveloped into a
single metadata file. However, if the metadata file is larger than
32KB, it can be further segmented into 32KB metadata blocks.
The aforementioned block generation procedure will repeat
until the final metadata size is no more than 32KB. If SSK
is chosen as the file URI, the overall generation procedure is
similar to that using CHK except the final metadata is limited
to a maximum of 1KB, instead of 32KB. The CHK or SSK
of the final metadata file serves as the URI for the entire file.

Each file block can be addressed by mapping its routing key
to a location on the logic ring. This allows the file uploader
(upstream originator) to select one of its peers closest to the
block’s location based on the locations of the peer and the
peer’s peers. The uploader then sends a request to the selected
peer containing a unique identifier (UID), a value of hops-to-
live (HTL), and the block routing key. The HTL (initially 18)
normally decrease 1 at each hop until it reaches 0, preventing
an endless routing request. Upon receiving the request, the
selected downstream peer repeats peer selection process to
forward the request. In this way, a routing path which consists
of several nodes is created. An adjacent downstream peer in the
routing path of a node is referred to as the node’s successor,
while an adjacent upstream peer as the node’s predecessor.
To prevent exposing the uploader from the HTL, the HTL
decreases by a 50% probability at each hop when it is 18.
The use of multi-hop routing and a probabilistic decrease of
the initial HTL makes it difficult to identify the uploader. Once
the HTL reaches a threshold of 16, an intermediate node in
the path stores the block if it is closer to the block’s location
on the logic ring than the predecessor. After the entire file is
uploaded, the file owner can share the file URI via an out-of-
band channel, e.g., a public forum.

To download a file, the user first uses the file URI to locate
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Fig. 1: Workflow of downloading a CHK block.

The path folding mechanism is performed on the path where a
CHK block is successfully retrieved. Once the last hop node in
the path completes transmitting a file block to its predecessor,
it can send a path folding request message, followed by a series
of messages conveying the node reference, to its predecessor
based on its demand, i.e., it lacks a peer or needs replacing one
of its peers. The node reference consists of various information
about the node, such as its IP address, port, and location.
Otherwise, it sends a termination message.

Once the message reaches the upstream peer, if it is a
termination message, this node either re-initiates a new path
folding request or send a termination message to its own
predecessor based on its own demand, in the same way as
the downstream node. If the message is a request, and this
upstream node is interested (i.e. lacks a peer or needs replacing
a peer), then this upstream node sends a bunch of response
messages back via the path, which contain the node reference
of itself. After receiving the response, the node which sends
the request can directly establish a connection with it. If the
message is a request but this upstream node is not interested, It
either relays the request upstream with a probability of 95% or
blocks the request with a 5% chance by sending a termination
message to its successor, and then determines whether to
initiate a path folding request upstream. In the case when an
upstream node attempts to establish a new direct connection
with a downstream node via the path folding mechanism as
stated, the upstream node again decides to either send a new
request or a termination message further upstream based on
its updated demand after the recent connection establishment.
This whole process continues until the downloader receives
and processes the path folding message.

III. BEHAVIOR DISCREPANCY EXPOSED BY PATH FOLDING
PROTOCOL

In this section, we present the key observation of protocol
behavior discrepancy in the path folding protocol and our
threat model.

handler

Fig. 2: Behavior of an intermediate node when handling a
timeout event.

A. Key observation

Our investigation of the Freenet protocol reveals a key
issue in the timeout handling for a path folding message.
Specifically, intermediate nodes wait for a path folding request
from their successor in the path and if they fail to receive the
request within a specified time frame, they send a path folding
termination message to their successor. However, a downloader



the other hand, upon receiving a AllReceived message from
the predecessor, the handler thread of the intermediate node
waits for a notification from the sender thread for 2 minutes as
well. There are three types of path folding messages, including
the FNPOpennetConnectDestinationNew message to initiate a
path folding request, the FNPOpennetCompletedAck message
to terminate the path folding stage, and the FNPOpennetCom-
pletedTimeout message to inform the predecessor of a timeout
exception in the path folding.

We now explain how the protocol behavior discrepancy
occurs between an intermediate and a downloader. As depicted
in Figure 2, if the sender thread fails to receive any path
folding message within 2 minutes, it notifies the handler
thread to raise a timeout exception in the path folding stage.
Then the handler thread informs the downloader by sending
a FNPOpennetCompletedTimeout message and responds to its
successor by sending a FNPOpennetCompletedAck message.
If the sender thread continues to not receive any path folding
messages after waiting for an additional 2 minutes, it tears
down the connection with the successor as a fatal timeout
exception occurred. However, the downloader only creates a
sender thread that is incapable of emitting the FNPOpen-
netCompletedAck message to its successor if a path folding
timeout exception occurs. Such distinct protocol behaviors can
be exploited to break anonymity. Therefore, an attacker can
deliberately cause a timeout in the path folding request and
determine if the victim predecessor of the attacker’s node is a
downloader or not.

B. Threat model and assumptions

Our attack is to distinguish whether a victim node is a
downloader. The attacker can deploy multiple Freenet nodes
and manipulate messages transferred through the path so as
to monitor and control the protocol behavior of the victim’s
predecessor and determine whether it is a downloader or not.
This is a feasible assumption [9], as anyone can deploy any



a timeout exception. If a second timeout exception occurs,
the victim considers it as a serious connection issue and then
tears down the connection with the attacker’s node. To avoid
detection, the malicious node proactively and promptly sends
a path folding termination message to the predecessor during
the second 2-minutes wait, thereby preserving the connection
with the victim predecessor.

B. Imprecise timeout detection issue

A successful attack strongly relies on the handler thread
of an intermediate node that is effectively notified by its
sender thread so as to send out a path folding termination
message expected by our malicious node. However, due to the
complicated implementation of path folding timeout detection
mechanism in Freenet, the timeout exception notification at an
intermediate node may not be timely sent to the handler thread
by the sender thread, and it causes the handler thread to fail
to send the path folding FNPOpennetCompletedAck message
to the successor. In this case, the attacker fails to receive the
expected path folding termination message and it misleads she
to recognize its predecessor as a downloader.

In practice, the timeout exception of waiting for a path
folding message is detected by a packet process thread or
a timeout detection thread. When a sender thread starts to
wait for a path folding request, it constructs an event that
includes the sender information of the expected path folding
message, the expected message type, and the message waiting
deadline, i.e., 2 minutes later, and inserts the event into an
event queue. Once packets arrive at the UDP receiving buffer,
the packet process thread is waken up to read packets and
assemble messages. Then it inspects each event in the queue
to determine if a message can match one of the events and
also check whether the waiting time period of the event
has finished. Since such timeout event detection triggered by
the packet process thread strongly depends on the randomly
arriving packets, it cannot precisely and promptly find out
whether the waiting time period of an event exactly reaches 2
minutes. In addition, the timeout detection thread is a dedicated
thread that is responsible for inspecting timeout exceptions for
all of the sender threads at an intermediate node. It checks
each event in the queue to determine if an event is timeout
at each check time point. The time point of event timeout
checking uses the timeout point of the upcoming timeout event
in the queue. However, if the time interval between the current
checking time and the timeout point of the upcoming timeout
event is less than 1 second, the thread has to wait for 1 second
to perform the timeout detection. In this case, the timeout
detection thread cannot precisely detect the timeout event in
2 minutes either.

The handler thread uses timing method directly to precisely
wait for the timeout event for 2 minutes. As a result, when
the sender thread is waken up by the packet process thread
or the timeout detection thread after 2 minutes so as to notify
the handler thread, the handler thread is already waken up
by itself and re-initiates a new path folding stage with its
predecessor as it does not receive the notification from the
sender thread in time. In this case, such an imprecise timeout
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Fig. 4: Triggering condition for distinctive behaviour of an
intermediate node.

detection issue happens and the handler thread ignores the
delayed notification from the sender thread. Accordingly, the
handler thread fails to send the path folding FNPOpennetCom-
pletedAck message to the malicious successor, and causes the
attacker to misidentify an intermediate node as a downloader.

To understand the challenge caused by the imprecise timeout
detection issue, we use Figure 4 as an example to analyze
the root cause of the attack failure. As we can see from this
figure, the attacker controls a node that is a successor of an
intermediate node who is the successor of a real downloader
in the path. Let t0 be the time at which the last PacketTransmit
message of a CHK block is received by the intermediate node.
Once receiving the last PacketTransmit message, the sender
thread emits an AllReceived message to notify the attacker
that the whole block is successfully received. Then the attacker
sends back a packet to acknowledge the AllReceived message.
Upon receiving the acknowledgment packet, the sender thread
starts to wait for a path folding request from the malicious
successor. We denote the time interval between the receiving
time of the last PacketTransmit message of the CHK block
and the sending time of the AllReceived message as ∆Ta.
Let RTTs be the time interval between the sending time
of the AllReceived message and the receiving time of the
acknowledgment packet. Denote the start waiting time and the
end waiting time as ts and t1, respectively. Then, we can have

t1 = t0 +∆Ta +RTTs + T +∆T. (1)

where T is the constant waiting time, i.e., 2 minutes, and ∆T
is the error checking time interval caused by either of the two
detection threads.

The handler thread at the intermediate node forwards the
messages to the downloader. After the handler thread sends
the last message of the CHK block, it can receive an AllRe-
ceived message as well and then check if the sender thread
receives the acknowledgment packet from the attacker. If the
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acknowledgment packet is received, the handler thread starts
to wait for a notification from the sender thread for 2 minutes.
We denote the time interval between the receiving time of
the last PacketTransmit message of the CHK block and the
forwarding time of the last PacketTransmit message as ∆Tp.
Let RTTh be the time interval between the forwarding time of
the last PacketTransmit message and the receiving time of the
AllReceived message. Denote the start and end waiting time of
the handler thread as th and t2, respectively, where th > ts.
Finally, we can have

t2 = t0 +∆Tp +RTTh + T. (2)

Recall that the handler thread precisely sleeps the constant
time T , i.e., 2 minutes, to wait for the notification from the
sender thread.

According to our analysis, if the imprecise timeout detection
issue happens, the end waiting time of the sender thread is later
than the end waiting time of the handler thread, i.e., t1 > t2. It
can cause a false positive downloader identification. Therefore,
we define the false positive rate (FPR) of our downloader
de-anonymization method as the probability that the event of
t1 > t2 happens, i.e., P(t1 − t2 > 0). We perform extensive
empirical experiments to derive a probability density function
(PDF) of t1−t2 in two different downloading modes as shown
in Figure 5a and Figure 5b. The shadow part in the figures
represents the probability P(t1 − t2 > 0). We further explain
why the FPR in the bulk downloading mode is much smaller
than that in the real-time downloading mode in Section V
via experimental results. Next, we propose our solutions to
mitigate this issue.

(a) FPR in the bulk mode (b) FPR in the real-time mode

Fig. 5: FPRs in two different downloading modes.

C. Optimization schemes

We analyze various factors in the false positive rate so as
to improve the success rate. In fact, the attacker should make
sure that the end waiting time of the sender thread is earlier
than the end waiting time of the handler thread. Then the key
factor of a success identification becomes

t2 > t1 ⇒
t0 +∆Tp +RTTh + T > t0 +∆Ta +RTTs + T +∆T ⇒

∆Tp − ∆Ta +RTTh − RTTs − ∆T > 0 (3)

According to this formula, we can attempt to increase ∆Tp

and RTTh and decrease ∆Ta, RTTs, and ∆T in order to
reduce the false positive identification. However, we can barely
increase RTTh that is determined by the network between the
intermediate node and its predecessor. In addition, we cannot

decrease the packet response time, i.e., ∆Ta, that is determined
by the scheduler thread at the intermediate node. Therefore,
we exploit the implementation features of Freenet protocol so
as to actively manipulate the messages at the attacker’s node
that are sent to the victim node, to increase ∆Tp as well as
decrease RTTs and ∆T .

Scheme 1: Delaying the file block transmission of the
intermediate node to increase ∆Tp. ∆Tp is the time interval
between the receiving time of the last PacketTransmit message
from the attacker at the sender thread side and the sending
time of the last message to the predecessor at the handler
thread side of the intermediate node. To increase ∆Tp, we
exploit the packet sending and message processing mechanism
in Freenet to send the PacketTransmit messages strategically at
the attacker’s node. Note that Freenet messages are enveloped
into Freenet application layer packets for transferring. Each
packet is limited to 1232 bytes to avoid IP fragmentation, and
messages can be fragmented so as to fit into a packet. At the
same time, Freenet node can only process a message after
all fragments are received. Therefore, the intermediate node
has to receive a complete PacketTransmit message and then
forward it to the predecessor. If a message is not completely
delivered by the attacker, the received part of the message is
buffered in the memory at the intermediate node. Recall that
Freenet employs 32 PacketTransmit messages to carry a 32
KB file block. As a result, we can deliberately segment each
of the 32 PacketTransmit messages into two fragments, e.g.,
1042 bytes and 10 bytes, where the 32 small fragments, i.e.,
320 bytes, can be enveloped into one Freenet packet. After the
Freenet packets that carry the 32 large message fragments are
acknowledged by the intermediate node, we send the Freenet
packet containing the 32 small message fragments. Once the
intermediate node receives the packet, it can assemble the
32 whole messages in the queue and forward them to the
predecessor packet by packet. In this way, we can significantly
delay the delivery of the whole file block, thereby affecting
the sending time of the last packet so as to increase ∆Tp.

Scheme 2: Acknowledging the AllReceived message
promptly to decrease RTTs. RTTs consists of the trans-
mission time of the AllReceived message and the acknowl-
edgment packet over the network and the response time
of the acknowledgment packet at the attacker’s node. Let
∆Tack be the response time of an acknowledgment. From
the attacker’s angle, we can only control the response time of
the acknowledgment packet by acknowledging the AllReceived
message as soon as the AllReceived message is received so
as to minimize the ∆Tack. For the sake of improving the
node’s throughput, an acknowledgment packet can wait 200ms
at maximum before sending out so as to carry as much payload
as possible. Consequently, in the worst case, the maximum
delay of an acknowledgment packet at the attacker’s node is
200 ms. It significantly increases RTTs and raises the false
positive rate. On the basis of this key insight, we can eliminate
the response time period ∆Tack by promptly responding the
acknowledgment upon receiving the AllReceived message.

Scheme 3: Actively triggering timeout detection mecha-
nism to decrease ∆T . Recall the packet process thread can
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also trigger the timeout detection when it receives a complete
message. Once a message is received, the packet process
thread inspects each event in the event queue to check if the
event deadline has passed and whether the message matches
the event. Accordingly, we can actively send forged messages
to the intermediate node to force the timeout detection via
packet process thread, even the messages can not match
any event. In practice, we send a FNPOpennetCompletedAck
message with a random UID. Ideally, our message shall arrive
at the intermediate node after but very close to the event
deadline. So the timeout is discovered by the packet process
thread and the sender thread can be timely waken up to notify
the handler thread. For the attacker, the estimated sending
moment thus can be T plus a small delay time. We try to
estimate the moment to send our delayed forged message to the
intermediate node so as to efficiently squeeze ∆T with effort.
A number of empirical experiments are performed in Section
V to select the delay time for sending the forged message.

V. EVALUATION

In this section, we conduct real-world experiments to
demonstrate the feasibility and effectiveness of our de-
anonymization attack against downloaders in Freenet. To up-
hold legality and ethics, we restrict our experiments to only file
block retrievals initiated by our own deployed Freenet nodes.

A. Experimental setup

We perform two groups of experiments respectively to
evaluate the false positive rate (FPR) and true positive rate
(TPR) of our attack. To estimate the FPR, we deploy three
nodes including a downloader, an intermediate node and a ma-
licious node in the real-world Freenet network. Each deployed
node follows the rule of Freenet to connect with other nodes
automatically, excepting for the connection we added manually
among them. We use ∆RTT to represent ((RTTh −∆T ′

a)−
(RTTs − ∆Tack)), which describes the round-trip time dif-
ference of two network intervals (downloader↔intermediate,
and intermediate↔malicious). Both the downloader and the
malicious node can be respectively hosted on a virtual private
server (VPS) in candidate locations including Paris, France,
Tokyo, Japan, and Chicago, USA with 2 virtual cores and
2G memory, while the intermediate node is hosted on a VPS
in New York, USA with 4 virtual cores and 8G memory.
We install Ubuntu 20.04 and OpenJDK 11 JRE on all VPSs.
The source code of Freenet 0.7.5 (Build 1494) is revised and
recompiled to incorporate our attack. To estimate the TPR, we
set up a downloader and a malicious node on separate VPSs.
The downloader and the malicious node are hosted on VPSs in
Paris, France and New York, USA, respectively. Other setup
is identical to the experiments setup in determining the FPR.

We implement our basic de-anonymization approach and
three enhanced schemes by revising the Freenet source code
of the malicious node. To enable file block downloading,
we generate a customized CHK block and add it into our
malicious node. Freenet node integrates a telnet-based local
control service which handles control commands such as
uploading or downloading a block. Consequently, we connect

to the local control service of our malicious node using a telnet
terminal and then send a CHK file block content, e.g., a string
sequence, to the service to require the generation of a 32 KB
CHK block. To minimize the impact on Freenet, the source
code of the malicious node is altered so that the malicious node
only stores the block locally without network propagation.

In the FPR evaluation experiments, we revise the Freenet
source code of the downloader to make it download the file
block via our intermediate node. To this end, we first set the
downloader’s Freenet configuration to add our intermediate
node as its peer and modify the source code to ensure that this
peer node is not replaced. We perform the same configuration
on the intermediate node, making the downloader its peer.
Then we revise the source code of the downloader to use
the intermediate node as its successor in the path. Through
downloader’s control service, we issue download requests
to fetch CHK blocks generated by the malicious node. The
necessary information regarding the block retrieval requests is
recorded in each node to aid in analysis.

In the TPR evaluation experiments, we revise the source
code and configure both the downloader and malicious nodes
to add each other as a peer. Then the downloader directly
downloads randomly generated file blocks from the malicious
node, so that we can evaluate whether our malicious node can
identify the downloader using our attack.

B. Experimental results

The effectiveness of the de-anonymization attack is mea-
sured by the TPR and FPR. Our original attack is referred
as the baseline attack, and the attack with all three enhanced
schemes is referred to as the enhanced attack. The default
value of output bandwidth of a node is 320KB/s, The default
∆RTT is 0 by hosting both the malicious node and the
downloader in Paris, France and the intermediate node in New
York, USA. We estimate the TPR and FPR by changing the
value of one of these variables while keeping others at default.

We test the attack with five different output bandwidth limits
of the downloader and two download modes, bulk mode and
real-time mode. To calculate the TPR, the downloader directly
connects to the malicious node and downloads 500 randomly
generated CHK blocks for each of the 10 (5 bandwidth
limits×2 modes) settings, namely a total of 5,000 downloads.
The TPRs of both the baseline and enhanced attacks in both
modes are 100%, which show the distinct path folding protocol
behavior can effectively help identify the downloader.

TABLE I: FPR (%) of identifying a downloader.
Output bandwidth

limit (B/s)
Bulk mode Real-time mode

Baseline Enhanced Baseline Enhanced

16K 1.80 0 1.60 0
32K 5.00 0 27.60 0

320K 12.20 0 81.20 1.80
1M 12.40 0 81.80 2.20
2M 10.20 0 79.80 1.80

Table I illustrates the FPR evaluations for both the baseline
attack and the enhanced de-anonymization attack using five
different output bandwidth limits and two downloading modes.
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The evaluation is conducted by applying 5,000 downloads
(same composition as in the TPR experiments) for either of the
two attacks. As shown, the FPRs of both attacks in the bulk
mode are significantly much lower compared to those in the
real-time mode. In fact, the default maximum waiting time of
the PacketTransmit messages in the queue at the intermediate
node are 5s for the bulk mode and 100ms for the real-
time mode. The longer waiting time for the PacketTransmit
messages in the bulk mode increases ∆Tp, resulting in a lower
FPR. Moreover, the enhanced attack successfully reduces
the FPR by increasing ∆Tp and decreasing both RTTs and
∆T . The FPRs approach zero in the bulk mode with all
five output bandwidth limits and are also nearly zero in the
real-time mode with output bandwidth limits of 16KB/s and
32KB/s. These demonstrate that our theoretical analysis in
uncovering the underlying cause of the false positive detection
is effective and the three proposed enhancement techniques
can be successfully implemented in practice.

In order to find an appropriate delay time for sending the
forged message in Scheme 3, extensive empirical experiments
are conducted. Figure 6 illustrates the relationship between the
FPR and delay time. The results show that the FPR reaches
6% when the delay time of sending the message is 1ms in the
bulk mode, while in the real-time mode, the FPR is around
65% when the delay time is set to 3ms. Accordlly, to achieve
a lower FPR, we use a delay time of 1ms and 3ms in Scheme
3 for the bulk and real-time modes, respectively.

To assess the individual contribution of the three different
schemes, we perform four sets of experiments using the base-
line attack and three enhanced attack variants that respectively
employ one of the three schemes. In each experiment set,
we configure the output bandwidth of the intermediate node
to 320KB/s and then control the downloader to fetch 500
randomly generated block files from our attacker’s node for
each of the 8 (4 attacks×2 modes) experimental settings, thus
totally 4,000 downloads. Figure 7 illustrates the comparison
of the FPRs among these attacks in two different download
modes. As seen in the figure, all these schemes effectively
reduce the FPR. The performance of the scheme 1 in the bulk
mode outperforms that of the other two, while the performance
of scheme 2 achieves the best results in the real-time mode.

To better understand the underlying reasons of the results
in Figure 7, we further analyze the PDF and the average time
of ∆Tp, ∆Tack, and ∆Tp in the different schemes. Figure
10a illustrates the PDF of ∆Tp in the bulk mode for both
the baseline attack and scheme 1. We observe that average of
∆Tp considerably grows when ∆Tp ≤ 1500ms with scheme
1 applied. Note that the cases when ∆Tp > 1500ms is less
important since the false positives are almost impossible to
happen when ∆Tp is large. Then we compute the average
value of ∆Tp within 1500ms and find that ∆Tp of scheme
1 in the bulk mode is around 250ms larger than that of the
baseline attack at average as shown in Table II. In comparison,
scheme 2 and scheme 3 only decrease ∆Tack and ∆T by
around 160ms and 4ms, respectively. Figure 11a and Figure
12a show the PDF of ∆Tack and ∆T in the bulk mode.
Although these two schemes also significantly decrease the

∆Tack and ∆T , the total squeezed time is still smaller than
the time decreased by using scheme 1. Therefore, according
to the analysis in Equation (3), the scheme 1 is the crucial
contributor that increases the probability of t2 − t1 so as to
substantially reduce the FPR to a value close to zero. That is
the reason why it performs the best in the bulk mode.

TABLE II: Average time (ms) of ∆Tp, ∆Tack, and ∆Tp.
Bulk mode Real-time mode

∆Tp ↑ ∆Tack ↓ ∆T ↓ ∆Tp ↑ ∆Tack ↓ ∆T ↓
Baseline 573.87 (within 1500) 161.07 7.19 78.98 161.39 8.91

Scheme 1 822.38 (within 1500) 115.98
Scheme 2 0.33 0.24
Scheme 3 4.33 2.83

↑ indicates the larger the better, ↓ indicates the smaller the better.

We then demonstrate why scheme 2 in the real-time mode



1 3 5 7 9

delay of sending the forged message(ms)

0

20

40

60

80
F
P
R

(%
)

Bulk mode

Real-time mode

Fig. 6: FPR versus delay time
of the forged message.

Fig. 7: FPR comparisons using
different schemes.
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(a) Bulk mode. (b) Real-time mode.
Fig. 10: Increase of ∆Tp using scheme 1.

(a) Bulk mode. (b) Real-time mode.
Fig. 11: Decrease of ∆Tack using scheme 2.

(a) Bulk mode. (b) Real-time mode.
Fig. 12: Decrease of ∆T using scheme 3.

[14], etc.. Meanwhile, various de-anonymization attacks are
investigated to uncover vulnerabilities in these systems. These
attacks can be classified into: anonymous originator traceback
attacks [15], [16], [17], [18], [19], [7], [20], [21], [22] and
identification attacks [23], [24], [25], [8], [9].

In Freenet, Baumeister et al. [26] investigate a routing
table insertion (RTI) attack by exploiting the peer replacement
mechanism. Tian et al. [6], [7] propose a traceback attack
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